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Abstract. Although the OAuth2.0 protocol was originally designed to
serve the authorization need for websites, mainstream identity providers
like Google and Facebook have made significant changes on this protocol
to support authentication for mobile apps. Prior research mainly focuses
on how the features of mobile operating systems can affect the OAuth
security. However, little has been done to analyze whether these signifi-
cant modifications of the protocol call-flow can be well understood and
implemented by app developers. Towards this end, we report a field-study
on the Android OAuth2.0-based single-sign-on systems. In particular, we
perform an in-depth static code analysis on three identity provider apps
including Facebook, Google and Sina as well as their official SDKs to
understand their OAuth-related transactions. We then dynamically test
600 top-ranked US and Chinese Android apps. Apart from various types
of existing vulnerabilities, we also discover three previously unknown
security flaws among these first-tier identity providers and a large num-
ber of popular 3rd-party apps. For example, 41% apps under study are
susceptible to a newly discovered profile attack, which unlike prior works,
enables remote account hijacking without any need to trick or interact
with the victim. The prevalence of vulnerabilities further motivates us
to propose/implement an alternative, fool-proof OAuth SDK for one of
the affected IdPs to automatically prevent from these vulnerabilities. To
facilitate the adoption of our proposed fixes, our solution requires min-
imal code changes by the 3rd-party-developers of the affected mobile
apps.
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1 Introduction

The OAuth2.0 protocol was originally designed to serve the authorization need
for 3rd-party websites. However, many major Identity Providers (IdPs) such as
Facebook, Google and Sina, have recently adapted the OAuth2.0-based protocols
to support Single-Sign-On (SSO) services for 3rd-party mobile apps (which take
the role of Relying Party under the context of OAuth2.0). When OAuth2.0 is
used as a SSO scheme, a user can log into the mobile Relying Party (RP), e.g.,
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IMDB, via the IdP without sharing the identity credential with the RP. In this
paper, we will focus on OAuth2.0 and OpenID Connect (which is built on top
of OAuth2.0), since they are the de facto SSO standards.

To support SSO services with 3rd-party mobile apps, the security of
the adapted OAuth2.0 protocol has been evaluated by the literature. Chen
et al. [12] first point out that some operating-system-provided components
(e.g., Intent/WebView for Android) are required to implement OAuth2.0 for
mobile platforms. As further shown by Chen, the features of these components,
if not well understood by mobile app developers, can be leveraged to compromise
mobile SSO systems. Following this work, Ye et al. [34] apply model checking
method to theoretically evaluate this modified protocol and Wang et al. [28,29]
summarize those known vulnerabilities among 15 Chinese IdPs over different
platforms.

Prior studies mainly focus on how the differences of mobile systems (i.e.,
vulnerabilities in the system-provided components) can compromise mobile SSO
systems. However, the security implications resulting from the major protocol
changes, when adapting the OAuth2.0-based protocols to mobile platforms, are
often left out. For example, the standard OAuth2.0 implicit flow has shown
to be insecure for authentication and thus a revised version, i.e., a variant of
OpenID Connect (OIDC), is recommended. Nevertheless, they do not consider
that the SSO results, even in the revised version, are passed through the user
device. Consequently, these security-critical results are subject to tampering and
further enable an adversary to infer the program logic of the RP server.

Towards this end, the goal of this research is to further the understanding of
(1) how the changes of OAuth1 protocol flow, if not well implemented, can lead
to nontrivial security flaws, (2) the overall security quality of mobile SSO systems
by checking whether existing vulnerabilities have been fixed or not. Our work
consists of two pillars: (1) We perform a standard static code analysis of three
first-tier Android IdP apps (Facebook, Google and Sina) and their corresponding
SDKs widely used by the RP to understand their client-side program logic. (2)
We develop a tool to dynamically test Top-600 US and Chinese Android apps to
see how well the RP/IdP servers perform the OAuth transactions. From these
studies, we have made the following technical contributions in this paper:

– We have identified the security-critical changes of the OAuth protocol call-
flow.

– We have examined the implementations of 3 first-tier IdPs and 600 top-ranked
US/Chinese Android Apps. In addition to different types of existing vulnera-
bilities, we have discovered three previously unknown vulnerabilities resulting
from the incorrect implementations of the protocol call-flow modification.

– We have designed and implemented a foolproof solution which prevents future
3rd party app developers from committing the same mistakes. To ease the
transition, our solution only requires minimal changes in the 3rd-party devel-
oped codes of a vulnerable mobile app.

1 We use OAuth to denote OAuth2.0 and OpenID Connect, if not specified otherwise.
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2 Background

In the OAuth ecosystem, four parties are involved to support SSO for 3rd-party
mobile apps, namely, the backend server of the 3rd-party mobile app (RP server,
for short), the backend server of the IdP (IdP server), the 3rd-party client-side
mobile app (RP app) and the client-side mobile app of the IdP (IdP app). For
ease of presentation, in the rest of this paper, we use notations in the parentheses
to denote these four parties and use OAuth to denote OAuth2.0 as well as OIDC,
if not specified otherwise.

The ultimate goal of SSO is for the IdP server to issue an identity proof, e.g.,
the access token for OAuth2.0 and the id token for OIDC, to the RP server.
With this identity proof, the RP server can determine the user’s identity and
then log the user in.

2.1 The Implicit Flow of OAuth 2.0 for Mobile Platforms

OAuth2.0 [18] defines four types of authorization flows, out of which the implicit
flow and authorization code flow2 are widely used by the mobile platform and
the website, respectively. Thanks to the demystification by Chen et al. [12],
the standard implicit flow has proven to be insecure for authentication under
mobile platforms. After revising the standard protocol, one believed-to-be-secure
realization is illustrated in Fig. 1, although neither the RFC nor the IdP provides
a complete call-flow diagram.

