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Abstract. Lattice-based group signature is an active research topic
in recent years. Since the pioneering work by Gordon et al. (Asi-
acrypt 2010), eight other schemes have been proposed, providing various
improvements in terms of security, efficiency and functionality. However,
most of the existing constructions work only in the static setting where
the group population is fixed at the setup phase. The only two excep-
tions are the schemes by Langlois et al. (PKC 2014) that handles user
revocations (but new users cannot join), and by Libert et al. (Asiacrypt
2016) which addresses the orthogonal problem of dynamic user enroll-
ments (but users cannot be revoked).

In this work, we provide the first lattice-based group signature that
offers full dynamicity (i.e., users have the flexibility in joining and leaving
the group), and thus, resolve a prominent open problem posed by previ-
ous works. Moreover, we achieve this non-trivial feat in a relatively simple
manner. Starting with Libert et al.’s fully static construction (Eurocrypt
2016) - which is arguably the most efficient lattice-based group signature
to date, we introduce simple-but-insightful tweaks that allow to upgrade
it directly into the fully dynamic setting. More startlingly, our scheme
even produces slightly shorter signatures than the former. The scheme
satisfies the strong security requirements of Bootle et al.’s model (ACNS
2016), under the Short Integer Solution (SIS) and the Learning With
Errors (LWE) assumptions.

Keywords: Lattice-based group signatures · Full dynamicity · Updat-
able Merkle trees · Stern-like zero-knowledge protocols

1 Introduction

Group signature, introduced by Chaum and van Heyst [14], is a fundamental
anonymity primitive which allows members of a group to sign messages on behalf
of the whole group. Yet, users are kept accountable for the signatures they issue
since a tracing authority can identify them should the need arise. There have
been numerous works on group signatures in the last quarter-century.

Ateniese et al. [2] proposed the first scalable instantiation meeting the secu-
rity properties that can be intuitively expected from the primitive, although
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clean security notions were not available yet at that time. Bellare et al. [4] filled
this gap by providing strong security notions for static groups, in which the group
population is fixed at the setup phase. Subsequently, Kiayias and Yung [23] and
Bellare et al. [5] established the models capturing the partially dynamic setting,
where users are able to join the group at any time, but once they have done so,
they cannot leave the group. Sakai et al. [44] strengthened these models by sug-
gesting the notion of opening soundness, guaranteeing that a valid signature only
traces to one user. Efficient schemes satisfying these models have been proposed
in the random oracle model [16,40] and in the standard model [20,32].

One essential functionality of group signatures is the support for membership
revocation. Enabling this feature in an efficient manner is quite challenging, since
one has to ensure that revoked users are no longer able to sign messages and the
workloads of other parties (managers, non-revoked users, verifiers) do not sig-
nificantly increase in the meantime. Several different approaches have been sug-
gested [6,10,11,39,46] to address this problem, and notable pairing-based con-
structions supporting both dynamic joining and efficient revocation were given
in [30,31,37]. Very recently, Bootle et al. [7] pointed out a few shortcomings of
previous models, and put forward stringent security notions for fully dynamic
group signatures. They also demonstrated a construction satisfying these notions
based on the decisional Diffie-Hellman (DDH) assumption, following a generic
transformation from a secure accountable ring signature scheme [8].

For the time being, existing schemes offering full dynamicity all rely on
number-theoretic assumptions which are vulnerable to quantum attacks. To
avoid putting all eggs in one basket, it is thus encouraging to consider instantia-
tions based on alternative, post-quantum foundations, e.g., lattice assumptions.
In view of this, let us now look at the topic of lattice-based group signatures.

Lattice-based group signatures. Lattice-based cryptography has been an
exciting research area since the seminal works of Regev [42] and Gentry et al. [18].
Along with other primitives, lattice-based group signature has received notice-
able attention in recent years. The first scheme was introduced by Gordon et al.
[19] whose solution produced signature size linear in the number of group users
N . Camenisch et al. [12] then extended [19] to achieve anonymity in the strongest
sense. Later, Laguillaumie et al. [24] put forward the first scheme with the signa-
ture size logarithmic in N , at the cost of relatively large parameters. Simpler and
more efficient solutions with O(log N) signature size were subsequently given by
Nguyen et al. [41] and Ling et al. [34]. Libert et al. [28] obtained substantial effi-
ciency improvements via a construction based on Merkle trees which eliminates
the need for GPV trapdoors [18]. More recently, a scheme supporting message-
dependent opening (MDO) feature [43] was proposed in [29]. All the schemes
mentioned above are designed for static groups.

The only two known lattice-based group signatures that have certain dynamic
features were proposed by Langlois et al. [25] and Libert et al. [26]. The former is
a scheme with verifier-local revocation (VLR) [6], which means that only the veri-
fiers need to download the up-to-date group information. The latter addresses the
orthogonal problem of dynamic user enrollments (but users cannot be revoked).
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To achieve those partially dynamic functionalities, both of the proposals have to
incorporate relatively complicated mechanisms1 and both heavily rely on lattice
trapdoors.

The discussed above situation is somewhat unsatisfactory, given that the full
dynamicity feature is highly desirable in most applications of group signatures
(e.g., protecting the privacy of commuters in public transportation), and it has
been achieved based on number-theoretic assumptions. This motivates us to
work on fully dynamic group signatures from lattices. Furthermore, considering
that the journey to partial dynamicity in previous works [25,26] was shown not
easy, we ask ourselves an inspiring question: Can we achieve full dynamicity with
ease? At the end of the day, it is good to solve an open research question, but it
would be even better and more exciting to do this in a simple way. To make it
possible, we will likely need some new and insightful ideas.

