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Abstract. The proved hardness of the Learning With Errors (LWE)
problem, assuming the worst case intractability of classic lattice prob-
lems, has made it a standard building block in the recent design of lat-
tice based cryptosystems. Nonetheless, a thorough understanding of the
security of these schemes from the perspective of existing attacks remains
an open problem. In this manuscript, we report our implementation of
the Bounded Distance Decoding (BDD) approach for solving the search
LWE problem. We implement a parallel version of the pruned enumera-
tion method of the BDD strategy proposed by Liu and Nguyen.

In our implementation we use the embarrassingly parallel design so
that the power of multi-cores can be fully utilized. We let each thread
take a randomized basis and perform independent enumerations to find
the solution instead of parallelizing the enumeration algorithm itself.
Other optimizations include fine-tuning the BKZ block size, the enumer-
ation bound and the pruning coefficients and the optimal dimension of
the LWE problem. Experiments are done using the TU Darmstadt LWE
challenge. Finally we compare our implementation with a recent paral-
lel BDD implementation by Kirshanova et al. [18] and show that our
implementation is more efficient.

Keywords: Learning With Errors · Lattice based cryptography ·
Security evaluation · Bounded Distance Decoding

1 Introduction

Decades of development in the area of lattice-based cryptography have identified
two important primitive hard problems, namely, the Shortest Integer Solution
(SIS) problem [1] and the Learning With Errors (LWE) problem [24], to be
standard building blocks of modern lattice-based cryptosystems.

In this work, we focus on the LWE problem proposed by Regev [24]. LWE has
attracted more and more attention since its proposal. Initially LWE problem was
reduced to the GAPSVP (the decision version of the shortest vector problem) or
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SIVP (Shortest Independent Vector Problem) under the quantum setting. This
means that LWE is considered hard if there are no algorithms to efficiently solve
the GAPSVP or SIVP using a quantum computer. Subsequently, the hardness
reduction as been sharpened to accept a classic reduction to these standard
lattice problems [8]. As such, LWE-based schemes are widely studied as potential
primitives in the post-quantum era.

LWE. Let n be a positive integer, denoting the dimension of the lattice related
with the LWE problem, q an odd prime, and let D be an error distribution over
the integer ring modulo q, Zq. Denote by s a fixed secret vector in Z

n
q (in this

manuscript we adopt the row vector convention to be consistent with software
implementation) selected according to the uniform distribution on its support.
Let Ln,q,D be the probability distribution on Z

n
q × Zq generated by choosing

a ∈ Z
n
q uniformly at random, choosing an error e according to D and returning

(a, c) = (a, 〈a, s〉 + e)

in Z
n
q × Zq, where 〈·, ·〉 denotes the inner product of two vectors in Z

n
q . The

search LWE problem is to find the secret vector s given a fixed number of m
samples from Ln,q,D.

Although the intractability of LWE is well established by the reduction
proofs, its concrete hardness is far from clear. In this work we follow the app-
roach of Liu and Nguyen [21] to evaluate the performance of the BDD approach
for solving LWE problem.

1.1 Our Contribution

In this manuscript, our main contributions include:

– We implement a parallel version of the BDD approach for solving the LWE
problem. The implementation features an embarrassingly parallel design
where each thread takes a randomized basis and performs an independent
enumeration. The advantage of this design is that the power of multi-cores
can be fully utilized.

– We give heuristic analysis on how to choose the optimal sub-dimension of the
LWE instance. We use the Gaussian heuristic to estimate the cost of a pruned
enumeration tree to find better sub-dimension which can reduce the time to
solve an LWE instance.

– We compare our implementation with that of Kirshanova et al. [18] and show
the advantages of our implementation. Specifically we show that the perfor-
mance of our parallelization strategy is not limited by Amdahl’s Law and the
extreme pruning in our implementation brings huge speedup compared with
the linear pruning used in the implementation of [18].

– We demonstrate that our implementation solves a couple of instances from
the TU Darmstadt LWE challenge.
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2 Preliminaries

2.1 Discrete Gaussian Distribution

We first describe the error distribution D in the LWE problem. In the general
situation, any error distribution with small variance is fine for the LWE problem
to be hard. However, in this work, similar to many other previous works regarding
LWE, we focus on the discrete Gaussian distribution over the ring Zq as the error
distribution. Let x ∈ Z. The discrete Gaussian distribution over Z with mean 0
and width parameter σ, denoted by DZ,σ assigns to each x ∈ Z the probability
proportional to exp(−x2/2σ2). The error distribution we consider for the LWE
problem is the discrete Gaussian distribution over Zq, denoted by DZq,σ, by
accumulating the values of the probability mass function over all integers in
each residue class mod q. In the original proposal of Regev, the width parameter
associated with the moduli q is σ = αq√

2π
, where α is the relative error rate. With

a slight abuse of notation, we also denote the discrete Gaussian distribution as
DZq,αq. When the error distribution of an LWE instance is DZq,αq, we express
the LWE instance as Ln,q,α.

2.2 Lattice

A lattice in R
m is a discrete additive subgroup generated by a (non-unique) basis

B = (b1, . . . ,bm)T . Equivalently, the lattice Λ(B) generated by B is given by
Λ(B) = {x|x =

∑m
i=1 zibi}, where zi’s are integers. Note that by our convention,

the vector bi in the basis matrix B is its row vector. The rank of the lattice Λ(B)
is defined as the rank of the basis matrix B. If the rank of Λ(B) equals m, we
say that the lattice is full rank. A fundamental notion that lies in various lattice
problems is the successive minimal λk(Λ) which is defined to be the smallest real
number r such that the lattice contains k linearly independent nonzero vectors
of Euclidean length at most r. Specifically, λ1(Λ) is the length of the shortest
nonzero vector of the lattice Λ.

