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Abstract. Given a set of multi-dimensional points, a k-skyband query
retrieves those points dominated by no more than k other points. k-
skyband queries are an important type of multi-criteria analysis with
diverse applications in practice. In this paper, we investigate techniques
to answer k-skyband queries with differential privacy. We first propose a
general technique BBS-Priv, which accepts any differentially private spa-
tial decomposition tree as input and leverages data synthesis to answer
k-skyband queries privately. We then show that, though quite a few
private spatial decomposition trees are proposed in the literature, they
are mainly designed to answer spatial range queries. Directly integrat-
ing them with BBS-Priv would introduce too much noise to generate
useful k-skyband results. To address this problem, we propose a novel
spatial decomposition technique k-skyband tree specially optimized for
k-skyband queries, which partitions data adaptively based on the para-
meter k. We further propose techniques to generate a k-skyband tree
over spatial data that satisfies differential privacy, and combine BBS-Priv
with the private k-skyband tree to answer k-skyband queries. We conduct
extensive experiments based on two real-world datasets and three syn-
thetic datasets that are commonly used for evaluating k-skyband queries.
The results show that the proposed scheme significantly outperforms
existing differentially private spatial decomposition schemes and achieves
high utility when privacy budgets are properly allocated.

Keywords: k-skyband query · Differential privacy · Adaptive spatial
decomposition

1 Introduction

Given a set of multi-dimensional points, a k-skyband query [30] identifies the set
of points that are dominated by at most k other points. A point p dominates
another point q if p is at least as good as q on all dimensions and strictly better
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than q in at least one dimension. A k-skyband query is a generalization of a sky-
line query [5,7,25]: when k is 0, a k-skyband query is just a skyline query. As an
important type of preference queries, skyband queries and their variants [15,30]
have wide applications in practice, e.g., location-based services [22] and service
recommendations [23].

Similar to other data analysis tasks, directly releasing the results of k-
skyband queries over sensitive data of individuals could result in privacy breach.
For example, the presence (absence) of one point may cause a large set of points
to be removed from (included in) the k-skyband results. Thus, by analyzing the
output of k-skyband queries, an adversary may infer the presence or absence of
an individual in the dataset, which could be very sensitive. Due to such potential
privacy risks, a data owner may be reluctant to share k-skyband query results
with collaborators or the public, even if such sharing could bring significant
benefits.

In this paper, we develop techniques to answer k-skyband queries with differ-
ential privacy [10,11]. Unlike syntactic approaches such as k-anonymity [16,31],
differential privacy provides a provable strong privacy guarantee that the output
of a computation is insensitive to any particular individual. That is, an adversary
has limited ability to make inference about whether an individual is present or
absent in the dataset.

We first propose a general technique BBS-Priv, which accepts any differen-
tially private spatial decomposition tree as input and leverages data synthesis
to generate private k-skyband results. Specifically, in a spatial decomposition
tree, an internal node contains the coordinates of a region, the number of data
points within the region (referred as point count), and pointers to its child nodes
(i.e., subregions) at the lower level. Given a spatial decomposition tree, such as
private quad-tree or kd-tree [9], BBS-Priv adopts the branch-and-bound para-
digm to progressively traverse nodes for dominance checking, and prunes internal
nodes that do not contain k-skyband points, i.e., there is no need to access all
the partitions. When reaching a node that could not be further pruned, BBS-Priv
generate approximate k-skyband results using synthesized points based on the
node’s point count.

Fig. 1. Comparison of true and private k-skyband results with anti-correlated synthetic
dataset when k = 200.
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As several techniques have been proposed in the literature to generate private
spatial decomposition trees [9], it seems that we can directly combine them with
BBS-Priv to answer k-skyband queries privately. Unfortunately, such a straight-
forward approach would significantly distort k-skyband query results. Figure 1a
shows an example synthetic dataset following an anti-correlated distribution,
which is commonly used in skyline query evaluation. Figure 1b shows the true k-
skyband results, and Fig. 1c shows the private k-skyband results when combining
BBS-Priv with a differentially private quadtree [9]. We see that private quadtree
fails to sufficiently capture the properties of the dataset that are important to
k-skyband queries, producing k-skyband results significantly different from the
true results. There are two major reasons for such a poor performance. First,
in k-skyband queries, the regions close to the upper-right corner are much more
important than those lower-left regions, since these regions contain points with
preferred values in all dimensions. Thus, it is much more desirable to accurately
capture data distributions in upper-right regions than the lower-left ones. Exist-
ing spatial decomposition schemes are designed for spatial range queries and thus
all regions are treated equally, and thus are not suitable to answer k-skyband
queries. Second, existing schemes achieve differential privacy by perturbing the
point count in each region. After such perturbation, some empty regions’ point
counts may become positive. If these regions are close to the upper-right corner,
these noisy points would distort the k-skyband results significantly.