Our Results and Techniques. We introduce the first fully dynamic group
signature from lattices. The scheme satisfies the strong security requirements
put forward by Bootle et al. [7], under the Short Integer Solution (SIS) and the
Learning With Errors (LWE) assumptions. As in all previous lattice-based group
signatures, our scheme is analyzed in the random oracle model.

For a security parameter λ and maximum expected number of group users N ,
our scheme features signature size ˜O(λ · log N) and group public key size
˜O(λ2 + λ · log N). The user’s secret key has bit-size ˜O(λ) + log N . At each
epoch when the group information is updated, the verifiers only need to down-
load an extra ˜O(λ) bits in order to perform verification of signatures2, while
each active signer only has to download ˜O(λ · log N) bits. In Table 1, we give a
detailed comparison of our scheme with known lattice-based group signatures,
in terms of efficiency and functionality. The full dynamicity feature is achieved
with a very reasonable cost and without having to rely on lattice trapdoors.
Somewhat surprisingly, our scheme even produces shorter signatures than the
scheme from [28] - which is arguably the most efficient lattice-based group sig-
nature known to date. Furthermore, these results are obtained in a relatively
simple manner, thanks to three main ideas/techniques discussed below.

Our starting point is the scheme [28], which works in the static setting.
Instead of relying on trapdoor-based ordinary signatures as in prior works, the
LLNW scheme employs on a SIS-based Merkle tree accumulator. For a group
of N = 2� users, the manager chooses uniformly random vectors x0, . . . ,xN−1;
hashes them to p0, . . . ,pN−1, respectively; builds a tree on top of these hash
values; and publishes the tree root u. The signing key of user i consists of xi

1 Langlois et al. considered users’ “tokens” as functions of Bonsai signatures [13] and
associated them with a sophisticated revocation technique, while Libert et al. used a
variant of Boyen’s signature [9] to sign users’ public keys. Both underlying signature
schemes require long keys and lattice trapdoors.

2 We remark that in the DDH-based instantiation from [7] which relies on the account-
able ring signature from [8], the verifiers have to periodically download public keys
of active signers. Our scheme overcomes this issue, thanks to the use of an updatable
accumulator constructed in Sect. 3.
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Table 1. Comparison of known lattice-based group signatures, in terms of efficiency
and functionality. The comparison is done based on two governing parameters: security
parameter λ and the maximum expected number of group users N = 2�. As for the
scheme from [25], R denotes the number of revoked users at the epoch in question.

Scheme Sig. size Group PK size Signer’s
SK size

Trap-
door?

Model Extra info
per epoch

GKV [19] ˜O(λ2 · N) ˜O(λ2 · N) ˜O(λ2) yes static NA

CNR [12] ˜O(λ2 · N) ˜O(λ2) ˜O(λ2) yes static NA

LLLS [24] ˜O(λ · �) O(λ2 · �) ˜O(λ2) yes static NA

LLNW [25] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ · �) yes VLR Sign: no

Ver: ˜O(λ)·R
NZZ [41] ˜O(λ + �2) ˜O(λ2 · �2) ˜O(λ2) yes static NA

LNW [34] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) yes static NA

LLNW [28] ˜O(λ · �) ˜O(λ2 + λ · �) ˜O(λ · �) FREE static NA

LLM+ [26] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) yes partially
dynamic

NA

LMN [29] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) yes MDO NA

Ours ˜O(λ · �) ˜O(λ2 + λ · �) ˜O(λ) + � FREE fully
dynamic

Sign:
˜O(λ·�)

Ver: ˜O(λ)

and the witness for the fact that pi was accumulated in u. When issuing sig-
natures, the user proves knowledge of a valid pair (xi,pi) and of the tree path
from pi to u. The user also has to encrypt the binary representation bin(i) of his
identity i, and prove that the ciphertext is well-formed. The encryption layer is
also lattice-trapdoor-free, since it utilizes the Naor-Yung double-encryption par-
adigm [38] with Regev’s LWE-based encryption scheme. To upgrade the LLNW
scheme directly into a fully dynamic group signature, we now let the user com-
pute the pair (xi,pi) on his own (for enabling non-frameability), and we employ
the following three ideas/techniques.

First, we add a dynamic ingredient into the static Merkle tree accumulator
from [28]. To this end, we equip it with an efficient updating algorithm with
complexity O(log N): to change an accumulated value, we simply update the
values at the corresponding leaf and along its path to the root.

Second, we create a simple rule to handle user enrollment and revocation effi-
ciently (i.e., without resetting the whole tree). Specifically, we use the updating
algorithm to set up the system so that: (i) If a user has not joined the group or
has been revoked, the value at the leaf associated with him is set as 0; (ii) When
a user joins the group, that value is set as his public key pi. Our setup guar-
antees that only active users (i.e., who has joined and has not been revoked at
the given epoch) have their non-zero public keys accumulated into the updated
root. This rule effectively separates active users who can sign from those who
cannot: when signing messages, the user proceeds as in the LLNW scheme, and
is asked to additionally prove in zero-knowledge that pi �= 0. In other words, the
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seemingly big gap between being fully static and being fully dynamic has been
reduced to a small difference!

Third, the arising question now is how to additionally prove the inequality
pi �= 0 in the framework of the Stern-like [45] protocol from [28]. One would
naturally expect that this extra job could be done without losing too much in
terms of efficiency. Here, the surprising and somewhat unexpected fact is that we
can actually do it while gaining efficiency, thanks to the following simple idea.
Recall that, in [28], to prove knowledge of pi ∈ {0, 1}nk, an extension technique
from [33] is employed, in which pi is extended into a vector of dimension 2nk. We
note that, the authors of [33] also suggested a slightly modified version of their
technique, that allows to simultaneously prove that pi ∈ {0, 1}nk and pi is non-
zero while working only with dimension 2nk − 1. This intriguing tweak enables
us to obtain a zero-knowledge protocol with slightly lower communication cost,
and hence, group signatures with slightly smaller size than in [28].