RP server
user device     IdP server

1. app info 2.authentication & 
authorization

3. AT + user info 
4. AT+user 

info
5.  AT + 
user info

   8.  API request for user resource + AT

       9 . user resource in IdP
10. user data

   6.  AT verify
        7. AT information

RP 
app

IdP
app

e.g

Fig. 1. The implicit flow of OAuth2.0
for mobile platforms
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{“name”:”alice”,
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 “user_id”:”1001”
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Fig. 2. The implicit flow of OpenID
Connect

1. A user attempts to log into the RP with the IdP. The RP app sends its app
information (e.g., requested permissions) to the IdP app via a secure channel
provided by the mobile operating system, for example the Intent channel in
Android.

2 In fact, the authorization code flow can also be securely used for mobile apps, but
with the cost of worse performance.
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2. Thanks to the secure channel, the IdP app can verify whether the RP app
information is correct or not. If so, the IdP app then sends such information,
as the authorization request, to the IdP server.

3. The IdP server compares information of the authorization request and that
pre-registered by the RP developer. If it matches, the IdP server would
believe the validity of the authorization request and thus issue an access
token (AT) together with optional user information (e.g., uid) to its own
client-side app.

4. The IdP app returns the access token to the RP app via the secure channel
maintained by the operating system.

5. The RP app sends the access token and user information to the RP server.
6. The RP server should call the security-focused SSO-API provided by the

IdP to verify the access token.
7. If the access token is valid, the IdP server should respond the RP server with

authorization information including which RP this access token is issued to.
8. Only if the access token belongs to this RP can the RP server accept it.

Thereafter, the RP server can retrieve the user data with this verified access
token.

9. The IdP server returns the user data associated with the access token.
10. The RP server can then identify the user and return his sensitive data to

RP app.

2.2 The OpenID Connect Protocol

Since OAuth2.0 was originally designed to support authorization, to adapt it
for authentication, it involves multiple high-latency round trips, i.e., Step 6–
Step 9 of Fig. 1. To support authentication more efficiently, IdPs like Google
and Facebook have developed the OpenID Connect (OIDC) protocol [25] and
its variants, on top of OAuth2.0. In addition to the authorization code flow and
implicit flow, OIDC further supports another type of authorization flow, i.e.,
hybrid flow. Regardless, ALL the real-world OIDC-enabled apps under study
only implement the implicit flow. As such, we will focus the implicit flow in the
rest of this paper.

Regarding the implicit flow, OIDC is backward compatible with OAuth2.0.
The only difference is that, apart from the access token, IdPs also introduce a
new parameter, i.e., id token, which is digitally signed by the IdP server. As
illustrated in Fig. 2, the id token, which consists of the user profile, is then sent
to the RP server along with the original access token. Since the signature cannot
be tampered/forged by an attacker, the RP server can now directly identify the
user by extracting the user profile from the id token without the trouble to
retrieve the user profile from the IdP server.

2.3 Threat Model

The goal of an adversary is to break the mobile app authentication, i.e., log
into the RP app as the victim. Here, we trust the mobile operating system and
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assume it cannot be compromised. We assume the adversary can install the RP
app and IdP app in her own device so as to communicate with the RP server and
IdP server. The adversary, Eve, can act as a normal user and monitor/tamper
the network traffic through her own device. In addition, we consider that an
attacker can trick a user into installing a malicious app on her device. This app
does not have any permission considered to be dangerous.

3 Major Protocol Changes that Affect Mobile OAuth
Security

Although the above OAuth protocol seems simple, some security-related changes
(when adapting the protocol from the website) are often overlooked by mobile
app developers.

3.1 Untrusted Identity Proof

Websites typically employ the authorization code flow to support SSO services.
In this case, the identity proof is transmitted via a secure HTTPS channel
between the RP server and IdP server. On the contrary, mobile developers advo-
cate the implicit flow, which passes the identity proof through the user device.
Since the mobile device is untrustworthy (the attacker has full control of her own
device), the identity proof is subject to tampering. Therefore, such an identity
proof can only be accepted by the RP server for two reasons:

1. The RP server makes a direct server-to-server call to the IdP server to verify
the identity proof (i.e., Step 6–Step 9 in Fig. 1);

2. The identity proof is signed by the IdP server (i.e., id token in Fig. 2).

In other words, the RP server should establish a direct trust relationship with
the IdP server to correctly process the identity proof.

Furthermore, there are different types of the so-called identity proof including
the access token, the id token, the user profile (returned at Step 9 of Fig. 1) and
even the authorization code (if the authorization code flow is used). Since this
notion is neither covered by the protocol specification nor research studies, RP
developers need to determine which identity proof to use in which way, based
on their own understanding of the protocol.

3.2 Heavy Client-Side Logic

Another major difference is about the user-agent. In the web-based SSO services,
the user operates on the end-user’s browser. By contrast, in the mobile SSO
systems, the user interacts with the RP app and IdP app (the browser is split
into two parts). Since mobile apps are more powerful, the RP app and IdP app
are often responsible for more message exchange which instead is managed by
the backend server in the case of website. This seems reasonable at the first sight.
But some messages can only be processed at the server side, such as the user
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resource retrieved at Step 9 of Fig. 1. Otherwise, it can lead to the user-profile
attack, as presented in Sect. 5.

Meanwhile, both the IdP app and RP app store much more data on the
client side. For example, the IdP app keeps the user’s identity information and
the RP app stores the authorization information (e.g., the RP’s name), which is
displayed for the user to check/grant the permissions. Note that these security-
critical data need to be retrieved from the server during SSO transactions. How-
ever, with such information in the client side, it may be tempting for an app
developer to retrieve it from the phone directly. This can lead to the so-called
user-profile attack and inconsistent RP app identity as presented in Sect. 5.

4 Our Approach

To evaluate the security implications resulting from the above protocol changes,
we first perform dynamic testing on every RP/IdP app. The testing helps to
understand the program logic on the server side. Secondly, to better understand
the security practices on the client side, we conduct an in-depth static code analy-
sis on the IdP apps (i.e., Facebook, Google and Sina) and their corresponding
SDKs (used by RP apps). Given the limited number of IdP apps and SDKs, we
can afford for the manual code examination.