The lattices we are interested in are a special type of lattices called q-ary
lattices which are lattices satisfying qZm ⊂ Λ ⊂ Z

m. Fix positive integers n ≤
m ≤ q, where n serves as the main security parameter, and q is an odd prime.
For any matrix A ∈ Z

m×n, define the following two lattices.

Λ⊥
q (A) = {x ∈ Z

m : xA = 0 mod q},

Λq(A) = {x ∈ Z
m : x = As mod q for some s ∈ Z

n
q }.

It is easy to check that both Λ⊥
q (A) and Λq(A) are q-ary lattices [23].

2.3 Lattice Reduction

As we have noticed in Sect. 2.2 that a lattice can be generated from different
bases, the property of the basis plays a central role in the difficulty of various
hard lattice problems. Informally, the more orthogonal the basis is, the easier
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the corresponding lattice problems are. As such, many attempts to solve hard
lattice problems try to alter (often called reduce in the literature) the given basis
in order to get basis which generates the same lattice while at the same time
achieves the highest orthogonality possible. We adopt the convention that the
first vector b1 in a reduced basis has the smallest length among the (reduced)
basis vectors. After the lattice reduction algorithm, we can use the vector b1

as an approximation of the shortest vector. Since the determinate of a lattice is
invariant under lattice reduction, when the basis is reduced, the length of each
basis vector decreases. The common measurement of the quality of a lattice basis
is called Hermite factor δm defined as: ||b1|| = δmvol(Λ)1/m. We also refer to
δ as the root-Hermite factor. A smaller root-Hermite factor typically implies a
reduced basis with higher quality.

Lattice reduction algorithms can be viewed as a hierarchy of BKZ [26] based
on the parameter blocksize β. The case when β = 2 is called LLL reduction,
which was invented by Lenstra et al. [20]. LLL reduction is proven to run in
polynomial time in the lattice dimension and outputs a short vector which is
within an exponential factor of the minimal length of a lattice Λ, i.e., λ1(Λ).
When β = m, i.e., the full size of the basis, the output basis is HKZ reduced
[17] which implies solving the SVP. The situation when k lies in between 2 and
m is known as the BKZ-β reduction which is the most referenced reduction
algorithm in practice. Chen and Nguyen observed that the running time of BKZ
reduction is mainly dominated by the root-Hermite factor δ and is less affected
by the dimension m. See Chen and Nguyen [11] for a detailed analysis and their
improvements over the standard BKZ as a collection of optimization known as
BKZ 2.0. See also Albrecht et al. [2] for a thorough comparison of different
estimations of the complexity of BKZ.

2.4 Pruned Enumeration

Gram-Schmidt Orthogonalization. Given a lattice basis B = (b1, . . . ,bm)T ,
the Gram-Schmidt Orthogonalization of B is denoted as B∗ = (b∗

1, . . . ,b
∗
m),

where b∗
i is computed as b∗

i = bi − σi−1
j=1μi,jb∗

j for i = 1, . . . , m, with μi,j =<

bi,b∗
j > /||b∗

j ||2 for all 1 ≤ j ≤ i ≤ m. Denote by πi(·) the orthogonal projection
onto (b1,b2, . . . ,bi−1)⊥. Then b∗

i = πi(bi). Also πi(Λ(B)) is an (m + 1 − i)-
dimensional lattice generated by the basis (πi(b1), πi(b2), . . . , πi(bi−1))T .

Lattice Enumeration. Given a target vector t, a lattice basis B =
(b1, · · · ,bm)T and a radius R, lattice enumeration algorithm enumerates over
all lattice vectors v ∈ L such that ||v − t|| ≤ R and finds the closest one. The
enumeration algorithm enumerates over a search tree leveled by the enumeration
depth k ∈ [m]. The root of the search is levelled using k = 0 and it represents
the target vector. And k = m corresponds to the leaves. The nodes at level k of
the search tree consist of all vectors v ∈ Λ(B) such that ||πm+1−k(t − v)|| ≤ R.
Gama et al. [14] use Gaussian heuristic to approximate the number of nodes in
the k-th level of the enumeration tree as

Hk =
Vk(R)

∏n
i=m+1−k ||b∗

i ||2
, (1)
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where Vk(R) denotes the volume of a k-dimensional ball of radius R. Then the
total number of nodes in the enumeration tree is N =

∑m
k=1 Hk.

Gamma et al. also suggest to use extreme pruning to accelerate the enu-
meration algorithm. The idea of extreme pruning is by deliberately setting the
probability that the solution vector is in the tree after pruning to be very small
to cut lots of branches in the enumeration tree. Though the success proba-
bility of finding the desired solution becomes quite low, it is compensated by
the huge reduction of the enumeration time. Their experiments show an expo-
nential speed up over full enumeration. Formally, pruned enumeration bounds
the enumeration tree by limiting the k-level nodes to those vectors v ∈ Λ(B)
such that ||πm+1−k(v − t)|| ≤ Rk with Rk denoting the pruned radius and
R1 ≤ R2 ≤ . . . ≤ Rm = R.

3 Related Work

We consider the search version of the LWE problem in this work. There are
mainly three ways to solve the search LWE problem.