To summarize, we solve a prominent open question in the field of lattice-based
group signatures. Moreover, our solution is simple and comparatively efficient.
Our results, while not yielding a truly practical scheme, would certainly help to
bring the field one step closer to practice.

Organization. In Sect. 2, we recall some background on fully dynamic group
signatures and lattice-based cryptography. Section 3 develops an updatable
Merkle tree accumulator. Our main scheme is constructed and analyzed in
Sect. 4.

2 Preliminaries

2.1 Fully Dynamic Group Signatures

We recall the definition and security notions of fully dynamic group signatures
(FDGS) presented by Bootle et al. [7]. A FDGS scheme involves the following
entities: a group manager GM that determines who can join the group, a tracing
manager TM who can open signatures, and a set of users who are potential group
members. Users can join/leave the group at the discretion of GM. We assume GM
will publish some information infoτ regularly associated with a distinct index τ
(referred as epoch hereafter). Without loss of generality, assume there is one-to-
one correspondence between information and the associated epoch. The infor-
mation describes changes of the group, e.g., current group members or members
that are excluded from the group. We assume the published group informa-
tion is authentic. By comparing current group information with previous one,
it allows any party to identify revoked users at current epoch. For simplicity
assume τ1 < τ2 if infoτ1 is published before infoτ2 , i.e., the epoch preserves the
order in which the corresponding group information was published. In existing
models, the keys of authorities are supposed to be generated honestly; while
in [7], Bootle et al. consider a stronger model where the keys of authorities can
be maliciously generated by the adversary.
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Syntax of Fully Dynamic Group Signatures. A FDGS scheme is a tuple of
following polynomial-time algorithms.

GSetup(λ) → pp. On input security parameter λ, this algorithm generates public
parameters pp.

〈GKgenGM(pp),GKgenTM(pp)〉. This is an interactive protocol between the group
manager GM and the tracing manager TM. If it completes successfully, algo-
rithm GKgenGM outputs a manager key pair (mpk,msk). Meanwhile, GM ini-
tializes the group information info and the registration table reg. The algo-
rithm GKgenTM outputs a tracing key pair (tpk, tsk). Set group public key
gpk = (pp,mpk, tpk).

UKgen(pp) → (upk, usk). Given public parameters pp, this algorithm generates
a user key pair (upk, usk).

〈Join(infoτcurrent , gpk, upk, usk); Issue(infoτcurrent ,msk, upk)〉. This is an interactive
algorithm run by a user and GM. If it completes successfully, this user becomes
a group member with an identifier uid and the Join algorithm stores secret
group signing key gsk[uid] while Issue algorithm stores registration information
in the table reg with index uid.

GUpdate(gpk,msk, infoτcurrent ,S, reg) → infoτnew . This is an algorithm run by
GM to update group information while advancing the epoch. Given gpk,msk,
infoτcurrent , registration table reg, a set S of active users to be removed from
the group, GM computes new group information infoτnew and may update the
table reg. If there is no change to the group, GM outputs ⊥.

Sign(gpk, gsk[uid], infoτ ,M) → Σ. This algorithm outputs a group signature Σ
on message M by user uid. It outputs ⊥ if this user is inactive at epoch τ .

Verify(gpk, infoτ ,M,Σ) → 0/1. This algorithm checks the validity of the signa-
ture Σ on message M at epoch τ .

Trace(gpk, tsk, infoτ , reg,M,Σ) → (uid,Πtrace). This is an algorithm run by TM.
Given the inputs, TM returns an identity uid of a group member who signed
the message and a proof indicating this tracing result or ⊥ if it fails to trace
to a group member.

Judge(gpk, uid, infoτ ,Πtrace,M,Σ) → 0/1. This algorithm checks the validity of
Πtrace outputted by the Trace algorithm.

Correctness and Security of Fully Dynamic Group Signatures. As put
forward by Bootle et al. [7], a FDGS scheme must satisfy correctness, anonymity,
non-frameability, traceability and tracing soundness.

Correctness demands that a signature generated by an honest and active user
is always accepted by algorithm Verify, and that algorithm Trace can always
identify that user, as well as produces a proof accepted by algorithm Judge.
Anonymity requires that it is infeasible for any PPT adversary to distinguish
signatures generated by two active users of its choice at the chosen epoch, even
if it can corrupt any user, can choose the key of GM, and is given access to the
Trace oracle.
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Non-Frameability makes sure that the adversary cannot generate a valid signa-
ture that traces to an honest user even if it can corrupt all other users, and can
choose keys of both managers.
Traceability ensures that the adversary cannot produce a valid signature that
cannot be traced to an active user at the chosen epoch, even if it can corrupt
any user and can choose the key of TM.
Tracing Soundness requires that it is infeasible to produce a valid signature that
traces to two different users, even if all group users and both managers are fully
controlled by the adversary.

Formal definitions of correctness and security requirements are available in
the full version.

2.2 Background on Lattices

We recall the average-case lattice problems SIS and LWE, together with their
hardness results.

Definition 1 [1,18]. The SIS∞
n,m,q,β problem is as follows: Given uniformly ran-

dom matrix A ∈ Z
n×m
q , find a non-zero vector x ∈ Z

m such that ‖x‖∞ ≤ β and
A · x = 0 mod q.