4.1 Dynamic Testing

We design a tool to automatically fuzz every OAuth-related message. As shown
in Fig. 3, we first set up a man-in-the-middle (MITM) proxy so that we can
observe and tamper the network traffic going into and leaving our phone. We
then manually operate the phone as a normal user and mimic the SSO process
to generate a series of OAuth requests. For every request, our tool replaces each
parameter with that from a different RP and user. Finally, the tool sends the
fuzzed request to the receiver and checks whether the response is normal or not.
Note that since the network traffic is typically protected by HTTPS, we employ
the SSL-enabled proxy like mitmproxy [3].

The analysis of the communication between the IdP app and IdP server is
straightforward, since such interactions share the same format for the same IdP.
Unfortunately, fuzzing the messages between the RP app and RP server, i.e.,
Step 5 (ii) in Fig. 3, is more challenging than expected. Firstly, there are numer-
ous interactions between the user mobile device and the RP server. It is there-
fore difficult to identify which request is used by the RP server to authenticate
the user. Secondly, besides being protected by HTTPS, the message exchanges
between the RP app and its backend server are often further encrypted or signed
by the RP developer. Although it is possible to extract the cryptographic key
from the Android app, such a practice may not be scalable. Therefore, it is usu-
ally easier to tamper the response from the IdP server to the IdP app, i.e., Step 3
(ii) instead. After all, all OAuth-related information received by the RP server
can only be derived from the IdP server3.
3 One exception is Google’s Android account management, as presented in Sect. 5.1.
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Fig. 3. The platform to analyze the implementations on the IdP/RP server side

4.2 Static Code Analysis

To understand the client-side logic, we decompile the binary code of the latest
IdP app, and the official SDK (if it is compiled) widely used by the RP app.
Although the IdP app and SDK usually are heavily obfuscated, the names of
special activities and system APIs (e.g., startActivity, getCallingPackage, etc.)
are not changed. As such, we can identify the entry point of SSO services and
then build a partial call flow graph. This provides an opportunity for us to only
focus on the relatively small number of SSO-related security-critical activities.
We then manually examine these activities to identify potential vulnerabilities.
For example, we find that the SSO entry of Sina (i.e., SSOActivity) by default
verifies the received information, except when the information is from Sina itself.
This practice is seemingly sound at first. However, it may be leveraged by a
malicious RP app to bypass the security checking, if there is a “next Intent” [31]
in Sina app. Therefore, during the code examination process, we will try to check
the existence of the “next Intent”. To confirm these vulnerabilities, we then build
a toy RP app with the official SDK and launch the corresponding attacks on this
toy app. By this way, we have identified the problem of inconsistent RP identity,
as presented in Sect. 5.2.

5 Vulnerability Analysis

In addition to various existing vulnerabilities, the above method also helps to
discover three unknown security flaws resulting from the inaccurate understand-
ing/implementations of the protocol changes.

5.1 Profile Vulnerability

The identity proof is often incorrectly processed by the RP server and has led to
the profile vulnerability, which enables an attacker to log into a susceptible RP
as the victim by leveraging the victim’s public user profile only. Note that all the
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Fig. 5. The RP server does not verify the identity proof of the user

prior findings [12,29,34] require different types of interactions with the victim.
In contrast, this newly discovered vulnerability can be exploited remotely and
solely by the attacker without any need to trick or interact with the victim, for
example via phishing attacks.

Different Types of Incorrect Implementations. We present two types of
common but widespread mistakes (but the real-world misuses do not limited to
these two types).
Return Incorrect Identity Proof to the RP Server. Some RP apps can directly
retrieve the user information from the mobile device it is running on, regardless
of the OAuth access token obtained from the IdP. Without the access token,
the RP app only sends the user profile (e.g., uid, email) to the RP server as the
identity proof. As a consequence, the RP server has no way to correctly identify
the user.

One interesting misuse is caused by Android Account Management System
(AMS) [2,15] when using Google as the identity provider. Android AMS provides
a centralized database (i.e., /data/system/users/0/accounts.db) for storing user
accounts. While the main goal of AMS is to support seamless access user data via
background synchronization, Google has integrated it to support SSO service.
Specifically, when a user logs into his/her Google account, Google Login Service
(i.e., IdP app) will store the user’s Google account information in the accounts
table as shown below.

INSERT INTO "accounts" VALUES(1, ’alice@gmail.com’, ’com.

google ’, ’password ’, NULL);
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With the Android permission of GET ACCOUNTS, an app can easily get the
user’s Google account (i.e., email address) by calling getAccounts() method. As
shown in Fig. 4(a), some RP developers (e.g., one antivirus app Psafe with 50+
million installs) directly return this email address (retrieved from the database)
to the RP server as the identity proof, regardless of the access token (or id token).
As such, an adversary can insert a forged entry, i.e., victim’s email address, into
the database on the adversary’s mobile device.

Another typical example is shown in Fig. 4(b) where an RP app immediately
retrieves the user data by calling the IdP API with the access token. How-
ever, this RP app only sends the user profile to its server as the identity proof.
Although such a proof is protected by encryption/signature techniques in addi-
tion to TLS, an attacker can simply feed incorrect user information at Step 4 of
Fig. 4(b).
The RP Server Does Not Verify the Identity Proof. As shown in Fig. 5(a), when
the IdP servers return the user identity information (e.g., user id/email address)
along with the access token via OAuth, many RP servers (e.g., Sohu with 80+
million monthly-active-user etc.) simply and incorrectly return sensitive user
information to its own client-side app based on the received user-id WITHOUT
verifying whether the received user-id is indeed bound to the issued access token
(i.e., lack of Step 6–Step 9 in Fig. 1).

Figure 5(b) shows another case where Facebook and Google adopt the OIDC-
like protocol and digitally sign the user identity information. However, most RP
servers just ignore this signature and insist on the traditional OAuth protocol.
Worse still, some RP servers (e.g., a free call/text app DingTong with 10+
million installs) even do not verify the signature but simply extract the user-id
from the payload of the signature and accept the user-id as is the way without
any authentication/validation.