Based on the above observations, we develop k-skyband tree, a novel spa-
tial decomposition technique, which partitions data space adaptively based on
the parameter k. The insight of k-skyband tree is that not all the regions con-
tribute equally to the k-skyband results (e.g., points in dominance regions do
not contribute to the k-skyband results at all), and thus finer and more accurate
decompositions should be performed on the regions that are likely to contain
k-skyband results. Built on this insight, when choosing a splitting point to par-
tition a region, k-skyband tree finds an appropriate upper-right region ne that
contains more than k points, which guarantees that the points in the lower-left
region sw can be safely pruned. The upper-right region ne gets finer decom-
positions in subsequent splittings. We further present a suite of techniques to
publish a k-skyband tree privacy, and propose a post-processing technique to
improve its accuracy by suppressing data synthesis in those empty partitions
whose noisy point counts become positive. We can then feed BBS-Priv with the
private k-skyband tree to compute private k-skyband results.

For evaluation, we conduct experiments over three synthetic datasets with
different distributions and two real-world datasets [1,2], and compare private
k-skyband trees with private quad-tree and private kd-tree, two well-known dif-
ferentially private spatial decomposition schemes. Our results show that for syn-
thetic datasets k-skyband tree outperforms quadtree and kd-tree when sufficient
privacy budgets are allocated (ε > 0.5). Further, our proposed technique sig-
nificantly outperforms private quadtree and kd-tree in the two real datasets for
all studied privacy budgets (ε ranging from 0.1 to 2.0). One key observation
from our experiments is that, though the three synthetic datasets are commonly
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used in skyline query evaluation, they unfortunately do not capture the actual
data distributions in real applications where k-skyband queries matter most.
We observe that real datasets tend to have fan-shaped data distributions, where
dominant points spread sparsely in dominance regions (e.g., the ne region in a
2-D space), while other inferior points more densely spread over other regions.
Our scheme is adaptive enough to capture such distributions while existing spa-
tial decomposition schemes fail to do so.

2 Preliminaries

2.1 Differential Privacy

Differential privacy [10] is a formal privacy model that guarantees the output of
a query function to be insensitive to any particular record in the data set.

Definition 1 (ε-differential privacy): Given any pair of neighboring data-
bases D and D′ that differ in at most one individual record, a randomized algo-
rithm A is ε-differentially private iff for any S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ Pr[A(D′) ∈ S] ∗ eε

The parameter ε is often referred as the privacy budget in differential privacy,
as it directly affects the level of privacy protection. Obviously, the smaller ε, the
harder to distinguish between D and D′ from the output of A, and thus the
stronger the privacy protection.

The most common strategy to achieve ε-differential privacy is to add noise
to the output of a function. The magnitude of the noise is calibrated by the
privacy budget ε and the sensitivity of the query function f , which is defined
as the maximum difference between the outputs of the query function f on any
pair of neighboring databases:

Δf = max
D,D′

‖ f(D) − f(D′) ‖1

There are two common approaches for achieving ε-differential privacy:
Laplace mechanism [12] and Exponential mechanism [26].

Laplace Mechanism: The output of a query function f is perturbed by
adding noise from the Laplace distribution with probability density function
pdf(x|b) = 1

2b exp(− |x|
b ), b = Δf

ε . The following randomized mechanism Al sat-
isfies ε-differential privacy:

Al(D) = f(D) + Lap(
Δf

ε
)

Exponential Mechanism: This mechanism returns an output that is close
to the optimum, with respect to a quality function. A quality function q(D, r)
assigns a score to all possible outputs r ∈ R = range(f), and outputs closer to
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the true output receive higher scores. A randomized mechanism Ae that outputs
r ∈ R with probability

Pr[Ae(D) = r] ∝ exp(
εq(D, r)

2Δq
)

satisfies ε-differential privacy, where Δq is the sensitivity of the quality function.
Differential privacy has two properties: sequential composition and parallel

composition. Sequential composition is that given n independent randomized
mechanisms A1, A2, . . . , An where Ai (1 ≤ i ≤ n) satisfies εi-differential privacy,
a sequence of Ai over the dataset D satisfies ε-differential privacy, where ε =∑n

1 εi. Parallel composition is that given n independent randomized mechanisms
A1, A2, . . . , An where Ai (1 ≤ i ≤ n) satisfies ε-differential privacy, a sequence
of Ai over a set of disjoint data sets Di satisfies ε-differential privacy.

2.2 K-Skyband Queries

Given a d-dimensional data set D, a k-skyband query returns all the points in D
that are dominated by at most k other points in D. The dominance relationship
in k-skyband queries is defined as follows:

Definition 2 (Dominance). Given two d-dimensional points p = (u1, . . . , ud)
and q = (v1, . . . , vd), if for all i = 1, . . . , d, ui � vi and ∃j, uj 
 vj, we say that
p dominates q (p 
 q), where 
 denotes better than and � denotes better than
or equal to.