If m,β = poly(n), and q > β · ˜O(
√

n), then the SIS∞
n,m,q,β problem is at least

as hard as worst-case lattice problem SIVPγ for some γ = β · ˜O(
√

nm) (see,
e.g., [18,36]). Specifically, when β = 1, q = ˜O(n), m = 2n�log q�, the SIS∞

n,m,q,1

problem is at least as hard as SIVPγ with γ = ˜O(n).
In the last decade, numerous SIS-based cryptographic primitives have been

proposed. In this work, we will extensively employ 2 such constructions:

– Our group signature scheme is based on the Merkle tree accumulator
from [28], which is built upon a specific family of collision-resistant hash
functions.

– Our zero-knowledge argument systems use the statistically hiding and com-
putationally binding string commitment scheme from [22].

For appropriate setting of parameters, the security of the above two constructions
can be based on the worst-case hardness of SIVP

˜O(n).
In the group signature in Sect. 4, we will employ the multi-bit version of

Regev’s encryption scheme [42], presented in [21]. The scheme is based on the
hardness of the LWE problem.

Definition 2 [42]. Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution

on Z. For s ∈ Z
n
q , let As,χ be the distribution obtained by sampling a $←− Z

n
q and

e ←↩ χ, and outputting (a, s� · a + e) ∈ Z
n
q × Zq. The LWEn,q,χ problem asks to

distinguish m samples chosen according to As,χ (for s $←− Z
n
q ) and m samples

chosen according to the uniform distribution over Z
n
q × Zq.
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If q is a prime power, χ is the discrete Gaussian distribution DZ,αq, where αq ≥
2
√

n, then LWEn,q,χ is as least as hard as SIVP
˜O(n/α) (see [35,36,42]).

2.3 Stern-Like Protocols for Lattice-Based Relations

The zero-knowledge (ZK) argument systems appearing in this paper operate
in the framework of Stern’s protocol [45]. Let us now recall some background.
This protocol was originally proposed in the context of code-based cryptog-
raphy, and was later adapted into the lattice setting by Kawachi et al. [22].
Subsequently, it was empowered by Ling et al. [33] to handle the matrix-vector
relations associated with the SIS and LWE problems, and further developed to
design several lattice-based schemes: group signatures [25,26,28,29,34], policy-
based signatures [15] and group encryption [27].

Stern-like protocols are quite useful in the context of lattice-based privacy-
preserving systems, when one typically works with modular linear equations of
the form

∑

i Mi · xi = v mod q - where {Mi}i, v are public, and one wants to
prove in ZK that secret vectors {xi}i satisfy certain constraints, e.g., they have
small norms and/or have coordinates arranged in a special way. The high-level
ideas can be summarized as follows. If the given constraints are invariant under
certain type of permutations of coordinates, then one readily uses uniformly
random permutations to prove those constraints. Otherwise, one performs some
pre-processings with {xi}i to reduce to the former case. Meanwhile, to prove
that the modular linear equation holds, one makes use of a standard masking
technique.

The basic protocol consists of 3 moves: commitment, challenge, response. If
the statistically hiding and computationally binding string commitment scheme
from [22] is employed in the first move, then one obtains a statistical zero-
knowledge argument of knowledge (ZKAoK) with perfect completeness, constant
soundness error 2/3, and communication cost O(|w|·log q), where |w| denotes the
total bit-size of the secret vectors. In many applications, the protocol is repeated
κ = ω(log λ) times, for security parameter λ, to achieve negligible soundness
error, and then made non-interactive via the Fiat-Shamir heuristic [17]. In the
random oracle model, this results in a non-interactive zero-knowledge argument
of knowledge (NIZKAoK) with bit-size O(|w| · log q) · ω(log λ).

3 Updatable Lattice-Based Merkle Hash Trees

We first recall the lattice-based Merkle-tree accumulator from [28], and then, we
equip it with a simple updating algorithm which allows to change an accumulated
value in time logarithmic in the size of the accumulated set. This updatable hash
tree will serve as the building block of our construction in Sect. 4.

3.1 Cryptographic Accumulators

An accumulator scheme is a tuple of polynomial-time algorithms defined below.
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TSetup(λ). On input security parameter λ, output the public parameter pp.
TAccpp. On input a set R = {d0, . . . ,dN−1} of N data values, output an accu-

mulator value u.
TWitnesspp. On input a data set R and a value d, output ⊥ if d /∈ R; otherwise

output a witness w for the fact that d is accumulated in TAcc(R). (Typically,
the size of w should be short (e.g., constant or logarithmic in N) to be useful.)

TVerifypp. On input accumulator value u and a value-witness pair (d, w), out-
put 1 (which indicates that (d, w) is valid for the accumulator u) or 0.

An accumulator scheme is called correct if for all pp ← TSetup(λ), we have
TVerifypp

(

TAccpp(R),d,TWitnesspp(R,d)
)

= 1 for all d ∈ R.
A natural security requirement for accumulators, as considered in [3,11,28],

says that it is infeasible to prove that a value d∗ was accumulated in a value u
if it was not. This property is formalized as follows.

Definition 3 [28]. An accumulator scheme (TSetup,TAcc,TWitness,TVerify) is
called secure if for all PPT adversaries A:

Pr
[

pp ← TSetup(λ); (R,d∗, w∗) ← A(pp) :

d∗ �∈ R ∧ TVerifypp(TAccpp(R),d∗, w∗) = 1
]

= negl(λ).

3.2 The LLNW Merkle-Tree Accumulator

Notations. Hereunder we will use the notation x
$←− S to indicate that x is

chosen uniformly at random from finite set S. For bit b ∈ {0, 1}, we let b̄ = 1−b.
The Merkle-tree accumulator scheme from [28] works with parameters n = O(λ),
q = ˜O(n1.5), k = �log2 q�, and m = 2nk. The set Zq is identified by {0, . . . , q−1}.
Define the “powers-of-2” matrix

G =

⎡

⎣

1 2 4 . . . 2k−1

. . .
1 2 4 . . . 2k−1

⎤

⎦ ∈ Z
n×nk
q .