Exploiting the Profile Vulnerability. Leveraging the same system setup of
Fig. 3, an attacker can log into a susceptible app as the victim by exploiting the
victim’s profile with the following steps4:

1. The attacker setups a SSL-enabled MITM proxy for her own mobile device to
monitor and tamper network traffic going into and leaving from her device.

2. The attacker installs the vulnerable RP app in her own mobile device.
3. The attacker signs into the vulnerable RP app with the attacker’s own IdP

login name and password.
4. When the IdP server returns the user profile to its client-side app, i.e., Step

3 (ii) of Fig. 3, the attacker substitutes her own user-id (public user id for the
case of Google+ and Sina users or guessable email address) with the victim’s
one using the MITM proxy. Although Facebook has started to issue private
per-app user-id for each RP since May 2014, for backward compatibility rea-
sons, to-date, Facebook still uses the public user-id to identify early adopters

4 For the case of Google Android AMS, an attacker just needs to insert a forged entry
in her own device and then follows the normal steps to complete the SSO procedure.
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of a RP app. As such, a user of a vulnerable RP of Facebook is still suscepti-
ble to our attack as long as he/she has signed into the RP app via Facebook
before May 2014.

5. Since the RP server directly uses the user identity information returned by its
client-side app to identify the user WITHOUT further validation, the attacker
can therefore successfully sign into the RP as the victim.

Additional Challenges for the Exploit. The above exploit involves additional chal-
lenges when the IdP client-side app, e.g., the one by Facebook, applies the certifi-
cate pinning. In this case, the message sent by the IdP server (and then tampered
by the attacker’s MITM proxy) to its client-side app will not be accepted by the
latter. As a workaround, the attacker can simply uninstall the IdP app so that
the IdP SDK (widely used by RP apps) would automatically downgrade to carry
out OAuth authentication via the built-in WebView browser. Being a general
built-in browser, the WebView does not support the certificate pinning for a
specific IdP.

But some IdPs do not support WebView. In this case, the attacker can-
not just use off-the-shelf tools like Xposed SSLUnpinning [6] module, since the
IdPs often use customized methods (instead of the native Android framework) to
implement the certificate pinning. For such IdPs, the attacker has to reverse engi-
neer the IdP app and manually remove the certificate pinning. To demonstrate
the feasibility of this approach, we have successfully implemented a proof-of-
concept hack on the Facebook app by reverse engineering the apk. But the RP
app (more precisely, the IdP SDK) will also compare the certificate of Facebook
with a previously hard-coded one (i.e., the real certificate of Facebook). As such,
we also need to bypass the certificate comparison function.

Vendor Responses. All of three IdPs under study acknowledged the security
issue and pledged to help to notify the affected third-party app developers. In
particular, Sina already sent a specific notification to ALL RP developers on its
platform to inform them about the problem. The company also granted us the
maximum amount of reward credits allowed by their bug-bounty program. It has
also updated the Single-Sign-On section of its programming guide accordingly.
Google has acknowledged our finding via their Google Security Hall of Fame and
indicated that they will modify the corresponding documentation for their 3rd
party app developers. Facebook has informed us that they are seeking a way to
make their RP developers aware of this problem.

5.2 Inconsistent RP App Identity for the User

After authenticating the user at Step 2 of Fig. 1, the IdP app should retrieve the
authorization information including the RP name, the requested permissions
from its backend server. From the perspective of the user, the IdP app will pop
up a dialog to indicate which RP requests what permissions from which user.
Here, the name of the RP represents the identity of the RP which is verified by
the IdP.
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Since this authorization information is also stored by the RP app on the
mobile device, we find that Google immediately retrieves such information from
the device. Specifically, Google presents the name of the RP according to the
value of android:label in the AndroidManifest file, when an RP app adopts the
Intent5 scheme (which is the default method used by Google’s official SDK)
to support SSO services. On one hand, Google in fact can correctly learn the
identity of the RP. On the other hand, the AndroidManifest file can be arbitrarily
defined by the RP app. As such, the displayed authorization page is inconsistent
with Google’s understanding.

Taking the advantage of this inconsistence, a malicious RP app can convince
the user that the interacting RP, as verified by Google, is a benign and privileged
app like IMDB. Due to the great trust placed on Google, the user is willing to
grant the permissions if Google verifies the RP app as IMDB rather than some
random app. As such, it would be easier for the malicious RP to obtain an access
token. This access token enables an attacker to retrieve the victim’s data hosted
by Google. When combined with other attacks, e.g., token hijacking, the attacker
can also log into the victim’s account on other Google-enabled benign apps.

Vendor Response. Google acknowledged this security bug. But as Google
security team claims, this security issue was found independently by another
concurrent work (but this issue is not fixed yet). Unfortunately, only the first
report is in the scope of Google vulnerability reward program.

5.3 Treat the IdP App as a Special RP

Some IdPs including Google and Sina treat their client-side app as a special
RP. If the user can successfully authenticate with the IdP, the IdP server would
issue an access token to its client-side app. Note that this access token has
higher privileges. It enables the IdP app to make sensitive transactions on behalf
of the user, for example, to issue access token for any other RPs, etc. Since
the adversary (acting as a normal user) can also obtain this access token, the
adversary can easily launch application impersonation attack [20]. For example,
the adversary can utilize this highly privileged access token to invoke sensitive
APIs (e.g., query the user information in a batch) with higher API quota. Note
that such APIs/quotas originally are not allowed by the adversary or users.

Worse still, this privileged access token is not protected by HTTPS for Sina
app. Therefore, an adversary can easily obtain it via eavesdropping. Using this
special access token, the attacker can pretend to be the victim and make any
transactions, for example, signing into any RP app on the Sina platform as the
victim.

Vendor Response. We have reported this issue to Sina. Sina directly acknowl-
edged this problem and have applied the corresponding fixes for their Android
app.

