
Faster Secure Multi-party Computation of AES
and DES Using Lookup Tables

Marcel Keller, Emmanuela Orsini, Dragos Rotaru(B), Peter Scholl,
Eduardo Soria-Vazquez, and Srinivas Vivek

Department of Computer Science, University of Bristol, Bristol, UK
{m.keller,emmanuela.orsini,dragos.rotaru,peter.scholl,

eduardo.soria-vazquez,sv.venkatesh}@bristol.ac.uk

Abstract. We present an actively secure protocol for secure multi-party
computation based on lookup tables, by extending the recent, two-party
‘TinyTable’ protocol of Damg̊ard et al. (ePrint 2016). Like TinyTable, an
attractive feature of our protocol is a very fast and simple online evalu-
ation phase. We also give a new method for efficiently implementing the
preprocessing material required for the online phase using arithmetic
circuits over characteristic two fields. This improves over the suggested
method from TinyTable by at least a factor of 50.

As an application of our protocol, we consider secure computation
of the Triple DES and the AES block ciphers, computing the S-boxes
via lookup tables. Additionally, we adapt a technique for evaluating
(Triple) DES based on a polynomial representation of its S-boxes that
was recently proposed in the side-channel countermeasures community.
We compare the above two approaches with an implementation. The
table lookup method leads to a very fast online time of over 230,000
blocks per second for AES and 45,000 for Triple DES. The preprocessing
cost is not much more than previous methods that have a much slower
online time.

Keywords: Multi-party computation · Block cipher · Implementation

1 Introduction

Secure multi-party computation (MPC) protocols allow useful computations to
be performed on private data, without the data owners having to reveal their

This work has been partially supported by EPSRC via grant EP/N021940/1; by
the Defense Advanced Research Projects Agency (DARPA) and Space and Naval
Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070;
by EPSRC via grant EP/M016803; and by the European Union’s H2020 Programme
under grant agreement number ICT-644209 (HEAT) and the Marie Sk�lodowska-
Curie grant agreement No. 643161 (ECRYPT-NET).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 229–249, 2017.
DOI: 10.1007/978-3-319-61204-1 12



230 M. Keller et al.

inputs. The last decade has seen an enormous amount of progress in the prac-
ticality of MPC, with many works designing more efficient protocols and imple-
mentations. There has also been a growing interest in exploring the possible
applications of MPC, with a number of works targeting specific computations
such as auctions, statistics and stable matching [6,7,23,29].

One promising application area that has recently emerged is the use of secure
computation to protect long-term secret keys, for instance, in authentication
servers or to protect company secrets [4]. Here, the secret key, sk, is split up
into n pieces, or shares, such that certain subsets of the n shares are needed
to reconstruct sk, and each share is stored on a different server (possibly in
a different location and/or managed by a separate entity). When the key is
needed by an application, say for a user logging in, the servers run an MPC
protocol to authenticate the user, without ever revealing sk. Typically, the type
of computation required here can be performed using a symmetric primitive such
as a block cipher or hash function.

Several previous works in secure computation have studied the above type
of application, and the AES function is even considered a standard benchmark
for new protocols [5,16,35,37,39]. A recent line of works has even looked at
special-purpose symmetric primitives, designed to have low complexity when
evaluated in MPC [1,2,27]. However, in industries such as banking and the wider
financial sector, strict regulations and legacy systems mean that switching to
new primitives can be very expensive, or even impossible. Indeed, most banking
systems today are using AES or Triple DES (3DES) to secure their data [24],
but may still benefit greatly from MPC technologies to prevent theft and data
breaches.

1.1 Our Contributions

In this work, we focus on the task of secure multi-party computation of the AES
and the (Triple) DES block ciphers, in the setting of active security against any
number of corrupted parties. We present a new technique for the preprocessing
phase of efficient, secure computation of table lookup (with a secret index), and
apply this to evaluating the S-boxes of AES and DES. In addition, we describe a
new method of secure MPC evaluation of the DES S-boxes based on evaluating
polynomials over binary finite fields, which reduces the number of non-linear
field multiplications.

Our protocol for secure table lookup builds upon the recent ‘TinyTable’ pro-
tocol for secure two-party computation by Damg̊ard et al. [18]. This protocol
requires a preprocessing phase, which is independent of the inputs, where ran-
domly masked (or ‘scrambled’) lookup tables on random data are created. In the
online phase, where the function is securely evaluated, each (one-time) masked
table can be used to perform a single table lookup on a private index in the
MPC protocol. The online phase of TinyTable is very efficient, as each party
only needs to send log2 N bits over the network, for a table of size N .

However, the suggested technique for creating the masked tables is far less
efficient: for secure computation of AES, it would take at least 256 times longer



Faster Secure Multi-party Computation of AES and DES 231

to create the masked lookup tables, compared with using standard methods with
a slower online time.

We extend and improve upon the TinyTable approach in two ways. Firstly, we
show that the technique can easily be generalized to the multi-party setting and
used in any SPDZ-like MPC protocol based on secret-sharing and information-
theoretic MACs. Secondly, we describe a new, general approach for creating
the masked tables using finite field arithmetic, which significantly improves the
preprocessing cost of the protocol. Concretely, for a lookup table of size N , we
can create the masked table using an arithmetic circuit over F2k with fewer than
N/k+log N multiplications. This provides a range of possible instantiations with
either binary or arithmetic circuit-based protocols. When using binary circuits,
we only require N − 2 multiplications. For arithmetic circuits over F28 , an AES
S-box can be preprocessed with 33 multiplications, improving on the method
in [18], which takes 1792 multiplications, by more than 50 times. With current
practical protocols, it turns out to be even more efficient to work over F240 , with
only 11 multiplications. We remark that standard methods for computing AES
based on polynomials or Boolean circuits can obtain better overall running times,
but with a much slower online phase. The main goal of this work is to reduce
the preprocessing cost whilst preserving the very fast online phase of TinyTable.