1. BKW approach: Blum, Kalai and Wasserman proposed BKW algorithm for
the LPN (learning with parity noise) problem. Since LWE can be viewed as
a generalization of LPN problem, BKW was also adapted to solve LWE by
Albrecht et al. [3].

2. Algebraic approach: Arora-Ge [6] proposed to set up a system of algebraic
equations over integers to describe the LWE problem and solve the search
problem by solving the equation system. Later, this method was improved by
using Gröbner basis techniques [4].

3. BDD approach: This approach views the search LWE problem as a decoding
problem in a lattice. We will explain this idea in more details in the following.

Bounded Distance Decoding (BDD): Given m samples (ai, ci) following the
given LWE distribution Ln,q,D, we organize the input into a matrix A ∈ Z

m×n
q

whose rows constitute the m samples of the vector ai, and a vector c ∈ Z
m
q whose

i-th element is ci from the i-th sample. Note that c = As + e, where e is the
error vector which follows the distribution Dn. When the error distribution of
the LWE problem is the discrete Gaussian distribution DZq,αq, we observe that
the length of e is relatively small since each of its entries is distributed according
to the discrete Gaussian. Consider the q-ary lattice

Λq(A) = {x ∈ Z
m : x = As mod q for some s ∈ Z

n
q },

induced by A. Then the vector c is bounded in distance from a vector v ∈ Λq(A).
Finding the vector v from the q-ary lattice is called the BDD problem.

One approach to solve the BDD problem is to reduce the BDD problem to
unique SVP problem by the embedding technique of Kannan [17] and solve the
corresponding SVP problem. Another more common approach is to adapt the
well-established Babai’s algorithm to solve the BDD problem directly. In this
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regard, Lindner and Peikert [22] proposed a variant of Babai’s nearest plane
algorithm to solve the BDD problem. Bischof et al. [10] and Kirshanova et al.
[18] have implemented parallel versions of this algorithm and investigated its
practical performance. Liu and Nguyen [21] observed that Lindner and Peickert
nearest plane algorithm can be viewed as a form of pruned enumeration where
in the former, the pruning strategy bounds the coefficients instead of the usual
way of bounding the projection lengths. Further, they propose to use the lattice
enumeration with GNR extreme pruning strategy to accelerate the speed of
finding the closest vector. This will be the approach we use in our experimental
study. We refer the readers to the excellent survey by Albrecht et al. [2] for a
comprehensive exploration of the concrete hardness of LWE.

4 Our Implementation

We choose to implement the Liu and Nguyen algorithm to study its practical
performance. This algorithm uses enumeration with extreme pruning to solve the
BDD problem. Given M samples {(ai, ci)}i=1,2,...,M from the LWE distribution
Ln,q,α, we use the matrix representation to express the LWE problem as As+e =
c. We outline the algorithm steps as follows:

Algorithm 1. LWE solver using BDD approach
Require: Inputs are n, M, α, q,A ∈ ZM×n

q , c ∈ ZM
q . The inputs satisfy As + e = c

mod q for some hidden secret vector s ∈ Zn
q and error vector e ∈ ZM with its

coefficients chosen independently according to the discrete Gaussian distribution
DZq,αq.

Ensure: Output the hidden secret vector s ∈ Zn
q with high probability.

1: Decide an appropriate sub-dimension m for the given LWE instance.
2: Choose m random rows from the matrix A as A′ ∈ Zm×n

q and the corresponding
m elements from the vector c′ ∈ Zm

q .
3: Compute the basis of the q-ary lattice Λq(A

′) generated by A′, denote it by B.
4: Choose an appropriate block size β and use BKZ-β to reduce the lattice basis B.
5: Choose an appropriate enumeration radius R.
6: Compute a set of pruning coefficients and use pruned enumeration to find the

closest vector v to the target vector c′ using the enumeration radius R.
7: If the closest vector v can be found, then compute the secret vector s by solving

the equation A′s = c′ − v mod q and return s. Otherwise, goto Step 2.

The red and underlined parameters sub-dimension m, BKZ block size β and
enumeration radius R in Algorithm 1 need to be optimized to achieve better
performance for our LWE solver. However, it is easy to see that these parameters
affect the running time and success probability of our LWE solver in an entangled
way. Thus it is a multi-object optimization problem. In general, it is not trivial
to solve such a multi-object optimization problem.

We give detailed explanation of the choice we make regarding each step of
the algorithm in subsequent subsections.
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4.1 Compute the Basis

This is easy linear algebra. Given a matrix A of size m × n, we want to find
the matrix B which is the basis of the q-ary lattice Λq(A) = {x ∈ Z

m : x =
As mod q for some s ∈ Z

n
q }. Recall that we use the convention of row vec-

tors, so a lattice vector generated by the basis B can be represented by zB where
z is a row vector. If we forget for a moment that we are working on the modu-
lar ring Zq, then the basis for Λq(A) is simply AT , the transpose of A since all
lattice vectors except for those in qZm can be expressed by an integer linear com-
bination of rows in matrix AT . To include qZm in order to make it q-ary lattice,
we further compute the Hermite normal form of

[
AT

qIm

]
to get the basis of the

q-ary lattice Λq(A). In other words, B = HNF(
[
AT

qIm

]
), where HNF(A) denotes

the row Hermite normal form of a matrix A removing all zero rows. To see this,
first note that qZm itself can be viewed as a lattice with the (m dimensional)
identity matrix scaled by q as its basis. Thus, we get Λq(A) = Λ(AT) ∪ Λ(qIm).
The last step of our computation relies on the following fact:

Fact 1. Given two lattices Λ(B1) and Λ(B2) of the same dimension, the
basis for the lattice generated by the union of Λ(B1) and Λ(B2) is HNF(

[
B1
B2

]
).