5 When an RP app chooses to use the WebView scheme, Google can correctly get the
RP name from its own server.
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6 Empirical Evaluation

We have studied the Android IdP apps and OAuth SDKs provided by three
top-tier IdPs, i.e., Facebook, Google and Sina. The number of registered users
in these IdPs ranges from more than 800 million to over 2.5 billion as depicted
in Table 1. We then comprehensively test the implementations of 600 top-ranked
Android applications in US and China. Since more Chinese RPs support OAuth,
we only select top 100 RPs (in overall category) and another top 100 apps in
different categories for Sina from one major Chinese app store [4]. By contrast,
we select 300 top-ranked RPs (in overall category) and 100 top-ranked RPs (in
different categories) for Facebook and Google from Google Play. The top 100
apps in different categories is selected as follows: top 30 free apps in social, top
30 free apps in travel and local, top 30 free apps in fitness, top 10 free apps in
communication. Out of these 600 apps, we identify that 182 apps use OAuth
authentication service provided by one or more of the 3 IdPs mentioned above.

Table 1. Statistics for the usage of the protocol

IdPs (# of
third-party RP)

# of IdP users
(in Millions)

OAuth2.0 OpenID Connect

Insecure
usage

Correct
usage

Ignore
id token

Not verify
id token

Correct
usage

Facebook (59) >1,500 9 10 35 (20∗) 2 3

Google (40) >2,500 24 14 0+ 0 2

Sina (83) >8,00 78 5 N.A N.A N.A

– ∗: 20 out of 35 RPs are incorrectly implemented.
– +: Google customizes the OIDC protocol where typically only the id token is issued
to the RP. Therefore, this id token cannot be ignored. Otherwise, there is not a valid
identity proof.

In addition to different types of vulnerabilities, our studies also present
first-hand information regarding the adoption rate as well as the misuse rate
of OAuth2.0 and OIDC. As shown in Table 1, all of three IdPs support the
OAuth2.0 protocol. Facebook and Google additionally develop and advocate
OIDC-like protocols for SSO services. Since OIDC by default is supported by
Facebook SDK, 68% apps of Facebook, as opposed to only 2 RP apps of Google,
employ the OIDC protocol. Regardless, there are two types of misuses for these
OIDC-enabled RPs:

– Ignore id token: Some RPs ignore the id token, in which case these RPs revert
to the OAuth2.0 protocol and rely on the access token to authenticate the
user. As such, these RPs (20 out of 35) share the same security issues of
OAuth2.0 as illustrated in Table 2.

– Not verify id token: Some RPs indeed rely on the id token to verify the user.
But 29% of them do not check whether the id token is well signed.
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Table 2. Statistics of the vulnerabilities for OAuth

IdPs (# of 3rd-party RP)Profile attackToken

hijacking

Improper

user agent

Access token

disclosure

App secret

disclosure

# of vulnerable

RPsa

Facebook (59) 9 (15%) 27 1 2 0 31 (53%)

Google (40) 8 (20%) 20 1 1 0 24 (60%)

Sina (83) 58 (70%) 15 7 13 4 78 (94%)

Summary (182) 75 (41%) 62 9 16 4 133 (73%)

– a: One RP may be susceptible to multiple vulnerabilities, e.g., the profile attack and token hijacking,

at the same time.

These observations show that OAuth2.0 is still the most popular SSO pro-
tocol. Unfortunately, the implementations of OAuth2.0 (including the ignore
id token case of OIDC) are also more susceptible: 75% OAuth2.0-enabled RPs
have at least one vulnerability whereas 29% OIDC-supported RPs are vulnera-
ble. Different OAuth security vulnerabilities are summarized in Table 2. Below
we first discuss the implication of the profile attack and then demonstrate the
pervasiveness of existing vulnerabilities.

6.1 The Implication of the Profile Attack

As illustrated in Table 2, 41% of the RP under test are found to be vulnerable to
the newly discovered profile attack. Table 3 depicts a partial list of the vulnerable
mobile apps we have identified so far. Notice that the total number of downloads
for this incomplete list of popular but vulnerable apps already exceeds 2.4 billion.
Based on the SSO-user-adoption-rate of 51% according to the recent survey by
Janrain [7], we conservatively estimate that more than one billion of different
types of mobile app accounts are susceptible to the profile attack as of this
writing.

After signing into the victim’s vulnerable RP app account using our exploit,
the attacker will have, in many cases, full access to the victim’s sensitive and
private information which is hosted by the vulnerable RP server. Just for the
vulnerable apps listed in Table 3 alone, a massive amount of extremely sensi-
tive personal information is wide-open for grab: this includes detailed travel
itineraries, personal/intimate communication archives, family/private photos,
personal finance records, as well as the viewing or shopping history of the victim.
For some RPs, the online-currency/service credits associated with the victim’s
account are also at the disposal of the attacker.

Although our current attack is demonstrated over the Android platform, the
exploit itself is platform-agnostic: any iOS or Android user of the vulnerable
mobile app is affected as long as he/she has used the OAuth SSO service with
the app before. As a proof of concept, we have conducted the same attack on
two vulnerable iOS apps.

6.2 Re-Discover Known Vulnerabilities

Table 2 shows that our testing also rediscovers different types of existing security
issues.
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Table 3. A Partial list of vulnerable apps and the sensitive information exposed

Type of apps IdP supported # of app

downloads (in

Millions)

Type of

private/sensitive

information

exposed

Feasible

transactions by

the attacker

Travel plan app Sina >270 Travel itineraries -

Hotel booking app Facebook, Google >5 Lodging history Pay for room

bookings

Private chat app Sina >10 Private

message/album

Send forged

messages

Dating app Google, Sina >5 Dating history,

preferences

Purchase gifts

Finance app1 Sina >25 Personal

income/expenses

-

Finance app2 Sina >50 Stock list of

interest

-

Call app Facebook >10 Contact list and

call history

Call for free

Live video app Sina >15 The host the

victim likes

Purchase gifts

Download app Sina >60 Download history Enjoy VIP speed

Shopping apps Facebook, Google >100 Shopping history -

Browser Sina >40 Browsing history -

Video apps Sina >700 Video watching

history

Purchase videos

Music apps Google, Sina >800 Playlist Purchase

sound-tracks

News apps Sina >350 News-reading

history

-

1. Token hijacking [1]: At Step 6–Step 7 of Fig. 1, the RP server must check that
the received access token is granted to the same RP. Unfortunately, 34% RPs
fail to do so, which enables an adversary to sign onto a victim’s benign RP
account by leveraging an access token issued to a malicious RP.