In k-skyband queries, k represents the thickness of the skyband results, and
a skyline query [5,30] is a special case of k-skyband queries when k = 0. k-
skyband queries can be answered by extending algorithms for skyline queries,
such as Branch-and-Bound Skyline (BBS) [30]. BBS is an efficient algorithm
built on top of any spatial decomposition. A spatial decomposition is a hierar-
chical (tree) decomposition of a geometric space into smaller regions. In a spatial
decomposition tree, an internal node stores the coordinates of a region, the num-
ber of points in that region (referred to as point count) and pointers to its child
nodes, while the leaf nodes are individual data points.

Given a spatial decomposition tree, BBS traverses the nodes for dominance
checking, and prunes internal nodes that are determined to contain no skyline
points, i.e., not all the points will be accessed. It can be easily adapted to answer
k-skyband queries by excluding a region if it is already dominated by k other
points. In this paper, we focus on how to adapt BBS to answer k-skyband queries
with differential privacy.

3 Approaches

3.1 BBS-Priv

BBS-Priv is inspired by the BBS algorithm [30]. BBS maintains a set S to keep
track of all the k-skyband points discovered so far during the algorithm, and
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accesses the nodes in a spatial decomposition tree starting from the root node
that covers the whole region. When a node n is accessed, if BBS finds more than
k points in S that dominate n, n is pruned. Otherwise, BBS (1) inserts n into
S if n is a leaf node that represents a point, or (2) expands n by accessing n’s
child nodes if n is an internal node. For n’s child nodes, distances are computed
according to L1 norm, i.e., the maxdist of a point is the sum of its coordinates
and the maxdist of an internal node is the maxdist of its upper-right corner
point. These child nodes are inserted into a max heap that sorts nodes based
on their maxdist, so that nodes with higher maxdist are accessed earlier. The
intuition is that nodes with larger maxdist cannot be dominated by those with
smaller maxdist, and thus BBS only needs to check the dominance relationship
between the current accessed node and each point in S. The access order based
on the max heap guarantees that points inserted into S are k-skyband points.
BBS continues to access nodes from the max heap until the heap is empty, and
returns points in S as the k-skyband results.

In BBS-Priv, the input is a differentially private spatial decomposition tree,
whose leaf nodes are not individual points but a region. We can simply adapt
BBS such that when reaching a leaf node e, if e is not pruned by points in S, we
uniformly generate points in the region according to e’s point count, treat each
of them as a child of e, and continue. Due to space limit, we omit the detailed
pseudocode of BBS-Priv.

Privacy Analysis. It is easy to see that BBS-Priv only conducts post processing
of a spatial decomposition T . As long as T is constructed with differential privacy,
BBS-Priv would provide the same privacy guarantee.

3.2 Differentially Private K-Skyband Tree

Although BBS-Priv can be combined with any existing differentially private spa-
tial decomposition trees, as we will show in Sect. 4 later, the resulting k-skyband
results are often highly distorted compared with the true results. The reason is
that existing differentially private spatial decomposition schemes aim to capture
the distribution of all the data. For example, in existing schemes, it is common
that a dense region (with high point count) will be further partitioned. How-
ever, for k-skyband queries, we may not need to do so if that area is already
dominated by more than k points. Similarly, for a sparse region, if it is close to
the upper-right corner, we may still need to continue the partition as it is likely
to contain k-skyband results and we need to better capture their distributions.
Based on this observation, we propose a novel spatial decomposition algorithm
k-skyband tree specifically tailored to answer k-skyband queries, and will show
further how to build k-skyband tree with differential privacy. For simplicity and
easy explanation, we present our scheme for handling spatial data (2-D data).
It can be easily extended to handle multi-dimensional data, which we omit due
to space limit.
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K-Skyband Tree. The insight of k-skyband tree is to perform finer and more
accurate decompositions on the regions that are more important for k-skyband
results, i.e., the regions close to the upper-right corner. Note that when we
say “upper-right corner”, it is relative to the input dataset instead of to the
whole space. Therefore, the partition of space must be dependent on the dataset.
Specifically, k-skyband tree chooses a splitting point s such that there are more
than k data points in the the upper-right region ne and all the data points
falling into the dominance region sw can be excluded from the computation of
k-skyband results. Details of k-skyband tree is presented at AppendixA. The
main point of k-skyband tree is not to make query answering more efficient.
Instead, it would guide fine-grained decomposition towards those regions that
are likely to contain k-skyband results, so that when we add noise later to satisfy
differential privacy, the distribution of points in those regions is preserved better,
reducing the distortion of the true results.

Differentially Private K-Skyband Tree. To make the process of building
k-skyband tree satisfy differential privacy, we need to revise the algorithm in the
following major steps. First, as the tree will reveal the split points for each region
(i.e., the coordinates of internal nodes), we need to make the splitting process
differentially private. Specifically, we leverage the Exponential Mechanism to
choose private values for the splitting point. For sx (sy), we divide the possible
output range, [xmin, xmax]([ymin, ymax]), into intervals based on the ranks of the
true data points, and assign higher probability to the intervals closer to sx (sy).
Once an interval is chosen based on the Exponential Mechanism, a value is
uniformly sampled from the interval to be the private value of the splitting
point.