We also consider a new method for secure multi-party computation of DES
based on a masking side-channel countermeasure technique. The DES S-box can
be viewed as a lookup table mapping 6 bits to 4 bits, or as a polynomial over
F26 . A näıve method requires 62 field multiplications to evaluate a DES S-box
polynomial over F26 . There were many recent works that reduced the number
of non-linear multiplications required to evaluate polynomials over binary finite
fields, including the DES S-box polynomials [10,13,14,38,41]. A recent proposal
by Pulkus and Vivek [38] showed that the DES S-boxes, when represented over
a different field, F28 , can be evaluated with only 3 non-linear multiplications.
This is better than the best-known circuit over F26 , which needs 4 non-linear
multiplications. Applying the Pulkus–Vivek method in our context, we show how
1 round of the DES block cipher can be computed with just 24 multiplications
over F28 . This compares favorably with previous methods based on evaluating
polynomials over F26 and boolean circuits.

Analogous to the MPC protocols based on table lookups, there are also mask-
ing side-channel countermeasures based on random-table lookups [11,12]. This
analogy should not come as a surprise since the masking technique is also based
on secret-sharing. The state-of-the-art for (higher-order) masking seems to sug-
gest that the schemes based on evaluation of S-box polynomials usually outper-
form table-lookups based schemes in terms of time, RAM memory and random-
ness. We perform a similar comparison in the MPC context too. To this end,
we evaluate the complexity of the various methods for secure computation of
AES and 3DES, and present some implementation results. We implemented the
protocols using the online phase of the SPDZ [16,19] MPC protocol. The pre-
processing additionally requires some random multiplication triples and shared



232 M. Keller et al.

bits, for which we estimated costs using MASCOT [30] for arithmetic circuits,
and based on the recent optimized TinyOT protocol [35,43] for binary circuits.

Our experiments show that the fastest online evaluation is achieved using
lookup tables. The preprocessing for this method costs much less when using
arithmetic circuits over larger fields, compared with a binary circuit protocol
such as TinyOT [35,43], despite the quadratic (in the field bit length) communi-
cation cost of [30]. The polynomial-based methods for AES and DES still perform
slightly better in the preprocessing phase, but for applications where a low online
latency is desired, the lookup table approach is definitely preferred. If an applica-
tion is mainly concerned with the total running time, then the polynomial-based
methods actually lead to runtimes for AES that are comparable with the fastest
recent 2-PC implementations using garbled circuits.

Related Work. A recent, independent work by Dessouky et al. [22] presented
two different protocols for lookup table-based secure two-party computation in
the semi-honest security model. The first protocol, OP-LUT, offers an online
phase very similar to ours (and [18]), while the preprocessing stage, that is
implemented using 1-out-of-N oblivious transfer, is incomparable to ours as we
must work much harder to achieve active security.

The second protocol, SP-LUT, proposes a more efficient preprocessing phase,
which only requires random 1-out-of-N oblivious transfer computation, but a
slower online evaluation; however this protocol has a much lower overall commu-
nication compared to the previous one. These two protocols are also compared
with the OTTT (One-Time Truth-Table) protocol by Ishai et al. [28] with paral-
lel circuit based preprocessing [20]. More detailed comparisons with our protocols
are provided in Sect. 5.2.

This work also provides an FPGA-based synthesis tool that transforms a
high level function representation to multi-input/multi-output table-lookup rep-
resentation, which could also be used with our protocol.

2 Preliminaries

We denote by λ the computational security parameter and κ the statistical secu-
rity parameter. We consider the sets {0, 1} and F

k
2 endowed with the structure

of the fields F2 and F2k , respectively. We denote by F = F2k any finite field of
characteristic two. Finally, we use a

$← A as notation for a uniformly random
sampling of a from a set A.

Note that by linearity we always mean F2-linearity, as we only consider fields
of characteristic 2.

2.1 MPC Computation Model

Our protocol builds upon the arithmetic black-box model for MPC, represented
by the functionality FABB (shown in the full version). This functionality per-
mits the parties to input and output secret-shared values and evaluate arbitrary



Faster Secure Multi-party Computation of AES and DES 233

binary circuits performing basic operations. This abstracts away the underlying
details of secret sharing and MPC. Other than the standard Add and Mult
commands, FABB also has a BitDec command for generating the bit decompo-
sition of a given secret-shared value, two commands Random and RandomBit
for generating random values according to different distributions and an Open
command which allows the parties and the adversary to output values. BitDec
can be implemented in a standard manner by opening and then bit-decomposing
x + r, where r is obtained using k secret random bits.

We use the notation �x� to denote an authenticated and secret-shared value
x, which is stored by FABB. More precisely, this can be implemented with active
security using the SPDZ protocol [16,19] based on additive secret sharing and
unconditionally secure MACs. We also use the + and · operators to denote calls
to Add and Mul with the appropriate shared values in FABB.

More concretely, our protocols are in the so called preprocessing model and
consist of two different phases: an online computation, where the actual eval-
uation takes place, and a preprocessing phase that is independent of the par-
ties’ inputs. During the online evaluation, linear operations only require local
computations thanks to the linearity of the secret sharing scheme and MAC.
Multiplications and bit decompositions require random preprocessed data and
interactions. More generally, the main task of the preprocessing step is to produce
enough random secret data for the parties to use during the online computation:
other than multiplication triples, which allow parties to compute products, it
also provides random shared values. The preprocessing phase can be efficiently
implemented using OT-based protocols for binary circuits [8,25,43] and arith-
metic circuits [30].

Security Model. We describe our protocols in the universal composition (UC)
framework of Canetti [9], and assume familiarity with this. Our protocols work
with n parties from the set P = {P1, . . . , Pn}, and we consider security against
malicious, static adversaries, i.e. corruption may only take place before the pro-
tocols start, corrupting up to n − 1 parties.