2. Improper user agent [12]: In addition to the infeasibility to identify the RP
app, the WebView, as a custom webkit browser embedded in the app, is also
untrustworthy to be a OAuth user-agent. Since the WebView is under the
control of the RP app, a malicious RP app is capable of stealing any infor-
mation submitted by the user in the WebView (e.g., the user’s IdP password)
and modifying authorization information displayed by the WebView. Unfor-
tunately, most RP apps support WebView, and worse still, 5% RP apps only
support this problematic scheme.

3. Access token disclosure [27]: An access token should be transmitted securely.
Thanks to the higher adoption rate of TLS, only 9% mobile RPs disclose their
access token whereas 32% 3rd-party websites made this mistake [27].

4. App secret disclosure [29]: The confidential app secret should only be shared
between the RP server and IdP server. There are 15 mobile RP apps deploy
the authorization code flow rather than the implicit flow. Unfortunately, 27%
of these apps inadvertently pass this secret through the user device. This
allows an attacker to make operations on behalf of the RP, e.g., changing the
RP’s security setting.
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7 Plausible Root Causes

Surprised by the prevalence of various incorrect implementations, we also try
to analyze the underlying reason by examining the SDKs and the OAuth APIs
provided by IdPs.

7.1 Unclear Developer Documentation

We found that many authentication-related security issues are caused by the lack
of clear guidelines. Since OAuth2.0 (RFC 6749 [18]) was not designed for mobile
app authentication, various IdPs have developed different home-brewed exten-
sions of OAuth2.0-based APIs and SDKs to support SSO for mobile apps. Unfor-
tunately, the implicit security assumptions and operational requirements of such
home-brewed adaptations are often not clearly documented or well-understood
by RP developers. For example, when Sina returns the user profile to the RP
app at Step 4 of Fig. 1, the only purpose is to allow the RP app to display the
user info (e.g., user name, avatar, etc.). Despite of this specific intention, Sina
makes the following confusing claim6 in its programming guide [5]:

For the convenience of app developers, the returned user information can
avoid calling the user-profile API, i.e., users/show.

As pointed out in Sect. 3, a server-to-server call is inevitable for the stan-
dard OAuth2.0 protocol to verify the untrusted identity proof. However, the
above claim can mislead RP servers not to make the user-profile API call to the
IdP server at Step 8 and Step 9. Instead, the RP server may directly use the
returned user information from its client-side app as the identity proof and thus
be vulnerable to the profile attack.

For another example, Google assumes the RP developers would adopt the
OIDC protocol, and thus only shows how an RP app can authenticate with its
backend server using the id token. Unfortunately, the majority of apps use the
OAuth2.0 protocol instead. For these apps, Google does not define the interac-
tions between the RP app and RP server. Therefore, the RP developers without
adequate security expertise have to implement the error-prone authentication
services by themselves.

After reporting the security issues to the three IdPs, all of them recognize
the need to improve their documentation by explicitly pointing out the implicit
security requirements. For example, Sina now updates its claim [5] as follows:

The third-party apps should not use uid to identify the logged-in user.
Note that the access token is the only valid identity proof.

6 Since Sina developers are not native English speakers, the statements are translated
by the author.
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7.2 Poor API Design of Sina

Since more Sina apps are vulnerable to the profile attack, we further examine its
SDK and API design. We find that the poor API design of Sina may compound
this problem. As an open social network, Sina by design allows any RP in pos-
session of a valid access token, no matter whom the access token is issued to, to
retrieve any user’s basic profile via the users/show API: https://api.weibo.com/
2/users/show.json?access token=x&uid=x. Even if the RP server does not trust
the user id and would like to use the access token to identify the user, it may
incorrectly use the above API. In this case, Sina server would return the victim’s
user profile only based on the value of uid in the URL. Without realizing the
exact semantic of the returned information, the RP developer may incorrectly
interpret that the returned user profile is bound to the access token, and thus,
log the user in.

In fact, Sina also provides a correct API (i.e., account/get uid) to get the
user-id of the one, whom the access token is bound to. But Sina never specifies
which API to use7. Due to the richer information provided by the inappropriate
users/show API8, we believe RP developers prefer the incorrect API. By con-
trast, Facebook and Google use the people/me API, which is more self-explained,
and more importantly, is typically handled by IdP SDKs. For example, the PHP
SDK of Facebook hard-encodes the user id me, and as such the uid fed by the
attacker would be ignored by the SDK.

8 Defense

The community has proposed the following Current Best Practices (CBPs):

1. IdPs should provide clearer, and more security-focused developer guidelines.
2. The RP server should not trust any information even if it is signed by its own

app. Trust should be anchored on the IdP server directly.
3. To implement OAuth2.0 for mobile apps, RP developers should use the autho-

rization code flow instead of implicit flow by strictly following [14].
4. Use OIDC for authentication whenever possible.

If these CBPs can be correctly followed, then most vulnerabilities will not exist.
Unfortunately, most RP developers never adhere these CBPs at all. Towards this
end, the crux of the defense is to enforce the defined security checks, which cannot
simply rely on the RP developers, but instead must be strongly enforced by the
IdPs, since the latter has adequate security expertise. Therefore, we develop a
general and foolproof solution, from the perspective of the IdP, to help the RP
developers to automatically handle the error-prone SSO services. Our solution
should achieve three goals:

7 Worse still, Sina seems to recommend the incorrect one in their unclear developer
documentation.

8 The other API only returns the uid of the user.

https://api.weibo.com/2/users/show.json?access_token=x&uid=x
https://api.weibo.com/2/users/show.json?access_token=x&uid=x
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1. All the identified vulnerabilities (including existing ones) can be prevented.
2. To ease the transition, the code changes by the RP developers should be as

few as possible.
3. The solution should be backward compatible in a sense that the RP server

can still support those users who use the older version of the RP app. After
all, it is difficult for every user to upgrade his/her RP app.