Note that for every v ∈ Z
n
q , we have v = G · bin(v), where bin(v) ∈ {0, 1}nk

denotes the binary representation of v. The scheme is built upon the following
family of SIS-based collision-resistant hash functions.

Definition 4. The function family H mapping {0, 1}nk ×{0, 1}nk to {0, 1}nk is
defined as H = {hA | A ∈ Z

n×m
q }, where for A = [A0|A1] with A0,A1 ∈ Z

n×nk
q ,

and for any (u0,u1) ∈ {0, 1}nk × {0, 1}nk, we have:

hA(u0,u1) = bin
(

A0 · u0 + A1 · u1 mod q
)

∈ {0, 1}nk.

Note that hA(u0,u1) = u ⇔ A0 · u0 + A1 · u1 = G · u mod q.
A Merkle tree with N = 2� leaves, where  is a positive integer, then can be

constructed based on the function family H as follows.

TSetup(λ). Sample A $←− Z
n×m
q , and output pp = A.
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TAccA(R = {d0 ∈ {0, 1}nk, . . . ,dN−1 ∈ {0, 1}nk}). For every j ∈ [0, N − 1], let
bin(j) = (j1, . . . , j�) ∈ {0, 1}� be the binary representation of j, and let
dj = uj1,...,j�

. Form the tree of depth  = log N based on the N leaves
u0,0,...,0, . . . ,u1,1,...,1 as follows:

1. At depth i ∈ [], the node ub1,...,bi
∈ {0, 1}nk, for all (b1, . . . , bi) ∈ {0, 1}i,

is defined as hA(ub1,...,bi,0,ub1,...,bi,1).
2. At depth 0: The root u ∈ {0, 1}nk is defined as hA(u0,u1).

The algorithm outputs the accumulator value u.
TWitnessA(R,d). If d �∈ R, return ⊥. Otherwise, d = dj for some j ∈ [0, N − 1]

with binary representation (j1, . . . , j�). Output the witness w defined as:

w =
(

(j1, . . . , j�), (uj1,...,j�−1,j̄�
, . . . ,uj1,j̄2 ,uj̄1)

)

∈ {0, 1}� ×
(

{0, 1}nk
)�

,

for uj1,...,j�−1,j̄�
, . . . ,uj1,j̄2 ,uj̄1 computed by algorithm TAccA(R).

TVerifyA
(

u,d, w
)

. Let the given witness w be of the form:

w =
(

(j1, . . . , j�), (w�, . . . ,w1)
)

∈ {0, 1}� ×
(

{0, 1}nk
)�

.

The algorithm recursively computes the path v�,v�−1, . . . ,v1,v0 ∈ {0, 1}nk

as follows: v� = d and

∀i ∈ { − 1, . . . , 1, 0} : vi =

{

hA(vi+1,wi+1), if ji+1 = 0;
hA(wi+1,vi+1), if ji+1 = 1.

(1)

Then it returns 1 if v0 = u. Otherwise, it returns 0.

The following lemma states the correctness and security of the above Merkle
tree accumulator.

Lemma 1 [28]. The given accumulator scheme is correct and is secure in the
sense of Definition 3, assuming the hardness of the SIS∞

n,m,q,1 problem.

3.3 An Efficient Updating Algorithm

Unlike the static group signature scheme from [28], our fully dynamic construc-
tion of Sect. 4 requires to regularly edit the accumulated values without having
to reconstruct the whole tree. To this end, we equip the Merkle tree accumulator
from [28] with a simple, yet efficient, updating algorithm: to change the value at
a given leaf, we simply modify all values in the path from that leaf to the root.
The algorithm, which takes as input a bit string bin(j) = (j1, j2, . . . , j�) and a
value d∗ ∈ {0, 1}nk, is formally described below.

Given the tree in Sect. 3.2, algorithm TUpdateA((j1, j2, . . . , j�),d∗) performs
the following steps:

1. Let dj be the current value at the leaf of position determined by bin(j), and
let ((j1, . . . , j�), (wj,�, . . . ,wj,1)) be its associated witness.
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2. Set v� := d∗ and recursively compute the path v�,v�−1, . . . ,v1,v0 ∈ {0, 1}nk

as in (1).
4. Set u := v0; uj1 := v1; . . . ;uj1,j2,...,j�−1 := v�−1; uj1,j2,...,j�

:= v� = d∗.

It can be seen that the provided algorithm runs in time O() = O(log N). In
Fig. 1, we give an illustrative example of a tree with 23 = 8 leaves.

Fig. 1. A Merkle tree with 23 = 8 leaves, which accumulates the data blocks d0, . . . ,d7

into the value u at the root. The bit string (101) and the pink nodes form a witness
to the fact that d5 is accumulated in u. If we replace d5 by a new value d∗, we only
need to update the yellow nodes. (Color figure online)

4 Our Fully Dynamic Group Signatures from Lattices

In this section, we construct our lattice-based fully dynamic group signature
and prove its security in Bootle et al.’s model [7]. We start with the LLNW
scheme [28], which works in the static setting.