3 Evaluating AES and DES S-box Polynomials

In this section, we recollect some of the previously known methods that aim to
reduce the number of non-linear operations to evaluate univariate polynomials
over binary finite fields, particularly, the AES and the DES S-boxes represented
in this form. Note here that, by a non-linear multiplication, we mean those
multiplications of polynomials that are neither multiplication by constants nor
squaring operations. Since squaring is a linear operation in binary fields, once a
monomial is computed, it can be repeatedly squared to generate as many more
monomials as possible without costing any non-linear multiplication.

Due to limited space, a more detailed discussion can found in the full version.



234 M. Keller et al.

3.1 AES S-box

The AES S-box evaluation on a given input (as an element of F28) consists
of first computing its multiplicative inverse in F28 (mapping zero to zero), and
then applying a bijective affine transformation. For the inverse S-box, the inverse
affine transformation is applied first and then the multiplicative inverse. Note
that the polynomial representation of the inverse function in F28 is X254.

BitDecompostion Method. This approach, described by Damg̊ard et al. [15],
computes the squares X2i

, for i ∈ [7], and then multiplies them to get X254.
This method needs 6 non-linear multiplications.

Rivain–Prouff Method. This method, as presented in Gentry et al. [26], is a
variant of the method of Rivain–Prouff [40] to evaluate the AES S-box polyno-
mial using only 4 non-linear multiplications in F28 [X]: {X,X2} ×→ {X3,X12} ×→
{X14} ×→ {X15,X240} ×→ X254.

3.2 Des S-boxes

Cyclotomic Class Method. Recall that DES has eight 6-to-4-bit S-boxes.
In this näıve method given by Carlet et al. [10], the DES S-boxes are repre-
sented as univariate polynomials over F26 . In particular, the 4-bit S-box outputs
are padded with zeros in the most significant bits and then identified with the
elements of F26 . It turns out that these polynomials have degree at most 62 [41].

Over F2m [X], define Cm
i :=

{
Xi·2j

: j = 0, 1, . . . ,m − 1
}

for 0 < i < 2m.

Now we need to compute C6
0 , C6

1 , C6
3 , C6

5 , C6
7 , C6

9 , C6
11, C

6
13, C

6
15, C

6
21, C

6
23, C

6
27,

C6
31, to cover all monomials up to degree 62, and this needs at most 11 non-

linear multiplications. The target polynomial is then simply obtained as a linear
combination of the computed monomials.

Pulkus–Vivek Method. This generic method to evaluate arbitrary polynomi-
als over binary finite fields was proposed recently by Pulkus and Vivek [38] as an
improvement over the method of Coron–Roy–Vivek [13,14]. In the PV method,
the DES S-boxes are represented as polynomials over F28 instead of F26 . The
6-bit input strings of the DES S-boxes are padded with zeroes in the two most
significant positions and then naturally identified with the elements of F28 . The
four most significant coefficient bits of the polynomial outputs are discarded to
obtain the desired 4-bit S-box output.

Firstly, a set of monomials L = C8
1 ∪ C8

3 ∪ C8
7 in F28 [X] is computed. Then

a polynomial, say P (X), representing the given S-box is sought as P (X) =
p1(X) · q1(X) + p2(X), where p1(X), q1(X), and p2(X) have monomials only
from the set L. In total, the PV method needs 3 non-linear multiplications in
F28 [X] to evaluate each of the S-box polynomial.



Faster Secure Multi-party Computation of AES and DES 235

3.3 MPC Evaluation of AES and DES S-box Polynomials

Here we detail the MPC evaluation of AES and DES S-boxes using the techniques
described above. We recall that since the S-boxes, in both the ciphers we are
considering, are the only non-linear components, they represent the only parts
which actually need interactions in an MPC evaluation.

AES Evaluation. As we mention before in Sect. 3.1, the straightforward way
to compute the S-box is using the BitDecomposition method, which requires 6
multiplications in 4+1 rounds. We are considering the case of active security, so
the AES evaluation is done in the field F240 instead of F28 , via the embedding
F28 ↪→ F240 . This follows from the fact that we are using the SPDZ protocol
which requires a field size of at least 2κ, where κ is the statistical security para-
meter. This permits to have only one MAC per data item [15].

The evaluation proceeds as follow: first X is bit-decomposed so that all the
squarings can be locally evaluated, and then X254 is obtained as described in
[15]:

X254 = ((X2 · X4) · (X8 · X16)) · ((X32 · X64) · X128).

This requires 4 rounds, out of which one is a call to BitDec. We also need an
extra round for computing the inverse of the field embedding F28 ↪→ F240 to
evaluate the S-box linear layer. We denote this method by AES-BD.

We denote by AES-RP the AES S-box evaluation that uses the Rivain–Prouff
method (cf. Sect. 3.1). It requires 6 + 1 rounds to compute the four powers
X3,X14,X15,X254. Furthermore, this can be done with three calls to BitDec
and four non-linear multiplications, but some of the openings can be done in
parallel which yields to a depth-6 circuit. As before, we need an extra round to
call BitDec and compute the S-box linear layer.

DES Evaluation. We denote by DES-PV the DES S-box evaluation using the
Pulkus–Vivek method. Note that, although in side-channel world computing the
squares is for free, since it is an F2-linear operation, in a secret-shared based
MPC with MACs this is no longer true and we need to bit-decompose.

The squares from C8
1 , C8

3 , C8
7 , are obtained locally after X,X3,X7 are bit-

decomposed. Here we need two multiplications, since X3 = X ·X2 and X7 = X3 ·
X4. The third multiplication occurs when computing the product p1(X) · q1(X),
resulting in an S-box cost of only 3 triples, 24 bits and 5 communication rounds.

The number of rounds is due to 3 calls to BitDec (on X3,X7 and p1(X) ·
q1(X) + p2(X)) and 3 non-linear multiplications. Although at a first glance
there seems to be six rounds, we have that BitDec(X7) is independent of the
BitDec(X3), as we can compute X7 without the call BitDec(X3), resulting in
only five rounds.