4.2 Enumeration Radius and Basis Randomization

The enumeration radius only affects the running time and success probability of
the enumeration part. Consider an LWE instance Ln,q,α. Fix m samples from
it to get the equation A′s + e′ = c′ mod q. The exact BDD radius is the
length of the error vector e′ ∈ Zm. Though we do not know the exact value
of ||e′||2, we know that its coefficients are generated from the discrete Gaussian
distribution DZq,αq. According to the acceptance criteria of the LWE challenge,
the requirement is that ||e′|| ≤ 2

√
mαq for an LWE instance Ln,q,α with m

samples. Thus one option is to take R = 2
√

mαq as the BDD bound. More
generally, we set squared BDD bound R2 as c · mα2q2 for some fixed constant
c. To approximate the BDD bound R, we sampled error vectors according to
the discrete Gaussian distribution and record the squared length of the error
vector e′. See Fig. 1 for our experiment results. The figure shows the histograms
of the distribution of the squared norm of error vector e′ with the bins set as the
multiplier between ||e′||2 and mα2q2 (i.e., the scalar c). From Fig. 1 we can see
that c = 1.3 is an appropriate choice for making sure that the closest vector can
be found with overwhelming probability and the distribution of the scalar c does
not depend on the parameters n, α and m. However, if one chooses c = 1 so as
to reduce the running time of the enumeration algorithm, then with probability
about half, the closest vector can not be found within this radius.

Typical applications of pruned enumeration will first randomize the lattice
basis by multiplying the basis matrix with a random unimodular matrix and
then apply pruned enumeration to find the desired shortest vector or closest
vector. If we adopt this method in our LWE solver, two problems arise.
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1. The randomized basis usually has larger entries than the initial basis, thereby
adding some burden to the lattice reduction algorithm.

2. If we want to choose a smaller enumeration radius such as setting the scalar
c less than 1.3, we might miss the opportunity of finding the closest vector.
This is primarily due to the fact that we are working with different bases of
a fixed lattice and hence, the error norm is fixed.

Our randomization is natural and effective. We do not bother to do random-
ization over a fixed lattice but instead we choose a different lattice each time. In
most instances, the number of samples M is larger than the LWE dimension n.
It follows that after deciding on a sub-dimension m with n < m < M , we can
randomly choose m samples from the total M samples to form a different lattice
each time. This simple trick solves the two problems discussed above. First the
entries of the generated basis are all less than or equal than q. Second, since
we randomize over the different m-combinations of the samples, the error vector
e′ changes every time. Then we can choose a lower enumeration bound R and
be confident that a fixed portion of the trials contribute to error vectors within
the bound. For example, according to Fig. 1, if we choose R2 = mα2q2 then the
closest vector could be found within this bound with probability about 50 %.

Denote by penum the success probability of an enumeration algorithm given
that the length of the error vector ||e′|| is indeed within the enumeration bound
R. For simplicity we first consider ||e′|| ≤ 1.3·mα2q2. Let Tenum(c) be the time of
the enumeration algorithm when setting the enumeration radius to be c ·mα2q2.
We can estimate the total time of enumeration to find the closest vector (when
setting c = 1.3) as T (1.3) = Tenum(1.3)/penum. Further assuming that changing
the enumeration radius does not affect penum, we can approximate the success
probability of the enumeration algorithm using different enumeration scalars c.
For example if we choose c = 1 the probability that the error vector is within
1 · mα2q2 is about 0.5 so we get the total enumeration time of solving the BDD
problem as T (1) = 2∗Tenum(1)/penum. In particular, choosing c = 1 may lead to
a faster algorithm if Tenum(1) < Tenum(1.3)/2. Thus, by analyzing the impact
of the enumeration radius on the running time of enumeration algorithm, we
can choose nearly optimal enumeration radius. Finally, we can use the Gaussian
heuristic Eq. (1) to approximate Tenum(c) (see below).

4.3 Choose Sub-dimension

In the typical setting of LWE problem, the number of total samples M is bounded
by a polynomial of the LWE dimension n. When treating LWE as a lattice
problem, an important decision concerns a suitable choice for the dimension of
the lattice. The dimension of the lattice equals the number of samples we choose.
How many of the total M samples do we use to form the generating matrix A′?

First, we show that if the sub-dimension were chosen too small, the sub
LWE problem may not have a unique solution. Consider the following equation
A′s + e′ = c′. For any choice of s, we can find an error vector e′ satisfying
the above equation. However, the LWE problem restricts the length of e′. More
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(a) n = 40, α = 0.005,
m = 100.

(b) n = 50, α = 0.010,
m = 120.

(c) n = 60, α = 0.015,
m = 140.

Fig. 1. Histograms of square length of e′ for different parameters.

precisely, each element of e′ is chosen from the discrete Gaussian distribution
with small variance and thus, it can not be too large. TU Darmstat University has
held an LWE challenge website1 similar to the famous SVP challenge. According
to Buchmann et al. [9], the acceptance criteria for the correct answer of the LWE
problem Ln,q,α with M samples is that ||e|| ≤ 2

√
Mαq. Based on this criteria,

when we choose the sub-dimension to be m, we would also expect to find a
secret vector s such that it leads to a error vector of length less than 2

√
mαq.