While other constructions of lattice-based group signatures employ trapdoor-
based ordinary signature schemes (e.g., [9,13]) to certify users, the LLNW scheme
relies on a SIS-based Merkle tree accumulator which we recalled in Sect. 3.2. The
GM, who manages a group of N = 2� users, chooses uniformly random vectors
x0, . . . ,xN−1 ∈ {0, 1}m; hashes them to p0, . . . ,pN−1 ∈ {0, 1}nk, respectively;
builds a tree on top of these hash values; and lets the tree root u ∈ {0, 1}nk

be part of the group public key. The signing key of user i consists of xi and
the witness for the fact that pi was accumulated in u. When generating group
signatures, the user proves knowledge of a valid pair (xi,pi) and of the tree path
from pi to u. The user also has to encrypt the binary representation bin(i) of
his identity i, and prove that the ciphertext is well-formed. The encryption layer
utilizes the Naor-Yung double-encryption paradigm [38] with Regev’s LWE-based
cryptosystem, and thus, it is also lattice-trapdoor-free.

To upgrade the LLNW scheme directly into a fully dynamic group signature,
some tweaks and new ideas are needed. First, to enable the non-frameability
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feature, we let the user compute the pair (xi,pi) on his own. The second problem
we have to consider is that Merkle hash trees seem to be a static primitive. To
this end, we equip the accumulator with an efficient updating algorithm (see
Sect. 3.3). Now, the challenging question is how to handle user enrollment and
revocation in a simple manner (i.e., without having to reset the whole tree). To
tackle these issues, we associate each of the N potential users with a leaf in the
tree, and then use the updating algorithm to set up the system so that:

1. If a user has not joined the group or has been revoked, the value at the leaf
associated with him is set as 0;

2. When a user joins the group, that value is set as his public key pi.

Our setup guarantees that only active users (i.e., who has joined and has not
been revoked at the given epoch) have their non-zero public keys accumulated
into the updated root. This effectively gives us a method to separate active users
who can sign from those who cannot: when signing messages, the user proceeds
as in the LLNW scheme, and is asked to additionally prove in ZK that pi �= 0.

At this point, the arising question is how to prove the inequality pi �= 0 in the
framework of the Stern-like [45] protocol from [28]. One would naturally hope
that this extra job could be done without losing too much in terms of efficiency.
Here, the surprising and somewhat unexpected fact is that we can actually do
it while gaining efficiency, thanks to a technique originally proposed in [33].

To begin with, let BL
t denote the set of all vectors in {0, 1}L having Ham-

ming weight exactly t. In Stern-like protocols (see Sect. 2.3), a common tech-
nique for proving in ZK the possession of p ∈ {0, 1}nk consists of appending
nk “dummy” entries to it to obtain p∗ ∈ B2nk

nk , and demonstrating to the ver-
ifier that a random permutation of p∗ belongs to the “target set” B2nk

nk . This
suffices to convince the verifier that the original vector p belongs to {0, 1}nk,
while the latter cannot learn any additional information about p, thanks to the
randomness of the permutation. This extending-then-permuting technique was
first proposed in [33], and was extensively used in the underlying protocol of the
LLNW scheme. Now, to address our question, we will employ a modified ver-
sion of this technique, which was also initially suggested in [33]. Let us think of
another “target set”, so that it is possible to extend p ∈ {0, 1}nk to an element
of that set if and only if p is non-zero. That set is B2nk−1

nk . Indeed, the extended
vector p∗ belongs to B2nk−1

nk if and only if the original vector has Hamming
weight at least nk − (nk − 1) = 1, which means that it cannot be a zero-vector.
When combining with the permuting step, this modification allows us to addi-
tionally prove the given inequality while working with smaller dimension. As a
result, our fully dynamic scheme produces slightly shorter signatures than the
original static scheme.

Finally, we remark that the fully dynamic setting requires a proof of correct
opening, which boils down to proving correct decryption for Regev’s encryption
scheme. It involves modular linear equations with bounded-norm secrets, and
can be easily handled using Stern-like techniques from [26,33].
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4.1 Description of the Scheme

Our scheme is described as follows.

GSetup(λ). On input security parameter λ, this algorithm specifies the following:
– An expected number of potential users N = 2� = poly(λ).
– Dimension n = O(λ), prime modulus q = ˜O(n1.5), and k = �log2 q�.

These parameters implicitly determine the “powers-of-2” matrix G ∈
Z

n×nk
q , as defined in Sect. 3.

– Matrix dimensions m = 2nk for the hashing layer, and mE = 2(n + )k
for the encryption layer.

– An integer β =
√

n · ω(log n), and a β-bounded noise distribution χ.
– A hash function HFS : {0, 1}∗ → {1, 2, 3}κ, where κ = ω(log λ), to be

modelled as a random oracle in the Fiat-Shamir transformations [17].
– Let COM : {0, 1}∗ × {0, 1}m → Z

n
q be the string commitment scheme

from [22], to be used in our zero-knowledge argument systems.
– Uniformly random matrix A ∈ Z

n×m
q .

The algorithm outputs public parameters

pp = {λ,N, n, q, k,m,mE , , β, χ, κ,HFS,COM,A}.

〈GKgenGM(pp),GKgenTM(pp)〉. The group manager GM and the tracing manager
TM initialize their keys and the public group information as follows.

– GKgenGM(pp). This algorithm samples msk
$←− {0, 1}m and computes

mpk = A · msk mod q, and outputs (mpk,msk). Here, we consider mpk
as an identifier of the group managed by GM who has mpk as his public
key. Furthermore, as in [7, Sect. 3.3, full version], we assume that the
group information board is visible to everyone, but can only be edited by
a party knowing msk.

– GKgenTM(pp). This algorithm initializes the Naor-Yung double-
encryption mechanism with the -bit version Regev encryption scheme.
It first chooses B $←− Z

n×mE
q . For each i ∈ {1, 2}, it samples Si

$←− χn×�,
Ei ←↩ χ�×mE , and computes Pi = S�

i · B + Ei ∈ Z
�×mE
q . Then, TM sets

tsk = (S1,E1), and tpk = (B,P1,P2).
– TM sends tpk to GM who initializes the following:

• Table reg := (reg[0][1], reg[0][2], . . . , reg[N − 1][1], reg[N − 1][2]),
where for each i ∈ [0, N−1]: reg[i][1] = 0nk and reg[i][2] = 0. Looking
ahead, reg[i][1] will be used to record the public key of a registered
user, while reg[i][2] stores the epoch at which the user joins.