Second, the point count of each node in the tree will reveal the number
of points in each region. To achieve differential privacy, we adopt the laplace
mechanism to add noise. Specifically, we add Laplacian noise to the point count
of each node, protecting the true count of the points falling into the split regions.

The pseudo code of building differentially private k-skyband tree is shown
in Algorithm 1 and the function splitByK is shown in Algorithm 3 (in Appen-
dixA). Besides the region r, k in k-skyband queries, and the max height h, the
algorithm accepts as input the privacy budgets ε0, . . . , εh for each level of the
spatial decomposition tree and the split rate α used for computing the budget of
choosing splitting points. In Algorithm3, we apply the Exponential Mechanism
to obtain noisy values for sx and sy (Lines 14–15), and use the obtained random
values to form the noisy splitting point. In Algorithm1, Line 1 and Lines 17–18
correspond to adding Laplacian noise to point counts.

The algorithm starts by adding Laplacian noise to the point count of the
input region r, and adds the root node into the queue Q for splitting (Lines
1–2). The algorithm splits the node recursively until there are no nodes left in
Q. For each node n to be split (Line 4), the algorithm first computes the budget
εc for obtaining noisy count and k′ based on k and εc (Line 8). The reason why
we use k′ = k +1+

√
2

εc
instead of k +1 is because (1) by adding Laplacian noise
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Algorithm 1. Differentially Private k-skyband tree
Input: A region r, k in k-skyband queries, max height of the tree h, privacy budgets

for each level of the tree ε0, . . . , εh, split rate α
Output: A differentially private spatial decomposition tree T
1: r.ncount = r.count + Lap( 1

ε0∗(1−α)
)

2: Q.enqueue(r)
3: while Q is not empty do
4: n = Q.dequeue()
5: if isLeaf(n, h) then
6: updateNoisyCount(n)
7: continue // back to Line 3

8: l = n.level, εc = εl+1 ∗ (1 − α), k′ = k + 1 +
√

2
εc

9: if n.ncount > k′ and n.parent.midPointSplit is false then
10: N = splitByK(n, k′, εl ∗ α)
11: if N.ne = n then
12: N = splitByMidPoint(n)
13: n.midPointSplit = true, εc = εl+1

14: else
15: N = splitByMidPoint(n)
16: n.midPointSplit = true, εc = εl+1

17: for c ∈ N do
18: c.ncount = c.count + Lap( 1

εc
)

19: Q.enqueue(N.ne, N.nw, N.se)
20: if N.ne.ncount ≤ k then
21: Q.enqueue(N.sw)

22: return N

with mean 0 to k, there is 50 % of the chance that we would obtain a noisy value
smaller than k + 1; (2) if the noisy count of ne is smaller than k + 1, then sw
cannot be pruned and we need to further split sw; (3) the standard deviation
of Laplacian noise based on εc is

√
2

εc
and adding this standard deviation to k to

obtain k′ (i.e., making the count of ne to be slightly larger than k) can make the
noisy count of ne more likely larger than k; Based on k′, the algorithm splits the
node n using the corresponding budget in the level of the node n (Line 10). After
splitting, for each split node, the algorithm computes the noisy count based on
the count budget (Lines 17–18). If the node is split using midpoint as quadtree,
the splitting budget is saved and the count budget is updated (Lines 11–13 and
15–16), and all the children nodes are set to use midpoint split (Lines 13 and
16). If the noisy count of ne is less than or equal to k, the dominance region sw
needs to be further split (Lines 20–21).

When a node’s level reaches the maximum height of the tree (h), the node
is considered as a leaf node and no further split is applied (Line 5). Also, if
the noisy count of the node is too small (e.g., less than 8), further splitting
the node will caused the counts of child nodes to be distorted significantly by
the Laplacian noise, and thus the algorithm considers the node as a leaf node.
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In this case, if the leaf node is not at the maximum level, the remaining budgets
allocated for the rest of the levels are used to recompute the noisy count [9]
(Line 6). The algorithm terminates when there are no nodes left in Q.

Obtaining Splitting Point with Differential Privacy. To protect the val-
ues of the splitting point, the algorithm leverages the Exponential Mechanism
(EM) [26] to sample the noisy values.

Let L = {x1, . . . , xm} be a set of m values in ascending order in some domain
range [lo, hi], and let xs be the desired value of the splitting point. Let rank(x)
denote the rank of x in L, representing the number of items in L that are smaller
than x. The quality function fed into the EM [9] is:

q(L, x) = −|rank(x) − rank(xs)|,
The EM returns x with Pr[EM(L) = x] ∝ e− ε

2 |rank(x)−rank(xs)| based on this
quality function. Since all values x between two consecutive values in L have the
same rank, they are equally likely to be chosen, which can be implemented
using uniformly random sampling between the two consecutive values in L.
Accordingly, EM can be implemented by choosing an output from the inter-
val Ik = [xk, xk+1) with probability proportional to |Ik|e− ε

2 |k−rank(xs)|. Once an
interval Ik is chosen, EM then returns a uniformly random value in Ik.