236 M. Keller et al.

4 MPC Evaluation of Boolean Circuits Using Lookup
Tables

In this section we describe an efficient MPC protocol for securely evaluating
circuits over extension fields of F2 (including boolean circuits) containing addi-
tional ‘lookup table’ gates. This protocol is in the preprocessing model and
follows the same approach proposed in [20], evaluating lookup table gates using
preprocessed, masked lookup tables.

The functionality that we implement is FABB−LUT (Fig. 1), which augments
the standard FABB functionality with a table lookup command. The concrete
online cost of each table lookup is just log2 N bits of communication per party,
where N is the size of the table. Note that the functionality FABB−LUT works over
a finite field F2k , and has been simplified by assuming that the size of the range
and domain of the lookup table T is not more than 2k. However, our protocol
actually works for general table sizes, and FABB−LUT can easily be extended
to model this by representing a table lookup result with several field elements
instead of one.

We now show how Protocol 1 implements the Table Lookup command of
FABB−LUT, given the right preprocessing material. For any non-linear function
T, with � input and m output bits, it is well known that it can be implemented
as a lookup table of 2� components of m bits each. To evaluate T(·) on a secret
authenticated value �x�, x ∈ F2� , the parties use a random authenticated T

Functionality FABB−LUT

This functionality has all the features of FABB, operating over F2k , plus the following
command.

Table Lookup: On command (T, id1, id2) from all parties, where T : {0, 1}
{0, 1}m, for ≤ k, and id1 is present in memory, retrieve (id1, x) and store
(id2,T(x)).

Fig. 1. The ideal functionality for MPC using lookup tables

Functionality FPrep−LUT

This functionality has all of the same features as FABB, with the following additional
command.

Masked Table: On input (MaskedTable,T, id) from all parties, where
T : {0, 1} {0, 1}m for ≤ k, sample a random value s, set
(Val[ids],Val[idT(s)], . . . ,Val[idT(s (2 −1))]) (s,T(s), . . . ,T(s (2 − 1)), and
return (ids, (idT(s), . . . , idT(s (2 −1)))).

Fig. 2. Ideal functionality for the preprocessing of masked lookup tables.



Faster Secure Multi-party Computation of AES and DES 237

Protocol 1. Secure online evaluation of SBox using lookup tables
Table Lookup: On input �x� compute �T(x)� as follows.

1. Call FPrep−LUT on input (MaskedTable,T), and obtain a precomputed masked
table (�s�, �Table(s)�).

2. The parties open the value h = x ⊕ s.
3. Locally compute �T(x)� = �Table(s)�[h], where �Table(s)�[h] is the hth compo-

nent of �Table(s)�.

evaluation from FPrep−LUT (Fig. 2). More precisely, we would like the preprocess-
ing to output values (�s�, �Table(s)�), where �s� is a random authenticated value
unknown to the parties and �Table(s)�) is the table

�Table(s)� =
(
�T(s)�, �T(s ⊕ 1)�, . . . , �T(s ⊕ (2� − 1))�

)
,

so that �Table(s)�[j], 0 ≤ j ≤ 2� − 1, denotes the element �T(s ⊕ j)�. Given such
a table, evaluating �T(x)� is straightforward: first the parties open the value
h = x ⊕ s and then they locally retrieve the value �Table(s)�[h] = �T(s ⊕ h)� =
�T(s ⊕ s ⊕ x)� = �T(x)�.

Correctness easily follows from the linearity of the �·�-representation and the
discussion above. Privacy follows from the fact that the value s used in Table
Lookup is randomly chosen and is used only once, thus it perfectly blinds the
secret value x.

4.1 The Preprocessing Phase: Securely Generating Masked Lookup
Tables

In this section we describe how to securely implement FPrep−LUT (see Fig. 2), and
in particular how to generate masked lookup tables which can be used for the
online phase evaluation.

Recall that the goal is to obtain the shared values:

�Table(s)� = (�T(s)�, �T(s ⊕ 1)�, . . . , �T(s ⊕ (2� − 1))�).

Protocol 2 begins by taking a secret, random �-bit mask �s� = (�s0�, . . . , �s�−1�).
Then, the parties expand s into a secret-shared bit vector (s′

0, . . . , s
′
2�−1) which

has a 1 in the s-th entry and is 0 elsewhere. We denote this procedure—the most
expensive part of the protocol—by Demux, and describe how to perform it in
the next section.

Once this is done, the parties can obtain the i-th entry of the masked lookup
table by computing:

T(i) · �s′
0� + T(i ⊕ 1) · �s′

1� + · · · + T(i ⊕ (2� − 1)) · �s′
2�−1�,

which is clearly �T(i⊕s)� as required. Note that since the S-box is public, this is
a local computation for the parties. In the following we give an efficient protocol
for computing Demux.



238 M. Keller et al.

4.2 Computing Demux with Finite Field Multiplications

We now present a general method for computing Demux using fewer than N/k+
log N multiplications over F2k , when k is any power of 2 and N = 2� is the
table size. Launchbury et al. [32] previously described a protocol with O(N)
multiplications in F2, but our protocol has fewer multiplications than theirs for
all choices of k.

As said before, Demux maps a binary representation (s0, . . . , s�−1) of an
integer s =

∑�−1
i=0 si · 2i into a unary representation of fixed length 2� that

contains a one in the position s and zeros elsewhere. A straightforward way to
compute Demux is by computing, over F2N

1:

�s′� =
�−1∏
i=0

(�si� · X2i

+ (1 − �si�)).

Notice that if si = 1 then the i-th term of the product equals X2i

, whereas the
term equals 1 if si = 0. This means the entire product evaluates to s′ = Xs,
where s is the integer representation of the bits (s0, . . . , s�−1). Bit decomposing
s′ obtains the demuxed output as required. Unfortunately, this approach does
not scale well with N , the table size, as we must exponentially increase the size
of the field.