With these goals in mind, we first review the architecture of existing SSO
systems. As shown in Fig. 6, both the RP server and RP app can be split into
two modules: the SDKs provided by the IdP serve the interactions with the
IdP app/server and the upper layer codes implemented by the RP developer
manage its own business logic. Currently, the identity proof is also (incorrectly)
handled by the upper layer code. To prevent from SSO errors, we migrate such
functionality to the lower layer SDKs, with the belief that the SDKs provided by
IdPs can correctly process this security-critical identity proof. Specifically, upon
the reception of the identity proof at Step 4 of Fig. 1, the client-side SDK can
send it to the server-side SDK. The latter then performs the real authentication
task by utilizing this identity proof. Below we will discuss more details.

8.1 Defense on the Client-Side SDK

As shown in Fig. 4, when the RP apps only return user information, there is no
way for the RP servers to correctly identify the user. Therefore, the enforced
version of the client-side SDK should automatically send required information
including the access token (or the id token for OIDC) to its backend server. With
due consideration to the ease of transition, below we first discuss the design of
the existing client-side SDK.

API Design of the Existing Client-Side SDK. We only take Sina, 9 one
OAuth2.0 IdP, as the example. When authorization succeeds, the client-side
SDK (used by the RP app) will utilize Android API onActivityResult to receive
an access token along with a user id from Sina app. Before forwarding this result
to the upper layer, authorizeCallBack API is first invoked to check whether the
access token is in the correct format.

protected void onActivityResult (...){
mSsoHandler.authorizeCallBack(requestCode ,resultCode ,result);

}

Initial Attempt Using Cookie-Based Scheme. Without affecting the upper
layer behavior, we manage to authenticate the user in the SDK. Referring to the
scheme in websites, one natural attempt, as shown in Fig. 6, is to use cookie.

9 Our solution is applicable to OIDC protocol or other IdPs since they follow the same
flavor.
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Fig. 6. The cookie-based defense

Upper 
layer 

     RP server RP app IdP server

3. access token
4. access token information + uid + email

    SDK

SDK

Entry

API 

8.
 u

id

TA/d iu.9

db

6. AT+ uid

7. auth request:uid

10. user data

GetAT
API

2. AT
5. set_uid=rand()

1. AT+ uid

Fig. 7. The refined defense

1. After the client-side SDK (i.e., authorizeCallBack) checks the format of the
access token, instead of forwarding it to the upper layer, the client-side SDK
first delivers the access token to the server-side SDK.

2. The server-side SDK exactly follows Step 3–Step 4 in Fig. 6 (corresponding
to Step 6–Step 9 in Fig. 1) to identify the user via the access token.

3. If the verification succeeds, the server-side SDK then sets a cookie to the
client-side app with a random nonce at Step 5 of Fig. 6. Only then would the
client-side SDK forward the access token and the user profile to the upper
layer code.

4. From the view of the upper layer, everything remains the same. Thus it can
follow its original logics to interact with the RP server. The only difference is
that a cookie would be automatically attached to the authentication request
at Step 7 of Fig. 6.

5. Regardless of other information sent by the RP app, the server-side SDK only
relies on the cookie to identify the user.

Unfortunately, this cookie-based solution is not applicable to every RP app:
Unlike websites where a central browser can help to manage cookies, the Android
app developers need to manage the cookies by themselves, for example using
the CookieManager. Therefore, the cookie set by the underlying SDK may not
be automatically used by the upper layer, if the latter adopts a customized
CookieStore.

Refined Defense. Nevertheless, the cookie-based scheme still provides great
insights. Note that the cookie is used to bind the requests of Step 2 and Step 7 in
Fig. 6. Towards this end, the client-side SDK and its upper layer code must share
some information like the cookie. Furthermore, the shared information must be
a secret. Otherwise, an adversary can easily guess/compute this information and
pretend to be anyone else.

Given these requirements, we revise the cookie-based solution. Referring to
the practice of Facebook which issues private user-id on a per-app basis, we will
randomly generate a one-time user id, instead of the cookie, as the secret to bind
these two requests. More specifically, if authentication succeeds, the server-side
SDK would return a randomly generated uid to its client-side SDK at Step 5 of
Fig. 7. This uid plays the same role as cookie. Note that this uid can only be
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used for once so that an adversary cannot guess/compute its value. The old uid
will be deleted once expired or used.

8.2 Defense on the Server-Side SDK

At Step 2 of Fig. 7, the server-side SDK can follow Step 3 and Step 4 in Fig. 7 (i.e.,
correspond to Step 6–Step 9 in Fig. 1) to identify the user. Once authentication
succeeds, the server-side SDK randomly generates a one-time uid with a specific
prefix and maintains the mapping of < uid, uidreal >. At Step 7 of Fig. 7, the
server-side upper layer should forward the authentication request to its SDK.
Our newly added function in the SDK can then handle this request according
to its content.

1. If the request only contains the user id, i.e., uid, we check whether this uid
starts with a specific prefix. If so, we check the mapping of < uid, uidreal >
and then get the user information uidreal. Otherwise, just abort the request.

2. If the request only contains the access token, we follow Step 3 and Step 4 in
Fig. 7 to identify the user.

3. If the request contains the access token and user id, we first follow Case (1)
to process the user id. If it fails, we then follow Case (2) to process the access
token.

Remark. The correctness of our defense is based on two assumptions. Firstly,
a correct implementation of OAuth, as shown in Figs. 1 and 2, is automatically
immune to all the existing attacks. In fact, a formal proof is presented by [34].
More precisely, this work utilizes the model checking method to analyze the
implementation-level protocol of Facebook and can only discover unauthorized
storage access if the malicious app has root privileges. However, such a strong
threat model is not considered in this paper. Secondly, the IdPs (i.e., SDKs) with
enough security expertise can accurately implement the protocol (as opposed to
the RP developers who often make mistakes). Therefore, the crux of our solution
is to enforce the IdP developers to correctly implement the OAuth protocol for
the RP developers.