Privacy Analysis. Due to space limit, we provide next only a sketch of the
proof of the privacy guarantee of private k-skyband tree. Note that, the construc-
tion process of k-skyband tree tree falls into the category of hybrid spatial decom-
position as defined in [9], where in the first few levels it uses data-dependent
split (i.e., SplitByK (Algorithm3)) and in the remaining levels it uses data-
independent split (i.e., through midpoints). Therefore the analysis of k-skyband
tree’s privacy guarantee is very similar to that in [9].

To construct a k-skyband tree with differential privacy, we need to combine
the privacy guarantees of both tree structures and point counts. Note that adding
or deleting a single data point changes the counts of all the nodes on the path
from the root to the leaf containing that data point, and it could also affect the
node splitting in the levels where data-dependent split is used. For a k-skyband
tree with max height h, our algorithm assigns the privacy budget ε0, . . . , εh for
the nodes at level 0, . . . , h. To protect both node splitting results and point
counts, for nodes at the level i (0 ≤ i ≤ h), our algorithms uses the Exponential
Mechanism with budget αεi to obtain noisy splitting points and adds Laplacian
noise with budget (1 − α)εi to obtain noisy point counts. For the levels where
data-independent split is used, there is no need to protect node splitting, and the
budget for splitting is also used for computing noisy counts. If nodes n1 and n2

are not on the same root-to-leaf path, their point counts are independent of each
other, and knowing the noisy counts of n1 does not affect the privacy guarantees
of n2. Thus, based on the parallel composition property (Sect. 2.1), k-skyband
tree at the level i satisfies εi-differential privacy. Further, based on the sequence
composition property of differential privacy in Sect. 2.1, for ε = ε0 + . . .+ εh, the
whole k-skyband tree satisfies ε-differential privacy.
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Budget Allocation Strategy. For budget allocation, we follow the geometric
scheme proposed in [9]. Let εi denote the budget for level i of the tree, and the
budgets for each level is computed using εi+1 = 2

1
3 εi. The intuition is that for

nodes at the levels closer to root, the point counts are larger and more resistant
to noise, and more budgets should be allocated for levels close to leaves.

For a level i where data-dependent split is used, we allocate αεi to compute
the noisy splitting point and (1 − α)εi to obtain noisy point counts. Previous
study [9] shows that a small portion of budget is enough for splitting, and we set
α = 10% based on our empirical evaluations. Such allocation is also consistent
with the study on private kd-tree [9], which shows that finding a splitting point
using Exponential Mechanism requires less budget than adding Laplacian noise
to point counts.

Post Processing. Post processing is commonly used in differential privacy to
improve utility [10,13]. For example, [9,19] leverages post-processing to improve
count query accuracy. However, the utility of k-skyband queries do not solely
depend on the accuracy of point counts, and the existing post-processing tech-
niques optimized for count queries do not work properly for k-skyband queries.
The reason is that k-skyband tree uses data-dependent split at the first few levels,
and certain dominance regions of the noisy splitting point (i.e., sw regions) are
excluded in the computation of k-skyband results. If we adjust the noisy counts
of the nodes using existing post-processing techniques, the noisy counts of some
ne regions may become less than k, making the corresponding sw regions not
qualified for pruning. Due to such inconsistency between the region splitting
and noisy counts, the properties of the dataset that are important to k-skyband
queries cannot be sufficiently captured, further distorting the k-skyband results
significantly.

Empirically, we observed that the major factor affecting the utility of private
k-skyband results is to synthesize data points for the regions whose noisy counts
are positive but their true counts are zero. If the regions of these nodes are close
to the upper-right point (xmax, ymax), then the private k-skyband results are
significantly distorted since the data points in these regions could dominate the
data points in any other region.

To smooth such errors caused by data synthesis with Laplacian noise, we
propose a novel post-processing technique. The insight is to not synthesize points
for half of the empty leaf nodes, as Laplacian noise has a 50% of probability to
be positive (or negative) and could turn half of the empty leaf nodes to have
positive noisy counts. However, the number of empty leaf nodes partially reveals
the data distribution of the data set. Therefore, instead of directly using the
number of empty leaf nodes, we use the number of leaf nodes whose noisy count
are negative to approximate the number of empty leaf nodes whose noisy count
are positive.

Let C be the set of nodes whose true point counts are 0. Denote Cp as the
subset of nodes in C whose noisy point counts are positive, and denote Cn as
all the leaf nodes (not only those in C) whose noisy point counts are negative.
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As Laplacian noise has a 50% probability to be positive, the expected size of Cp

is E[|Cp|] = |C|
2 . Cn includes two types of nodes: (1) the empty leaf nodes whose

noisy counts are negative (Cn,1) and (2) the leaf nodes whose point counts are
positive but noisy counts become negative (Cn,2). Ideally, we should use |Cn,1|
to approximate |Cp|. But |Cn,2| is usually a small number since we do not split
nodes whose noisy counts are too small, we can ignore |Cn,2| and directly use
|Cn| to approximate |Cp|.