We now show how to compute this more generally, using operations over F2k ,
where k is a power of two. We will only ever perform multiplications between
elements of F2 and F2k , and will consider elements of F2k as vectors over F2.
Define the partial products, for j = 1, . . . , �:

pj(X) =
j−1∏
i=0

(si · X2i

+ (1 − si)) ∈ F2N

and note that pj+1(X) = pj(X) · (sj · X2j

+ (1 − sj)), for j < �.
Note also that the polynomial pj(X) has degree < 2j , so pj(X) can be

represented as a vector in F
2j

2 containing its coefficients, and more generally, a

Protocol 2. Protocol to generate secret shared table lookup

Table: On input (Table, Pi) from all the parties, do the following:

1: Take � random authenticated bits �s0�, . . . , �s�−1�, where each si is unknown
to all the parties.

2: Compute (�s′
0�, . . . , �s

′
2�−1�) ← Demux(�s0�, . . . , �s�−1�)

3: ∀i = 0, . . . , 2� − 1, locally compute

�T(i ⊕ s)� = T(i) · �s′
0� + T(i ⊕ 1) · �s′

1� + · · · + T((2� − 1) ⊕ i) · �s′
2�−1�

1 A similar trick was used by Aliasgari et al. [3] for binary to unary conversion over
prime fields.



Faster Secure Multi-party Computation of AES and DES 239

Protocol 3. (�s′
0�, . . . , �s

′
N−1�) ← Demux(k, �s0�, . . . , �s�−1�)

Require: k a power of two, u = N/k, � = log2 N
Input: Bit decomposition of s ∈ {0, . . . , N − 1}, with LSB first
Output: Satisfies s′

s = 1 and s′
i = 0 for all i �= s

1: �p� = (1 − �s0�, �s0�) // p starts in F
2
2

2: for j = 1 to � − 1 do

3: �t� = �sj� · �p� // F2 × F
2j

2 multiplication, 1 round

4: �p� = (02j ‖�t�) + (�p� − �t�)‖02j

) // p now in F
2j+1

2

5: Write �p� = (�b0�, . . . , �bu−1�) // bi ∈ F
k
2

6: for i = 0 to u − 1 do
7: (�s′

ki�, . . . , �s
′
ki+k−1�) = BitDec(�bi�) // 1 round

8: return (�s′
0�, . . . , �s

′
N−1�)

vector pj containing �2j/k	 elements of Fk
2 . This is the main observation that

allows us to emulate the computation of s′ using only F2k arithmetic.
Given a sharing of pj represented in this way, a sharing of pj(X) · X2j

can
be seen as the vector (increasing the powers of X from left to right):

(02
j ‖pj) ∈ F

2j+1

2

and a vector representation of pj+1(X) is:
(
(02

j ‖sj · pj) + ((1 − sj) · pj‖02
j

)
)

∈ F
2j+1

2 .

Thus, given �pj� represented as �2j/k	 shared elements of F2k , we can com-
pute �pj+1� in MPC with �2j/k	 multiplications between �sj� and a shared F2k

element, plus some local additions.
Starting with p1(X) = s0 · X + (1 − s0) we can iteratively apply the above

method to compute p� = s′, as shown in Protocol 3. The overall complexity of
this protocol is given by

�−1∑
j=1

�2j/k	 < N/k + �

multiplications between bits and F2k elements.
Table 1 illustrates this trade-off between the field size and number of multi-

plications for some example parameters. We note that the main factor affecting
the best choice of k is the cost of performing a multiplication in F2k in the
underlying MPC protocol, and this may change as new protocols are developed.
However, we compare costs of some current protocols in Sect. 5.

4.3 MPC Evaluation of AES and DES Using Lookup Tables

We now show how to use the lookup table MPC protocol described above to
evaluate AES and DES.



240 M. Keller et al.

Table 1. Number of F2 × F2k multiplications for creating a masked lookup table of
size N , for varying k.

N k = 1 8 40 64 128

64 62 9 5 5 5

256 254 33 11 8 7

1024 1022 129 31 20 13

AES Evaluation. We require an MPC protocol which performs operations in
F28 . In practice, we actually embed F28 in F240 , since we use the SPDZ protocol
which requires a field size of at least 2κ, for statistical security parameter κ.
We implement the AES S-box using the table lookup method from Protocol 2
combined with Demux (Protocol 3) over F240 , since this yields a lower communi-
cation cost (see Table 4). Notice that the data sent is highly dependent on the
number of bits, triples and the field size.

In a naive implementation of this approach, we would have call BitDec on
�Table(s)�, in order to perform the embedding F28 ↪→ F240 . This is required
since the table output is not embedded, but the MixColumns step needs this to
perform multiplication by X ∈ F28 on each state.

With a more careful analysis we can avoid the BitDec calls by locally embed-
ding the bit shares inside Protocol 2. We store the masked S-box table in bit
decomposed form and then its bits are multiplied (in the clear) with Demux’s
output (secret-shared). This trick reduces the online communication by a factor
of 8, halves the number of rounds required to evaluate AES and gives a very
efficient online phase with only 10 rounds and 160 openings in F240 .

DES Evaluation. Using the fact that DES S-boxes have size 64, we chose to use
the Demux Protocol 3 with multiplications in F240 , based on the costs in Table 4.
Like AES, we try to isolate the input-dependent phase as much as possible with
no extra cost.

Every DES round performs only bitwise addition and no embedding is neces-
sary here. The masked table can be bit-decomposed without interaction, exactly
as described above for AES, by multiplying clear bits with secret shared values.
This yields a low number of openings, one per S-box look-up, so the total online
cost for 3DES is 46 rounds with 384 openings.

5 Performance Evaluation

This section presents timings for 3DES and AES using the methods presented in
previous sections. We also discuss trade-offs and different optimizations which
turn out to be crucial for our running-times. The setup we have considered is that
both the key and message used in the cipher are secret shared across two parties.
We consider the input format for each block cipher as already embedded into



Faster Secure Multi-party Computation of AES and DES 241

F240 for AES, or as a list of shared bits for DES. We implemented the protocols
using the SPDZ software,2 and estimated times for computing the multiplication
triples and random bits needed based on the costs of MASCOT [30].