Although the design of the defense seems complicated, we only add two more
requests (i.e., Step 2 and Step 5 at Fig. 7) into the current system. Note that the
other steps (e.g., Step 6, Step 8, etc.) already reside in the existing systems. For
the ease of presentation, we intentionally hide these detailed (SDK-level) steps
when discussing the protocol flow in Fig. 1. Note also that the proposed remedies
does not affect the authorization code flow, although we can use the same idea
to improve its security.

8.3 Implementation and Evaluation of the Proposed Defense

To demonstrate the feasibility of the proposed remedies, we implement the solu-
tion on a sample app provided by Sina. Like examples from the other IdPs, the
sample app is built on top of the Android SDK. Note that this SDK is in the
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form of executable Jar file. To modify it, we thereby need to decompile the Jar
file into Java code. While there are off-the-shelf Java decompiler tools like CFR
or JAD, the extracted source code is not well structured and contains various
errors, which requires non-trivial manual resolve.

We then follow the common practices to build a backend server on top of
the official PHP SDK. The only change in the server-side SDK is to add a
new function which performs the real authentication task. Meanwhile, we only
add 5 lines of code in the server-side upper layer, which demonstrates the least
programming efforts from the RP developers.

Table 4. The average running time under three different settings

Two types of app User info (in ms) Access token
(in ms)

Access token
& user info
(in ms)

Vulnerable app 4490 7604 5092

Fixed app 6414 9667 6009

Evaluation. To demonstrate the effectiveness, we have launched different
attacks listed in Table 2 on the sample app. It turns out that our solution can
prevent from (or alert for insecure transmission, e.g., token disclosure) all these
attacks. For example, the profile vulnerability becomes impossible since an adver-
sary cannot guess the randomly-generated one-time uid. Take token hijacking as
another example. Since our defense exactly follows Fig. 1, our server-side SDK
will verify whether this access token is issued to itself or not at Step 3 of Fig. 7
(corresponds to Step 6 of Fig. 1). Thus an access token of another RP will not
be accepted.

To show the efficiency of our solution, we measure the running time of a
complete SSO process. Specifically, we enumerate all three possible cases of the
authentication request, as mentioned in Sect. 8.2. For each case, we operate the
sample app to complete the OAuth2.0 process for 20 times under the same phone
and network environment. The average time is presented in Table 4. It shows that
the fixed app has only a small impact on the user performance.

The State-of-the-Art OAuth Defense. The Current Best Practices
(CBP) [14] suggests the usage of authorization code flow to prevent from many
existing problems. However, a correct implementation of these CBPs is still chal-
lenging for the RP developers (as is the case for the revised implicit flow). Fur-
thermore, it requires lots of efforts to migrate from implicit flow (the current de
fact standard) to authorization code flow. Xing et al. [32] develop invariants of
HTTP parameters to protect third-party web service integrations like OAuth2.0.
However, it cannot discover many attacks such as the profile attack. Another
defense [11] uses program verifier to check whether the sequence of method calls
satisfies the defined predicate. Despite its power, this method requires significant
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programming efforts for all involved parties. Compared to the state of the art,
our defense not only can prevent from all the existing attacks, but also requires
the minimal programming efforts from the RP developers.

9 Related Work

Security Analyses from the Protocol Perspective. IETF has presented
comprehensive security considerations and threat models in RFC6749 [18] and
RFC6819 [22] for OAuth2.0 protocol from the initial design. Additionally, the
authorization code flow has proven to be secure cryptographically [10] as long as
the TLS is properly used. Hu et al. [20] present the App Impersonation attack.
These works mainly prove the authorization security for the web from the pro-
tocol design standpoint. However, we consider whether the protocol is securely
implemented on mobile platforms for authentication.

Formal Security Proof for OAuth. The model checking method is exten-
sively used to analyze the protocol specification [18] by numerous works includ-
ing [8,9,16,24], just to name a few. Researchers also attempt to use the same
method to reason about the protocol implementations by modeling the com-
plex runtime platform, e.g., browser [16,17]. All of these works assume a correct
implementation of the protocol call-flow. However, we show that protocols are
often implemented incorrectly.

Real-World Study on the Web-Based SSO Systems. More efforts have
been contributed to the vulnerability detection of the website-based real-world
systems, including [13,23,27,30]. Another research direction is to conduct large-
scale testing on the web SSO systems, including SSOScan [26,35], OAuthT-
ester [21,33]. Nevertheless, all the works mentioned so far only study the OAu-
th/OIDC specification/implementations on the website. In contrast, we focus on
the mobile platforms.

Analyses of Mobile OAuth SSO Systems. There are relatively few secu-
rity analyses on OAuth under mobile environment. Chen et al. [12] shows how
real-world OAuth systems can fall into the common pitfalls when leveraging
the operating-system-provided components (e.g., Intent, WebView, etc.). Ye
et al. [34] utilize the model checking method to evaluate the OIDC-like protocol
implemented by Facebook on Android platform. Summarizing these works, Wang
et al. [19,29] collect the statistics of these known vulnerabilities. Prior works
mainly focus on how the classic vulnerabilities (or features) of mobile systems
can be leveraged to compromise SSO systems. In contrast, we analyze how the
modified protocol call-flow itself can be incorrectly implemented.

10 Conclusion

In this paper, we report a field-study of mobile OAuth2.0-based SSO systems.
We perform an in-depth static code analysis on three first-tier IdP apps and their
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official SDKs as well as dynamic testing on Top-600 Android apps in China and
US. Besides the discovery of three previously unknown security flaws, we also
demonstrate the prevalence of different types of existing vulnerabilities. The per-
vasiveness of these loopholes motivates us to design and implement a foolproof
defense for those susceptible RPs with the aim of minimizing the programming
efforts of RP developers. Our discoveries show that it is urgent for the various
parties to re-examine their OAuth implementations and apply the fixes accord-
ingly.
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