Based on the analysis, with the private k-skyband tree, we compute the num-
ber of leaf nodes whose noisy counts are negative (|Cn|), sort the leaf nodes
with noisy positive counts in LC in ascending order, and set the noisy count of
the first |Cn| nodes in LC to zero. In this way, we can reduce the error of data
synthesis in the nodes in Cp.

Another alternative approach is to directly compute |C|, and set the noisy
count of the first |C|

2 nodes in LC to zero. However, such approach relies on the
true count of leaf nodes, which requires further privacy protection that consumes
another portion of the privacy budget. Thus, we choose the approach based
on |Cn|.

4 Evaluations

In our evaluations, we compare the performances of three techniques: k-skyband
tree, kd-tree, and quadtree. For k-skyband tree, we limit the max tree height to be
7, and set the noisy count threshold to 8 to stop splitting. In this way, the max
height allows k-skyband tree to get fine enough decompositions and the noisy
count threshold prevents the noisy count of some nodes becoming too small and
too sensitive to noise. For quadtree, we limit the max tree height to be 7, same as
k-skyband tree. For kd-tree, we use the hybrid tree with the default parameters
from the existing work [9], which was shown to perform the best for answering
count queries. We conduct experiments with privacy budgets ranging from 0.1
to 1.0 and k ranging from 0 to 200; for each budget and each k, we apply the
techniques on each dataset 10 times and report their average.

Datasets. The evaluations are carried out over three synthetic datasets that
are commonly used for evaluating many interesting variations of skyline queries.
They follow independent, correlated and anti-correlated distributions respec-
tively [5]. Each of these datasets contains 10,000 points. For these synthetic
datasets, we normalize the values to be in the range [0, 1000000] × [0, 1000000],
and assume the larger values to be preferred in each dimension. Besides synthetic
datasets, we also conduct experiments over two real-world datasets: NBA [2] and
forest cover type [1]. The NBA dataset includes the statistics of all NBA players
from 1997 to 2016, and there are 8645 points in total. In the NBA dataset, we
want to find out NBA players who can score high points (in the range [0, 3156])
and get many rebounds (in the range [0, 1449]). The second dataset is uniformly
sampled from the forest cover type dataset, which provides basic information
for forested lands in the United States. It contains about 50,000 records and has



Differentially Private K-Skyband Query 153

Fig. 2. Illustration of the synthetic dataset following anti-correlated distributions and
their k-skyband results when k ranges from 20 to 200. (Color figure online)

been used to evaluate skyline query answering schemes [35]. From this dataset,
we want to find out those forests located in uninhabited areas, i.e. those with
high elevations (in the range [1859, 3858]) and long distance to roadways (in the
range [0, 7117]), since those areas might exist some rare or endangered animal
species for research.

The distributions of the synthetic datasets and the real datasets as well as
their true skyband query results are shown in Figs. 2 and 5. When k increases, the
k-skyband expands toward the area containing less preferred points. Figures 2b
and 5c–d show different k-skybands on different datasets when k increases from
0 to 200. If k1 > k2, k1-skyband results are the super set of k2-skyband results,
and visually a new stripe in a different color is added when k increases from k2
to k1.

Utility Metric. We use F1-measure to examine the similarity between the
true k-skyband results St and the private k-skyband results Sp. To compute F1-
measure, we first define false positives and false negatives based on the distance
among points in Sp and St. Intuitively, with differential privacy, we could not
guarantee that any true k-skyband results are returned. Instead, if a private
skyband point is close to a real skyband point, then we say it is a hit (a true
positive). Otherwise, it is a false positive. Similarly, if a true skyband point is
not hit by any private skyband point, then it is counted as a false negative. More
formally, given tx and ty, a point q in Sp is a true positive (TP) if there exists a
point p in St such that |p.x − q.x| ≤ tx and |p.y − q.y| ≤ ty; otherwise, we say
q is a false positive (FP). Similarly, a point p in St is a false negative (FN) if
there exists no point q in Sp such that |p.x − q.x| ≤ tx and |q.y − p.y| ≤ ty. Here
for simplicity we use tx and ty instead of a radius to quantify the threshold of
distance between a skyband point and its true positives. We refer to tx (ty) as
the error tolerance threshold in x (y) dimension. Based on the counts of TP, FP
and FN, we can compute the precision and recall and further derive F1-measure.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1 =

2 × Precision × Recall

Precision + Recall
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For each of the five datasets, we obtain the ranges for each dimension (i.e.,
[xmin, xmax] and [ymin, ymax]). We then set tx and ty to be 1%, 3%, 5%, and
7% of (xmax − xmin) and (ymax − ymin), and compute F1-measure accordingly.
Note that for the 2-dimension dataset, when both tx and ty are set to 1% of the
data domains, the error tolerance rate in the 2-dimension space becomes 1% ×
1%, which requires a private point to be very close to a true point. In Sects. 4.1
and 4.2, we show the F1-measure with both tx and ty set to 3%, and the results
of different error tolerance rates are shown in AppendixB.