• The Merkle tree T built on top of reg[0][1], . . . , reg[N − 1][1]. (Note
that T is an all-zero tree at this stage, but it will be modified when a
new user joins the group, or when GM computes the updated group
information.)

• Counter of registered users c := 0.
Then, GM outputs gpk = (pp,mpk, tpk) and announces the initial group
information info = ∅. He keeps T and c for himself.
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UKgen(pp). Each potential group user samples usk = x $←− {0, 1}m, and computes
upk = p = bin(A · x) mod q ∈ {0, 1}nk.
Without loss of generality, we assume that every honestly generated upk is a
non-zero vector. (Otherwise, the user would either pick x = 0m or accidentally
find a solution to the SIS∞

n,m,q,1 problem associated with matrix A - both
happen with negligible probability.)

〈Join, Issue〉. If the user with key pair (upk, usk) = (p,x) requests to join the
group at epoch τ , he sends p to GM. If the latter accepts the request, then
the two parties proceed as follows.
1. GM issues a member identifier for the user as uid = bin(c) ∈ {0, 1}�. The

user then sets his long-term signing key as gsk[c] = (bin(c),p,x).
2. GM performs the following updates:

– Update T by running algorithm TUpdateA(bin(c),p).
– Register the user to table reg as reg[c][1] := p; reg[c][2] := τ .
– Increase the counter c := c + 1.

GUpdate(gpk,msk, infoτcurrent ,S, reg). This algorithm is run by GM to update the
group information while also advancing the epoch. It works as follows.
1. Let the set S contain the public keys of registered users to be revoked. If

S = ∅, then go to Step 2.
Otherwise, S = {reg[i1][1], . . . , reg[ir][1]}, for some r ∈ [1, N ] and some
i1, . . . , ir ∈ [0, N−1]. Then, for all t ∈ [r], GM runs TUpdateA(bin(it),0nk)
to update the tree T .

2. At this point, by construction, each of the zero leaves in the tree T cor-
responds to either a revoked user or a potential user who has not yet
registered. In other words, only active users who are allowed to sign in
the new epoch τnew have their non-zero public keys, denoted by {pj}j ,
accumulated in the root uτnew of the updated tree.
For each j, let wj ∈ {0, 1}� × ({0, 1}nk)� be the witness for the fact that
pj is accumulated in uτnew . Then GM publishes the group information of
the new epoch as:

infoτnew =
(

uτnew , {wj}j

)

.

We remark that the infoτ outputted at each epoch by GM is technically not
part of the verification key. Indeed, as we will describe below, in order to
verify signatures bound to epoch τ , the verifiers only need to download the
first component uτ of size ˜O(λ) bits. Meanwhile, each active signer only has
to download the respective witness of size ˜O(λ) · .

Sign(gpk, gsk[j], infoτ ,M). To sign message M using the group information infoτ

at epoch τ , the user possessing gsk[j] = (bin(j),p,x) first checks if infoτ

includes a witness containing bin(j). If this is not the case, return ⊥. Other-
wise, the user downloads uτ and the witness of the form

(

bin(j), (w�, . . . ,w1)
)

from infoτ , and proceeds as follows.
1. Encrypt vector bin(j) ∈ {0, 1}� twice using Regev’s encryption scheme.

Namely, for each i ∈ {1, 2}, sample ri
$←− {0, 1}mE and compute

ci = (ci,1, ci,2)

=
(

B · ri mod q, Pi · ri +
⌈q

2
⌋

· bin(j) mod q
)

∈ Z
n
q × Z

�
q.



Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 307

2. Generate a NIZKAoK Πgs to demonstrate the possession of a valid tuple

ζ = (x,p, bin(j),w�, . . . ,w1, r1, r2) (2)

such that:
(i) TVerifyA

(

uτ ,p,
(

bin(j), (w�, . . . ,w1)
))

= 1 and A · x = G · p mod q;
(ii) c1 and c2 are both correct encryptions of bin(j) with randomness r1

and r2, respectively;
(iii) p �= 0nk.
Note that statements (i) and (ii) were covered by the LLNW protocol [28].
Meanwhile, statement (iii) is handled using the technique described at
the beginning of this Section. We thus obtain a Stern-like interactive
zero-knowledge argument system which is a slight modification of the one
from [28]. Due to space restriction, the details are presented in the full
version.
The protocol is repeated κ = ω(log λ) times to achieve negligible sound-
ness error and made non-interactive via the Fiat-Shamir heuristic as a
triple Πgs = ({CMTi}κ

i=1,CH, {RSP}κ
i=1), where

CH = HFS

(

M, ({CMTi}κ
i=1,A,uτ ,B,P1,P2, c1, c2

)

∈ {1, 2, 3}κ.

3. Output the group signature

Σ = (Πgs, c1, c2). (3)

Verify(gpk, infoτ ,M,Σ). This algorithm proceeds as follows:
1. Download uτ ∈ {0, 1}nk from infoτ .
2. Parse Σ as Σ =

(

{CMTi}κ
i=1, (Ch1, . . . , Chκ), {RSP}κ

i=1, c1, c2
)

.
If (Ch1, . . . , Chκ) �= HFS

(

M, ({CMTi}κ
i=1,A,uτ ,B,P1,P2, c1, c2

)

, then
return 0.