The results, shown in Tables 2 and 3, give measurements in terms of latency
and throughput. Latency indicates the online phase time required to evaluate
one block cipher, whereas throughput (which we consider for both online and
offline phases) shows the maximum number of blocks per second which can be
evaluated in parallel during one execution. We also measure the number of rounds
of interaction of the protocols, and the number of openings, which is the total
number of secret-shared field elements opened during the online evaluation.

Benchmarking Environment. The experiments were ran across two machines
each with Intel i7-4790 CPUs running at 3.60 GHz, 16 GB of RAM connected over
a 1 GBps LAN with an average ping of 0.3 ms (roundtrip). For experiments with
3–5 parties, we used three additional machines with i7-3770 CPUs at 3.1 GHz. In
order to get accurate timings each experiment was averaged over 5 executions,
each with at least 1000 cipher calls.

Security Parameters and Field Sizes. Secret-sharing based MPC can be
usually split into 2 phases—preprocessing and online. In SPDZ-like systems,
the preprocessing phase depends on a computational security parameter, and
the online phase a statistical security parameter which depends on the field
size. In our experiments the computational security parameter is λ = 128. The
statistical security κ is 40 for every cipher except for 3DES-Raw which requires
an embedding into a 42 bit field.

Results. The theoretical costs and practical results are shown in Tables 2 and 3,
respectively. Timings are taken only for the encryption calls, excluding the key
schedule mechanism.

AES-BD is implemented by embedding each block into F240 , and then squaring
the shares locally after the inputs are bit-decomposed. In this manner, each S-box
computation costs 5 communication rounds and 6 multiplications. This method
was described in [15].

3DES-Raw represents the 3DES cipher with the S-box evaluated as a poly-
nomial of degree 62 over the field F26 = F2[x]/(x6 + x4 + x3 + x + 1). To
make the comparisons relevant with other ciphers in terms of active security
we chose to embed the S-box input in F242 , via the embedding F26 ↪→ F242 ,
where F242 = F2[y]/(y42 +y21 +1) and y = x7 +1. The S-boxes used for interpo-
lating are taken from the PyCrypto library [34]. 3DES-Raw is implemented only
for benchmarking purposes and it has no added optimizations. One S-box has a
cost of 62 multiplications and 62 rounds.

3DES-PV is 3DES implemented with the Pulkus-Vivek method from Section
3.2. Since it has only a few multiplications in F240 , the amount of preprocessing
data required is very small, close to AES-BD. It suffers in terms of both latency
and throughput due to the high number of communication rounds (needed for
bit decomposition to perform the squarings).
2 https://github.com/bristolcrypto/SPDZ-2.

https://github.com/bristolcrypto/SPDZ-2


242 M. Keller et al.

Table 2. Communication cost for AES and 3DES in MPC.

Cipher Online cost Preprocessing cost

Rounds Openings Field Triples Bits Field Comm. (MB)

AES-BD 50 2240 F240 960 2560 F240 4.3

AES-RP 70 1920 F240 640 5120 F240 2.9

AES-LT 10 160 F240 1760 42240 F240 8.4

3DES-Raw 2979 48024 F242 23808 2688 F242 112

3DES-PV 230 3456 F240 1152 9216 F240 5.2

3DES-LT 46 384 F240 1920 26880 F240 8.8

Table 3. 1 GBps LAN timings for evaluating AES and 3DES in MPC.

Cipher Online (single-thread) Online (multi-thread) Preprocessinga

Latency (ms) Batch size ops/s Batch size ops/s Threads ops/s

AES-BD 5.20 64 758 1024 3164 16 30.7

AES-RP 7.19 1024 940 64 3872 16 46.1

AES-LT 0.928 2048 53918 512 236191 32 16.79

3DES-Raw 270 512 130 - - - 1.24

3DES-PV 36.98 512 86 512 366 32 25.6

3DES-LT 4.254 1024 10883 512 45869 16 15.3
aExtrapolated from timings for a 128-bit field

Surprisingly, AES-RP (the polynomial-based method from Sect. 3.1) has a
better throughput than AES-BD although it requires 20 more rounds and 2 times
more shared bits to evaluate. The explanation for this is that in AES-RP there
are fewer openings, thus less data sent between parties.

AES-LT and 3DES-LT are the ciphers obtained with the lookup table protocol
from Sect. 4. AES-LT achieves the lowest latency and the highest throughput in
the online phase. The communication in the preprocessing phase is roughly twice
the cost of the previous method, AES-BD.

Packing Optimization. We notice that in the online phase of AES-LT each
opening requires to send 8 bit values embedded in F240 . Instead of sending 40
bits across the network we select only the relevant bits, which for AES-LT are 8
bits. This reduces the communication by a factor of 5 and gives a throughput of
236k AES/second over LAN and a multi-threaded MPC engine.

The same packing technique is applied for 3DES-LT since during the protocol
we only open 6 bit values from Protocol 1. These bits are packed into a byte and
sent to the other party. Here the multi-threaded version of 3DES-LT improves the
throughput only by a factor of 4.2x (vs AES-LT 4.4x) due to the higher number
of rounds and openings along with the loss of 2 bits from packing.



Faster Secure Multi-party Computation of AES and DES 243

General Costs of the Table Lookup Protocol. In Table 4, we estimate the
communication cost for creating preprocessed, masked tables for a range of table
sizes, using our protocol from Sect. 4.1. This requires multiplication triples over
F2k , where k is a parameter of the protocol. When k = 1, we give figures using a
recent optimized variant [43] of the two-party TinyOT protocol [35]. For larger
choices of k, the costs are based on the MASCOT protocol [30]. We note that
even though MASCOT has a communication complexity in O(k2), it still gives
the lowest costs (with k = 40) for all the table sizes we considered.

Table 4. Total communication cost (kBytes) of the F2 × F2k multiplications needed
in creating a masked lookup table of size N , with two parties. The k = 1 estimates are
based on TinyOT [43], the others on MASCOT [30].