4.1 Results on Synthetic Datasets

Figure 3 shows the F1-measure results for the anti-correlated synthetic datasets.
Due to space limit, we omit the results for the normal and correlated distribu-
tions. In the figure, the x-axis shows different values for k and the y-axis shows
the values of F1-measure.

Impacts of Datasets. For the anti-correlated dataset, quadtree has very poor
F1-measure scores (about 0.1). Unlike the independent and correlated datasets,
the true k-skyband points are concentrated in the center areas instead of the
areas close to the upper-right point, as shown in Fig. 2b. Thus, when quadtree
fails to capture the properties of those regions that contribute most to k-skyband
results, the resulting private k-skyband points are still in the regions close to
the optimal point (as shown in Fig. 4a), causing high false positives and high
false negatives, leading to F1-measure scores. kd-tree performs better than k-
skyband tree when ε is less than or equal to 0.5. For example, when ε is 0.1,
k-skyband tree uses very little budget for splitting the region and cannot capture
the data distribution precisely. The resulting k-skyband is similar to the one
shown in Fig. 4a. However, when ε becomes larger, which allows enough budget
for splitting the region, k-skyband tree performs much better than the other two
trees (shown in Figs. 4a and b), and produces the private k-skyband (shown in
Fig. 4c) that is very similar to the true k-skyband. Though both k-skyband tree
and kd-tree are data dependent and will adaptively conduct finer decompositions
in dense regions, k-skyband tree focuses the decompositions on the regions that
are most important to k-skyband queries (i.e., the upper-right regions), while kd-
tree treats each region equally and does not provide fine enough decompositions
in the upper-right regions, which explains the accuracy gap between kd-tree
and k-skyband tree, especially when ε becomes bigger. For the independent and
correlated datasets, the results are similar.

Impacts of k. Generally, F1-measure improves with the increase of k, and k-
skyband tree is better than the other two approaches when budgets are >0.5.
The reason is that when k is small (<20), k-skyband query results intend to
contain only a few data points. For privacy protection, a relatively large amount
of noise is needed to hide the exact locations of these data points, causing high
distortion of actual query results. When k increases, more and more data points
are contained in k-skyband query results. k-skyband tree would more accurately
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Fig. 3. Comparing F1-measure of k-skyband tree, kd-tree and quadtree on the anti-
correlated dataset when k ranges from 0 to 200 and ε ranges from 0.1 to 1.0.

Fig. 4. Private k-skyband results of the anti-correlated dataset when ε = 2 and k =
200.

capture the distribution of skyband points, even if their exact locations are pro-
tected, which explains the increased utility. In this case, producing an accurate
k-skyband is very difficult because the corresponding nodes with small number
of points are sensitive to the added noise; when k becomes larger, the number
of points in k-skyband becomes larger, and the corresponding nodes with larger
number of points are more resistant to the added noise.

Summary. From the synthetic datasets, it does not seem k-skyband tree offers
significant advantages over kd-tree or quadtree (depending on which datasets we
look at). However, we note that these three datasets are widely used in past
work to evaluate the efficiency and scalability of algorithms to compute exact
skyline/k-skyband points. In this work however we focus on the accuracy of
differentially privacy algorithms. We argue that none of the distributions in the
three synthetic datasets are representative of practical datasets where k-skyband
queries are meaningful and useful. For example, in the independent dataset, all
the points evenly spread in the whole region, which means k-skyband points
are as common as any other non-skyband points. Similarly, for the correlated
dataset, it implies that if a point is superior in one dimension, it also tends
to be so in the other. In that case, there would be no need to have k-skyband
queries over multiple dimensions, as we only need to query points superior in
one dimension and their superiority in the other dimension is implicitly ensured.
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The anti-correlated dataset goes to another extreme: if a point is superior at one
dimension, it must be poor at the other, which also renders k-skyband queries
over multi-dimensions unnecessary. Essentially k-skyband queries are to find
unusual points who are good at both dimensions. Unusual points mean they
cannot be as common as other points (inferior at both dimension) as in the
independent and correlated datasets, and, on the other hand, they do exist (i.e.,
superior in both dimensions), not as in the anti-correlated dataset.

4.2 Results on Real Datasets

Figures 6a–f show the F1-measure results for the two real datasets when varying
k under different privacy budget ε.