Following the argument of Buchmann et al. [9], we calculate the probability
that the sub LWE problem has more than one solution. For a chosen matrix
A′ of size m × n, let Λq(A′) denote the q-ary lattice generated by A′. Recall
that λ1(Λq(A′)) is the norm of the shortest non zero vector in Λq(A). Assume
that we have two solutions for the secret vector s1 and s2 satisfying the criteria
A′s1+e′

1 = c′ = A′s2+e′
2 and e′

i ≤ 2
√

mαq. Then by the triangle inequality, we
have ||A′(s1 − s2)|| ≤ 4

√
mαq. Since A′(s1 − s2) is actually a vector in the q-ary

lattice Λq(A′), the fact that the sub LWE problem has more than one solution
implies that λ1(Λq(A′)) ≤ 4

√
mαq. On the other hand, Gaussian heuristic tells

us that the expected length of the shortest vector of Λq(A′) is q1− n
m

√
m
2πe . In

view of this, in our implementation we choose the sub-dimension m such that
the corresponding Gaussian heuristic q1− n

m

√
m
2πe is larger than 4

√
mαq so that

the expected number of solutions is small.
The next question concerns how large the lattice sub-dimension m should be.

Note that a large dimension invariably increases the time for the basis reduction.
In [15], the authors experimentally showed that for a random input lattice, the
root Hermite factor δ after a BKZ-beta reduction is independent of the lattice
dimension. The following table shows the root Hermite factor obtained from
various m random samples taken from the LWE challenge with α = 0.005 under
a BKZ-20 reduction averaged over 20 experiments for each pair of m and n
(Table 1).

One sees that for each n, the value of δ is approximately 0.128 for the first
values of m but deviates from this value for larger values of m. A closer exam-
ination reveals that in the latter case, the shortest vectors produced by the

1 https://www.latticechallenge.org/lwe challenge/challenge.php.

https://www.latticechallenge.org/lwe_challenge/challenge.php
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Table 1. Average root hermite factor for LWE instances with sub-dimension m

n m

100 110 120 130 140 150 160 170 180 190 200

40 1.01272 1.01312 1.01291 1.01289 1.01308 1.01296 1.01160 1.01026 1.00915 1.00821 1.00741

45 1.01290 1.01276 1.01291 1.01301 1.01290 1.01298 1.01309 1.01193 1.01063 1.00954 1.00860

50 1.01282 1.01290 1.01282 1.01291 1.01301 1.01289 1.01309 1.01298 1.01215 1.01090 1.00983

55 1.01285 1.01298 1.01291 1.01291 1.01296 1.01310 1.01296 1.01296 1.01311 1.01229 1.01109

60 1.01281 1.01279 1.01287 1.01291 1.01296 1.01304 1.01301 1.01305 1.01309 1.01312 1.01236

65 1.01286 1.01280 1.01300 1.01304 1.01297 1.01303 1.01298 1.01312 1.01304 1.01322 1.01300

reduction algorithm are the unit vectors scaled by q. In general, we will like
to have the lattice reduction to produce vectors with length less than q which
tends to suggest that the input vectors are more well-mixed by the reduction
algorithm to produce short vectors. In view of this, for a given BKZ-beta reduc-
tion, we will select the sub-dimension m such that the predicted shortest vector
has length less than q, namely, δmq1−n/m ≤ q or, m ≤ √

n log q/ log δ, where δ is
the expected root Hermite factor. For δ = 1.0128, one checks that this gives the
pairs (n,m) to be (40, 152), (45, 164), (50, 175), (55, 186), (60, 196) and (65, 206).

Apart from the lattice reduction, the size of m also affects the enumeration
cost. Here, we examine the impact of m for the full enumeration tree. We propose
to use the Gaussian heuristic to estimate the enumeration cost, i.e., Eq. (1) to
estimate the (full) enumeration cost and to decide the optimal sub-dimension.
The total cost is N =

∑m
k=1 Hk. We however do not know how to systematically

solve the equation to find an optimal m which minimizes the total cost N . Instead
we use numerical calculation to determine the optimal sub-dimension m for fixed
BKZ block size β. We plot the total cost N =

∑m
k=1 Hk for an LWE instance

by varying the sub-dimension m. Figure 2 shows the estimated (logarithm of)
full enumeration cost for different parameters. We deploy a conversion that for
an LWE instance Ln,q,α, q is set to be the next prime of n2 which follows the
parameter setting of the LWE Challenge. Comparing Fig. 2a and b, we see that
for fixed n and BKZ block size β, the optimal sub-dimension m does not depend
on the relative error rate α. Figure 2a and c show the impact of BKZ block size β
on the optimal sub-dimension. As we can see, by increasing β, the optimal sub-
dimension m also increases and the full enumeration cost decreases for larger
β. However, the larger β requires more BKZ reduction time. There is still a
need for a trade-off between the BKZ reduction time and enumeration time
by setting an appropriate block size β. We discuss this in the next subsection.
Finally combining Fig. 2b and d, we can further get the impression that for fixed
relative error rate α and BKZ block size β, the larger the dimension of the LWE
instance n is, the larger sub-dimension we need to get an optimal performance.
One problem of the numerical method to decide on the optimal sub-dimension
is that we did not consider the BKZ reduction part. In practice we need to
consider the running time of BKZ reduction algorithm, so the actual optimal
sub-dimension is usually less than that viewed from the plot. However, the plot
can still act as a rough guide to find the optimal sub-dimension. Due to page
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(a) n = 50, α = 0.005, β = 20. (b) n = 50, α = 0.015, β = 20.