N k = 1 40 64 128

64 35.01 21.8 43.52 112.64

256 143.45 47.96 69.63 157.7

1024 577.17 135.16 174.08 292.86

5.1 Multiparty Setting

We also ran the AES-LT protocol with different numbers of parties and mea-
sured the throughput of the preprocessing and online phases. Figure 3 indicates
that the preprocessing gets more expensive as the number of parties increases,
whereas the online phase throughput does not decrease by much. This is likely
to be because the bottleneck for the preprocessing is in terms of communication
(which is O(n2) in total), whereas the online phase is more limited by the local
computation done by each party.

5.2 Comparison with Other Works

We now compare the performance of our protocols with other implementations
in similar settings. Table 5 gives an overview of the most relevant previous works.
We see that our AES-LT protocol comes very close to the best online throughput
of TinyTable, whilst having a far more competitive offline cost.3 Our AES-RP
variant has a slower online phase, but is comparable to the best garbled circuit
protocols overall.

TinyTable Protocol. The original, 2-party TinyTable protocol [18] presented
implementations of the online phase only, with two different variants. The fastest
variant is based on table lookup and obtains a throughput of around 340 thou-
sand AES blocks per second over a 1Gbps LAN, which is 1.51x faster than our
3 The reason for the very large preprocessing cost of TinyTable is due to the need to

evaluate the S-box 256 times per table lookup.



244 M. Keller et al.

2 3 4 5
100

101

102

103

104

105

106

Number of parties

T
h
ro

u
g
h
p
u
t

(/
s)

Online AES-LT

Offline AES-LT

Fig. 3. Table lookup-based AES throughput for multiple parties.

Table 5. Performance comparison with other 2-PC protocols for evaluating AES in a
LAN setting.

Protocol Online Comms. (total) Notes

Latency (ms) Throughput (/s)

TinyTable (binary) [18] 4.18 24500 3.07 MB

TinyTable (optim.) [18] 1.02 339000 786.4 MB

Wang et al. [43] 0.93 1075 2.57 MB 10GBps

Rindal-Rosulek [39] 1.0 1000 1.6 MB 10GBps

OP-LUT [22] 5 41670 0.103 MB Passive

SP-LUT [22] 6 2208 0.044 MB Passive

AES-LT 0.93 236200 8.4 MB

AES-RP 7.19 940 2.9 MB

online throughput. The latency (for sequential operations) is around 1ms, the
same as ours. We attribute the difference in throughput to the additional local
computation in our implementation, since we need to compute on MACs for
every linear operation.

TinyTable does not report figures for the preprocessing phase. However, we
estimate that using TinyOT and the naive method suggested in the paper would
need would need over 1.3 million TinyOT triples for AES (34 ANDs for each S-
box, repeated 256 times to create one masked table, for 16 S-boxes in 10 rounds).
In contrast, our table lookup method uses around 160 thousand TinyOT triples,
or just 2080 triples over F240 (cf. Table 1), per AES block.



Faster Secure Multi-party Computation of AES and DES 245

Garbled Circuits. There are many implementations of AES for actively secure
2-PC using garbled circuits [33,36,39,42,43]. When measuring online throughput
in a LAN setting, using garbled circuits gives much worse performance than
methods based on table lookup, because evaluating a garbled circuit is much
more expensive computationally. For example, out of all these works the lowest
reported online time (even over a 10 GBps LAN) is 0.93 ms [43], and this does
not improve in the amortized setting.

Some recent garbled circuit implementations, however, improve upon our
performance in the preprocessing phase, where communication is typically the
bottleneck. Wang et al. [43] require 2.57 MB of communication when 1024 circuits
are being garbled at once, while Rindal and Rosulek [39] need only 1.6 MB. The
runtime for both of these preprocessing phases is around 5 ms over a 10 GBps
LAN; this would likely increase to at least 15–20 ms in a 1 GBps network, whereas
our table lookup preprocessing takes around 60 ms using MASCOT. If a very
fast online time is not required, our implementation of the Rivain–Prouff method
would be more competitive, since this has a total amortized time of only 23 ms
per AES block.

Secret-Sharing Based MPC. Other actively implementations of AES/DES
using secret-sharing and dishonest majority based on secret sharing include those
using SPDZ [15,31] and MiniMAC [17,21]. Our AES-BD method is the same
as [15] and obtains faster performance than both SPDZ implementations. For
DES, our TinyTable approach improves upon the times of the binary circuit
implementation from [31] (which are for single-DES, so must be multiplied by
3) by over 100 times. Regarding MiniMAC, the implementation of [17] obtains
slower online phase times than our work and TinyTable, and it is not known
how to do the preprocessing with concrete efficiency.

OP-LUT and SP-LUT. The proposed 2-party protocols by Dessouky et al.
[22] only offer security in the semi-honest setting. The preprocessing phase for
both the protocols are based on 1-out-of-N oblivious transfer. In particular, the
cost of the OP-LUT setup is essentially that of 1-out-of-N OT, while the cost
of SP-LUT is the cost of 1-out-of-N random OT, which is much more efficient
in terms of communication.

The online communication cost of OP-LUT is essentially the same as our
online phase, since both protocols require each party to send log2 N bits for a
table of size N . However, we incur some additional local computation costs and
a MAC check (at the end of the function evaluation) to achieve active security.
The online phase of SP-LUT is less efficient, but the overall communication of
this protocol is very low, only 0.055 MB for a single AES evaluation over a LAN
setting with 1 GB network.

The work [22] reports figures for both preprocessing and online phase: using
OP-LUT gives a latency of around 5 ms for 1 AES block in the LAN setting,
and a throughput of 42000 blocks/s. These are both slower than our online
phase figures using AES-LT. The preprocessing runtimes of both OP-LUT and



246 M. Keller et al.

SP-LUT are much better than ours, however, achieving over 1000 blocks per
second (roughly 80 times faster than AES-LT). This shows that we require a
large overhead to obtain active security in the preprocessing, but the online
phase cost is the same, or better.