3. For each i = 1 to κ, run the verification phase of the protocol presented
in the full version to check the validity of RSPi with respect to CMTi

and Chi. If any of the conditions does not hold, then return 0.
4. Return 1.

Trace(gpk, tsk, infoτ , reg,M,Σ). This algorithm parses tsk as (S1,E1), parses Σ
as in (3), and performs the following steps.
1. Use S1 to decrypt c1 = (c1,1, c1,2) to obtain a string b′ ∈ {0, 1}� (i.e., by

computing
⌊

(c1,2 − S�
1 · c1,1)/(q/2)

⌉

.
2. If infoτ does not include a witness containing b′, then return ⊥.
3. Let j′ ∈ [0, N − 1] be the integer having binary representation b′. If the

record reg[j′][1] in table reg is 0nk, then return ⊥.
4. Generate a NIZKAoK Πtrace to demonstrate the possession of S1 ∈ Z

n×�,
E1 ∈ Z

�×mE , and y ∈ Z
�, such that:

⎧

⎪

⎨

⎪

⎩

‖S1‖∞ ≤ β; ‖E1‖∞ ≤ β; ‖y‖∞ ≤ �q/5�;
S�
1 · B + E1 = P1 mod q;

c1,2 − S�
1 · c1,1 = y + �q/2� · b′ mod q.

(4)
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As the statement involves modular linear equations with bounded-
norm secrets, we can obtain a statistical zero-knowledge argument by
employing the Stern-like interactive protocol from [26]. The protocol is
repeated κ = ω(log λ) times to achieve negligible soundness error and
made non-interactive via the Fiat-Shamir heuristic as a triple Πtrace =
({CMTi}κ

i=1,CH, {RSP}κ
i=1), where

CH = HFS

(

({CMTi}κ
i=1, gpk, infoτ ,M,Σ,b′) ∈ {1, 2, 3}κ. (5)

5. Set uid = b′ and output (uid,Πtrace).
Judge(gpk, uid, infoτ ,Πtrace,M,Σ). This algorithm consists of verifying the argu-

ment Πtrace w.r.t. common input (gpk, infoτ ,M,Σ, uid), in a similar manner
as in algorithm Verify.
If Πtrace does not verify, return 0. Otherwise, return 1.

4.2 Analysis of the Scheme

Efficiency. We first analyze the efficiency of the scheme described in Sect. 4.1,
with respect to security parameter λ and parameter  = log N .

– The public key gpk contains several matrices, and has bit-size ˜O(λ2 + λ · ).
– For each j ∈ [0, N−1], the signing key gsk[j] has bit-size +nk+m = ˜O(λ)+.
– At each epoch, the signature verifiers downloads nk = ˜O(λ) bits, while each

active signer downloads ˜O(λ · ) bits.
– The size of signature Σ is dominated by that of the Stern-like NIZKAoK Πgs,

which is O(|ζ| · log q) · ω(log λ), where |ζ| denotes the bit-size of the witness-
tuple ζ in (2). Overall, Σ has bit-size ˜O(λ · ).

– The Stern-like NIZKAoK Πtrace has bit-size ˜O(2 + λ · ).

Correctness. We now demonstrate that the scheme is correct with overwhelm-
ing probability, based on the perfect completeness of Stern-like protocols, and
the correctness of Regev’s encryption scheme.

First, note that a signature Σ = (Πgs, c1, c2) generated by an active and hon-
est user j is always accepted by algorithm Verify. Indeed, such a user can always
compute a tuple ζ = (x,p, bin(j),w�, . . . ,w1, r1, r2) satisfying conditions (i),(ii)
and (iii) in the Sign algorithm. The completeness of the underlying argument
system then guarantees that Σ is always accepted by algorithm Verify.

Next, we show that algorithm Trace outputs bin(j) with overwhelming prob-
ability, and produces a proof Πtrace accepted by algorithm Judge. Observe that,
the decryption algorithm essentially computes

e = c1,2 − ST
1 c1,1 = E1 · r1 + �q/2� · bin(j) mod q,

and sets the j-th bit of b′ to be 0 if j-th entry of e is closer to 0 than to
�q/2� and 1 otherwise. Note that our parameters are set so that ‖E1 · r1‖∞ <

q/5, for E1 ←↩ χ�×mE and r1
$←− {0, 1}mE . This ensures that b′ = bin(j) with

overwhelming probability.
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Further, as the user is active, infoτ must contain w = (bin(j),w�, . . . ,w1)
and reg[j][1] in table reg is not 0nk. Therefore, algorithm Trace will move to
the 4-th step, where it can always obtain the tuple (S1,E1,y) satisfying the con-
ditions (4). By the completeness of the argument system, Πtrace will be accepted
by the algorithm Judge.

Security. In Theorem 1, we prove that our scheme satisfies the security require-
ments of the Bootle et al.’s model [7].

Theorem 1. Assume that the Stern-like argument systems used in Sect. 4.1 are
simulation-sound. Then, in the random oracle model, the given fully dynamic
group signature satisfies the anonymity, traceability, non-frameability and tracing
soundness requirements under the LWEn,q,χ and SIS∞

n,m,q,1 assumptions.

In the random oracle model, the proof of Theorem 1 relies on the following facts:

1. The Stern-like zero-knowledge argument systems being used are simulation-
sound;

2. The underlying encryption scheme, which is obtained from Regev cryptosys-
tem [42] via the Naor-Yung transformation [38], is IND-CCA2 secure;

3. The Merkle tree accumulator we employ is secure in the sense of Definition 3;
4. For a properly generated key-pair (x,p), it is infeasible to find x′ ∈ {0, 1}m

such that x′ �= x and bin(A · x′ mod q) = p.

Due to space restriction, details of the proof of Theorem1 are provided in the
full version of the paper.
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