(c) n = 50, α = 0.005, β = 10. (d) n = 60, α = 0.015, β = 20.

Fig. 2. Semi-log graph for full cost N . The parameters have the following reference: n
is the LWE dimension, α is the relative error rate of the LWE instance and β is the
block size for BKZ reduction algorithm used. Different colors stand for different trials.
(Color figure online)

constraints, we defer the details of the estimation of enumeration cost and the
relation between cost of full enumeration and that of enumeration with extreme
pruning in AppendixA.

4.4 Balancing Reduction and Enumeration

Since we use enumeration to solve the BDD problem, we want to first reduce the
lattice basis before applying enumeration. BKZ is now the de-facto standard of
lattice reduction algorithm in cryptanalysis. We use the BKZ implementation in
FPLLL [5] library to perform BKZ reduction.

The quality of the reduced basis and the running time of BKZ reduction
algorithm highly depend on the block size β. The choice of an appropriate block
size β affects the total running time of our LWE solver. Generally speaking, a
larger block size β leads to longer running time of BKZ reduction algorithm
but the highly reduced basis will decrease the running time of enumeration. So
the folklore is that the optimal block size β should balance the running time
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Fig. 3. Running time for BKZ reduction and pruned enumeration.

of BKZ reduction and enumeration. In other words, when the BKZ reduction
time and the enumeration time are close to each other, the total running time
is minimized. See Fig. 3 for an example. We plot the actual running time of
BKZ reduction algorithm and pruned enumeration time for the LWE instance
L40,1601,0.015 using sub-dimension m = 120. The enumeration radius is set to
be R2 = 0.8mα2q2. The figure confirms the folklore that the optimal block size
β should roughly balance the running time of BKZ reduction and enumera-
tion. However, finding such optimal block size is not easy, especially for extreme
pruning. In our experiments we manually tune the block size β by measuring
the running time of the BKZ reduction part and pruned enumeration part.

4.5 Parallelization

Parallelism is ubiquitous in today’s program design. We have multi-core CPUs
even in our laptops. It is natural to implement the LWE solver algorithm in
parallel. One option is to use parallel implementation of enumeration algorithm
and parallel implementation of lattice reduction algorithm. Alternatively, One
can use a sequential implementation of lattice reduction algorithm and enumer-
ation algorithm but instead launch several threads to solve the BDD problem
with different randomized basis. We choose the latter approach for its simplicity
and its embarrassing parallelism. Although there are parallel implementations of
lattice enumeration algorithms [12,13,16,19], we do not know any public avail-
able parallel implementation of BKZ reduction algorithm. Thus if we want to
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use parallel implementation of enumeration we might have to use a sequential
implementation of BKZ reduction. Amdahl’s Law sets a bound on the potential
program speedup defined by the fraction of code (p) that can be parallelized as
speedup = 1

1−p . In using the combination of BKZ reduction and enumeration
to solve the SVP or CVP problem, it is common knowledge that when the run-
ning time of BKZ reduction part and the enumeration part are roughly equal,
the total running time is minimized (refer to the previous section and Fig. 3). If
we want optimal performance then the fraction of parallelizable code would be
about 1/2. It follows that regardless of how many threads are used, the speedup
can be at most 2. We can circumvent this by using a small block size for the
BKZ reduction, or plugging in the parallel enumeration into the BKZ reduction,
but those methods are either complicated or do not achieve optimal performance
gain.

In our implementation we use the embarrassingly parallel design to let each
thread work on a different randomized basis, and thus there is no load balance
issue. In order to achieve best performance we carefully choose the BKZ block
size so that the BKZ reduction time is comparable to the enumeration time.

5 Experimental Results

Our implementation is written in C++, using the library FPLLL for BKZ reduc-
tion and lattice enumeration. Our program is compiled using gcc 5.4.0 on a desk-
top running Ubuntu 14.04 LTS. We test our LWE solver using the instances from
the LWE challenge website. We use extreme pruning [14] for lattice enumeration
as suggested by Liu and Nguyen [21]. Gamma et al. [14] suggest using numerical
approximation to generate optimal pruning coefficients by fixing the successful
probability and seeking for minimum overhead. Aono [7] also describes how to
compute the optimal pruning coefficients. We follow Aono’s approach to com-
pute the optimal pruning coefficients in our implementation. We are preparing to
release the source code after further optimization. At this moment, it is available
upon request.

5.1 LWE Challenge

TU Darmstadt held a LWE challenge project. The challenge provides LWE
instances with different parameters. The LWE challenge instance is identified
by two parameters: the LWE dimension n and the relative error rate α. The
other parameters of an LWE instance are set as follows:

– Moduli q is set as the next prime of n2;
– Number of samples is set as M = n2;
– Error distribution is set as the discrete Gaussian distribution with width

parameter σ = αq, i.e., the distribution DZq,σ.