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 7

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 430–454. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 17

3. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS 2013. The Internet Society, February 2013

4. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
805–817. ACM Press, October 2016

5. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 578–590. ACM Press, October
2016

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5 13

7. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practi-
cal implementation of secure auctions based on multiparty integer computation. In:
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer,
Heidelberg (2006). doi:10.1007/11889663 10

8. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary cir-
cuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472
(2015). http://eprint.iacr.org/2015/472

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

10. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 21

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

12. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 25

http://dx.doi.org/10.1007/978-3-662-53887-6_7
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/11889663_10
http://eprint.iacr.org/2015/472
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/978-3-642-55220-5_25


Faster Secure Multi-party Computation of AES and DES 247

13. Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44709-3 10

14. Coron, J., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. J. Cryptogr. Eng. 5(2),
73–83 (2015). http://dx.doi.org/10.1007/s13389-015-0099-9

15. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES
via an actively/covertly secure dishonest-majority MPC protocol. In: Visconti, I.,
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32928-9 14

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 1

17. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the MiniMac protocol for secure computation. In: Abdalla, M., Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 398–415. Springer, Cham (2014). doi:10.1007/
978-3-319-10879-7 23

18. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: Gate-scrambling revisited -
or: the TinyTable protocol for 2-party secure computation. Cryptology ePrint
Archive, Report 2016/695 (2016). http://eprint.iacr.org/2016/695

19. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 38

20. Damg̊ard, I., Zakarias, R.W.: Fast oblivious AES a dedicated application of the
MiniMac protocol. In: Progress in Cryptology - AFRICACRYPT 2016–Proceedings
of 8th International Conference on Cryptology in Africa, Fes, Morocco, 13–15 April
2016, pp. 245–264 (2016). http://dx.doi.org/10.1007/978-3-319-31517-1 13

21. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 35

22. Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: 24th Annual Network and Distributed System Security Symposium (NDSS
2017). The Internet Society, 26 February–1 March 2017 (to appear). http://
thomaschneider.de/papers/DKSSZZ17.pdf

23. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS
2016, pp. 1602–1613. ACM Press, October 2016

24. EMVCo: EMVCo Security QA (2017). https://www.emvco.com/faq.aspx?id=38.
Accessed Feb 2017

25. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 29

26. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 49

http://dx.doi.org/10.1007/978-3-662-44709-3_10
http://dx.doi.org/10.1007/s13389-015-0099-9
http://dx.doi.org/10.1007/978-3-642-32928-9_14
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-319-10879-7_23
http://dx.doi.org/10.1007/978-3-319-10879-7_23
http://eprint.iacr.org/2016/695
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-319-31517-1_13
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://thomaschneider.de/papers/DKSSZZ17.pdf
http://thomaschneider.de/papers/DKSSZZ17.pdf
https://www.emvco.com/faq.aspx?id=38
http://dx.doi.org/10.1007/978-3-662-48797-6_29
http://dx.doi.org/10.1007/978-3-662-48797-6_29
http://dx.doi.org/10.1007/978-3-642-32009-5_49


248 M. Keller et al.

27. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 430–443. ACM Press, October 2016

28. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 34

29. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic com-
putation. In: 2008 IEEE Symposium on Security and Privacy, pp. 216–230. IEEE
Computer Society Press, May 2008

30. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 830–842. ACM Press, Octo-
ber 2016

31. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 549–560. ACM Press, November 2013

32. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ACM SIGPLAN International
Conference on Functional Programming, ICFP 2012, Copenhagen, Denmark, 9–15
September 2012, pp. 189–200 (2012). http://doi.acm.org/10.1145/2364527.2364556

33. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
pp. 579–590. ACM Press, October 2015

34. Litzenberger, D.C.: Pycrypto - the Python cryptography toolkit (2017). https://
www.dlitz.net/software/pycrypto

35. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 40

36. Nielsen, J.B., Schneider, T., Trifiletti, R.: Constant round maliciously secure 2PC
with function-independent preprocessing using LEGO. In: 24th NDSS Symposium.
The Internet Society (2017). http://eprint.iacr.org/2016/1069

37. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 15

38. Pulkus, J., Vivek, S.: Reducing the number of non-linear multiplications in masking
schemes. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813,
pp. 479–497. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2 23

39. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation
with online/offline dual execution. In: 25th USENIX Security Symposium,
USENIX Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 297–314
(2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/rindal

40. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

41. Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking
scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol.
8086, pp. 417–434. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1 24

http://dx.doi.org/10.1007/978-3-642-36594-2_34
http://dx.doi.org/10.1007/978-3-642-36594-2_34
http://doi.acm.org/10.1145/2364527.2364556
https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://eprint.iacr.org/2016/1069
http://dx.doi.org/10.1007/978-3-642-10366-7_15
http://dx.doi.org/10.1007/978-3-662-53140-2_23
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/rindal
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/rindal
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-642-40349-1_24


Faster Secure Multi-party Computation of AES and DES 249

42. Wang, X., Malozemoff, A.J., Katz, J.: Faster two-party computation secure against
malicious adversaries in the single-execution setting. In: EUROCRYPT 2017 Pro-
ceedings (2017)

43. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and communication-
efficient, constant-round, secure two-party computation. IACR Cryptology ePrint
Archive 2017, 30 (2017). http://eprint.iacr.org/2017/030

http://eprint.iacr.org/2017/030

	Faster Secure Multi-party Computation of AES and DES Using Lookup Tables
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 MPC Computation Model

	3 Evaluating AES and DES S-box Polynomials
	3.1 AES S-box
	3.2 Des S-boxes
	3.3 MPC Evaluation of AES and DES S-box Polynomials

	4 MPC Evaluation of Boolean Circuits Using Lookup Tables
	4.1 The Preprocessing Phase: Securely Generating Masked Lookup Tables
	4.2 Computing Demux with Finite Field Multiplications
	4.3 MPC Evaluation of AES and DES Using Lookup Tables

	5 Performance Evaluation
	5.1 Multiparty Setting
	5.2 Comparison with Other Works

	References