Using our implementation described in the preceding section, we solved sev-
eral instances from the LWE Challenge website. Please refer to Table 2 for the
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Table 2. Results on solving some instances from the LWE Challenge website

LWE parameters BKZ reduction Enumeration #Trials Total time

n α m β t c t

40 0.005 100 10 - 1.3 - 2 4 s

40 0.01 120 10 4 s 1.3 4 s 2 16 s

40 0.015 120 18 12 s 0.8 10 s 819 18403 s

40 0.02 140 32 10.9 d 1.3 27.1 d - 38 d

45 0.005 120 5 3 s 1.3 1 s 6 23 s

50 0.005 120 15 5 s 1.0 2 s 5 35 s

60 0.005 140 28 27 h 0.8 24 h - 51 h

Note that the instances L40,0.02 and L60,0.005 take quite long time thus
we use parallelized version of the solving algorithm, and we do not record
the number of trials for these two instances.

detailed recording of the LWE parameters, the block size we used for BKZ
and the running time for solving these instances. All the instances except two
are run using a single thread on a desktop with a 3.60 GHz Intel Core i7
processor with eight cores and 32 GB 1600 MHz DDR3 memory. The instance
(n = 60, α = 0.005) was run on a cluster consisting of 20 c4.8xlarge instances,
each having 36 cores with a 60 GB memory (720 threads in total), on the Ama-
zon EC2 platform. The instance (n = 40, α = 0.02) was solved on a cluster
consisting of 8 desktops with a 3.60 GHz Intel Core i7 processor with eight cores
and 32 GB 1600 MHz DDR3 memory (64 threads in total).

In the experiments we carefully choose the BKZ block size β to ensure the
BKZ reduction time is comparable with the enumeration time so as to achieve the
reduction on overall running time. Our experiments indeed confirm the folklore
that when BKZ reduction time roughly equals that of enumeration time the
total running time achieves the minimal. The squared BDD bound R2 was set
as c ·mα2q2. The successful probability in our pruning strategy is set to be 0.01.
From the results of our experiments we find that the relative error rate α plays
an important role in the hardness of the LWE problem.

5.2 Comparison with Other Implementations

Recently Kirshanova et al. [18] report a parallel implementation of BDD enumer-
ation for solving LWE. They implement both the Lindner-Peikert [22] nearest
planes algorithm and the pruned enumeration method2 proposed by Liu and
Nguyen [21]. They directly implement a pruned parallel enumeration algorithm.
Their experiments show that the enumeration algorithm can be nicely paral-
lelized. For example, they achieve a linear speedup by increasing the number
of threads even until 10. However, the BKZ reduction is not parallelized. We
can observe the impact of Amdahl’s Law from their experimental results. For
2 Kirshanova et al. use linear pruning instead of extreme pruning.
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example in order to solve the LWE instance L80,4093,5 their serial implementa-
tion needs 4.3+13 = 17.3 h. Their parallel implementation using 10 threads can
reduce the enumeration time from 13 h to 1.5 h. Then the total running time is
4.3 + 1.5 = 5.8 h. That is a 3x speedup by using 10 threads. Even when they
increase the number of threads to 20, the total running time is 4.3+0.8 = 5.1 h,
which gives a 3.4x speedup by using 20 threads. Although one can circumvent
this by using a very small block size for the BKZ reduction part, as we discussed
in Sect. 4.4 this choice would increase the total running time of BKZ reduction
and pruned enumeration.

On the contrary, our strategy to use extreme pruning and to use many threads
working on different basis can scale quite well with respect to the number of
threads. Moreover, using extreme pruning can highly reduce the time used by enu-
meration and thus reduce the total time needed for solving the LWE instance. We
compare the running time of our implementation and that of Kirshanova et al.
in Table 3. In the table, the time t for BKZ and enumeration stands for the total
BKZ time and enumeration time for solving the corresponding LWE instance. In
Kirshanova et al.’s setting they fixed the number of samples for the LWE instance
and all their experiments use the fixed dimension. We try a different setting where
the number of LWE samples are a polynomial of n, say n2 so that we can use the
optimal sub-dimension to reduce the difficulty of the LWE instance.

Table 3. Comparison between Kirshoanova et al. and ours results.

LWE Kirshanova et al. Ours implementation

Sub-dim BKZ Enum Sub-dim BKZ Enum #Trials

n q s m β t #Treads t m β t c t

70 4093 6 140 20 65min 1 44min 140 20 19min 1.0 36 s 18

140 20 65min 10 5min 140 15 551 s 1.0 182 s 32

80 4093 5 150 25 4.3 h 1 13 h 150 15 2.8 h 0.8 2.4 h 347

150 25 1.3 h 10 1.5 h 180 8 6min 1.0 64min 12

150 25 1.3 h 20 50min 180 10 417 s 1.0 117s 12

The first row of Table 3 shows that extreme pruning can indeed speedup
the LWE solver. Kirshanova et al. need 109 min to solve the instance L70,4093,6

on a single thread, while our implementation can solve the instance using the
same sub-dimension and block size β = 20 within 20 min. Further more, their
implementation uses 70 min to solve the instance on 10 threads. Since our imple-
mentation uses 18 trials to solve the instance we can solve the instance within
the time of two rounds if given 10 threads. Basically, we only need less than
4 min to solve the same instance given 10 threads. We note that the block size
β = 20 is not optimal for our implementation. By changing β to 15, we solve the
instance L70,4093,6 in 12 min on a single thread.

To further demonstrate the effectiveness of extreme pruning, we compare the
performance of both our implementations for the instance L80,4093,5. When we
use the same sub-dimension as m = 150, the running time of our implementation
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on a single thread is 5.2 h which is much smaller than 17.3 h of Kirshanova et
al. But the advantage of our implementation lies also in another factor. Notice
that the algorithm uses 347 trials to find the correct solution, which means a
single trial uses on average only 1 min. Kirshanova et al. solve the instance in
more than 2 h using 20 threads. Our implementation is expected to solve the
instance in 347/20 = 18 min. If we have more than 400 threads, we can solve the
instance within 1 min. Moreover, if we apply the optimal sub-dimension trick
we do not need so many threads to achieve the speedup. For example when
we use 180 samples and BKZ block size β = 10, the total of 12 trials take
417 + 117 = 534 s. Then with 12 threads our implementation is expected to
solve the instance L80,4093,5 using 45 s. On the contrary, the BKZ reduction of
Kirshanova et al.’s implementation alone takes 1.3 h.

6 Conclusion and Future Work

This current work described our choice of strategy to solve the BDD problem,
namely the details of our implementation and our experimental results on sev-
eral LWE challenge instances. Our implementation features a embarrassingly
parallel design and the use of extreme pruning shows advantages over existing
implementations. Potential future work include:

– We choose the optimal BKZ block size β manually in our experiments. This
would be impossible for LWE instances with large dimension and/or large
relative error rate. Thus it would be useful to explore the relation between the
BKZ reduction time and (pruned) enumeration time and use some heuristics
to decide the optimal BKZ block size.

– The success probabilities from our experiments seem to be higher than those
estimated by Aono’s algorithm, thereby resulting in fewer threads. Since we
are using parallel implementations of the LWE solver, we have more room for a
lower success probability. Lower successful probability can reduce the running
time while we can simply add more threads to compensate the low probability
of success. In fact our current environment of 20 c4.8xlarge Amazon EC2
instances contains in total more than 700 threads. We can deal with this
problem in two ways: first, we can reduce the successful probability for the
pruning strategy; second, we can deploy a two-level parallelization by using
the first level to run the LWE solver in parallel and using the second level to
run the parallel enumeration algorithm.

A Estimate the Cost of BDD Enumeration

Recall that Gaussian heuristic suggests that the enumeration cost at level k of
the full enumeration tree is

Hk =
Vk(R)

∏m
i=m+1−k ||b∗

i ||2

and the total cost is N =
∑m

k=1 Hk.
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In the case of BDD enumeration, we set the enumeration bound R =
√

mαq.
As for the Gram-Schmidt vector b∗

i , we use the GSA (Geometric Series Assump-
tion) to approximate their lengths.

Geometric Series Assumption (GSA): Schnorr [25] introduced GSA which
states that the Gram-Schmidt lengths ||b∗

i || in a BKZ-reduced basis decrease
geometrically with quotient r for some constant r related to the reduction algo-
rithm. Specifically ||b∗

i+1||/||b∗
i || = r. Using Gaussian heuristic for the length of

the shortest vector we approximate ||b∗
1|| as δmq

m−n
m where δ is the root Hermite

factor achieved by a BKZ reduction algorithm.
Combining Gaussian heuristic and GSA together, we can reformulate Eq. (1)

as

Hk =
(
√

mαq)kπk/2

r(2m−k−1)k/2δmkq(m−n)k/mΓ (k/2 + 1)
, (2)

where r is the GSA constant, δ is the root Hermite factor achieved by the
reduction algorithm and Γ (·) is the Gamma function. The total cost (number of
nodes in the enumeration tree) is then calculated as

N =
m∑

k=1

Hk. (3)

In the BDD case the enumeration cost behaves quite differently from that of the
SVP enumeration. In the SVP case, the enumeration radius R is set roughly as
||b∗

1|| and the terms Hk reaches maximum when k = m/2. But for BDD enu-
meration, the enumeration radius3 (bound) is set as R =

√
mαq. This difference

actually results in the fact that the cost may decrease as the sub-dimension m
increases.

We numerically evaluated the leveled cost Hk and the results are shown
in Fig. 4. Figure 4 displays the level cost Hk for different index k for an LWE
instance L50,2503,0.005. The basis are reduced by the BKZ-20 reduction algorithm,
while the enumeration radius is set as R =

√
mαq. Figure 4a uses sub-dimension

m = 120 and Fig. 4b uses sub-dimension m = 140. From the figures we can
observe that the index which maximize Hk is no longer m/2 and for the smaller
index the value of Hk may be less than 1. We next plot the total cost N =∑m

k=1 Hk for an LWE instance by varying the sub-dimension m.
In our experiments, we employ extreme pruning instead of the full enumera-

tion tree. Here, we verify that extreme pruning does not affect the shape of the
enumeration cost so that the estimation using full enumeration works effectively
for choosing the optimal sub-dimension. Comparing Fig. 5 with Fig. 2, we can
see that in the case of enumeration cost with extreme pruning the optimal sub-
dimension m is usually a little bigger than that for full enumeration cost. How-
ever, the estimated costs do not differ too much. Moreover, when using a larger
sub-dimension one has to take the cost of BKZ reduction into consideration. Our

3 In our implementation we set R2 = cm(αq)2 for some bound scalar c ranging from
0.8 to 1.3.
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(a) n = 50, α = 0.005, m = 120. (b) n = 50, α = 0.005, m = 140.

Fig. 4. Semi-log graph for level cost Hk.

(a) n = 50, α = 0.005, β = 20. (b) n = 50, α = 0.01, β = 20.

(c) n = 50, α = 0.012, β = 20. (d) n = 50, α = 0.015, β = 20.

Fig. 5. Semi-log graph for cost N of pruned enumeration. The parameters have the
following reference: n is the LWE dimension, α is the relative error rate of the LWE
instance and β is the block size for BKZ reduction algorithm used.
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experiments in solving the LWE challenge confirms that the estimation using full
enumeration cost well serves our purpose to reduce the running time of the whole
solving process.
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