Fig. 5. Illustration of NBA and Forest Cover Type datasets and their k-skyband results
when k ranges from 20 to 200. (Color figure online)

The first thing we notice is that the distributions of the two real datasets
(shown in Fig. 5) do not resemble any of the three synthetic datasets (shown in
Fig. 2). Most of the points are “ordinary”. They are not good at either dimen-
sion (i.e., they are largely concentrated around regions that are inferior in both
dimensions, and k-skyband points instead spread out sparsely: we do have points
that are superior in one dimension or in both dimensions, but they are not as
concentrated as those “ordinary” points.
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Fig. 6. Comparing F1-measure of 3 techniques based on k-skyband tree, kd-tree and
quadtree on the two real datasets of NBA player stats and Forest Cover Type when k
ranges from 0 to 200 and ε ranges from 0.1 to 1.0.

From the F1-measure results, for all ε values, we can see that k-skyband tree
clearly outperforms the other two approaches when k > 20 in the NBA dataset;
in the forest cover type dataset, k-skyband tree achieves the best performance
for all k values. The major reason is that both kd-tree and quadtree focus on
splitting more in dense areas, which unfortunately in the real datasets correspond
to regions that are not likely to contain k-skyband results. On the other hand,
for the regions containing k-skyband points, since they are sparse, kd-tree and
quadtree can only generate very course-grained partitions close to the optimal
point or along each dimension. The consequence is that during data synthesizing
phase, many points will be generated quite near the optimal point or the x
and y axes. These synthesized points will be very likely to be included in the
private k-skyband query results, which are far different from the real results. As
a contrast, k-skyband tree will quickly prune out those dense but not interesting
regions (from k-skyband queries’ point of view) and split more in regions that
likely contain k-skyband points even if these regions are not dense.

Summary. In general, k-skyband tree outperforms the other two trees for both
real datasets for all ε values when k is reasonably large (k > 20). In the forest
cover type dataset, k-skyband tree are better than the other two trees for all k
values. Such results show that k-skyband tree achieves high utility not only in
synthetic datasets used for evaluating various skyline computations, but also in
real-world datasets used in multi-criteria decision making.
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For these real-world datasets, we can observe that the desired data points
usually are in the sparse areas that contain small number of points, and most of
the data points are condensed in the areas that represent less desirable values.
For example, in the NBA dataset, the best players spread in the areas that
represent high scoring or high rebounding, and only a few are in the region that
represents both high scoring and high rebounding; while the rest of the players
are condensed in the areas along the diagonals from the upper-right corners to
the lower-left corners.

5 Related Work

Early works to ensure privacy of released data were based on syntactic
approaches such as k-anonymity [16,31] and �-diversity [24]. However, these
approaches only satisfy syntactic privacy notions, and cannot provide formal
guarantees of privacy as differential privacy. Differential privacy ensures that no
matter what knowledge or power an adversary has, the adversary cannot infer
an individual’s presence in a dataset from the randomized output.

In this work, our goal is to perform k-skyband queries under differential pri-
vacy. Initial efforts on differential privacy [10–12,14,21] focused on the theoretical
proof of its feasibility on various data analysis tasks, e.g., histogram [3,19,36].
More recent work has focused on practical applications of differential privacy
for privacy-preserving data publishing, such as data publishing based on pri-
vate spatial decompositions. Inan et al. [20] proposed a differentially private
technique to build data-partitioning index structures in the context of private
record matching, which uses an approximate mean as a surrogate for median
(on numerical data) to build kd-tree. Recent works [9,37] also proposed several
private spatial decompositions, such as quadtree, kd-tree and PrivTree, building
the noisy trees with effective budget allocation strategies. These differentially
private data publishing techniques are specifically crafted for answering range
count queries. However, synthesizing the dataset based on the spatial decom-
positions and applying BNL to compute k-skyband results cannot capture the
accurate results. Data synthesis on the partitions whose true counts are zero but
becomes positive after adding noise would introduce too much unnecessary noise
for k-skyband results. Unlike these approaches generating a tree for answering k-
skyband queries with different k values, our technique generates a private tree for
each k value (i.e., choosing the ne regions based on k). Our technique optimizes
the data decomposition for k-skyband queries and suppresses data synthesis on
partitions whose noisy counts become positive from zero with post-processing
techniques. Evaluation results demonstrate the superiority of our space decom-
position optimized based on k over the general space decompositions proposed
by the existing works.

Differentially private cluster analysis has also been studied in prior work.
Zhang et al. [38] proposed differentially private model fitting based on genetic
algorithms and McSherry [27] introduced the PINQ framework, both of which
have been applied to achieve differentially privacy for k -means clustering.
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Nissim et al. [29] proposed the sample-aggregate framework that calibrates the
noise magnitude according to the smooth sensitivity of a function. Their frame-
work can be applied to k -means clustering under the assumption that the dataset
is well-separated. Chen et al. [8] proposed several techniques that achieve dif-
ferential privacy for WaveCluster [32,33], which can capture spatial information
to detect clusters with complex shapes, e.g. concave shapes. Leveraging private
clustering analysis for computing k-skyband results would easily miss some par-
titions that contain a small number of k-skyband points, since these partitions
are too sparse to form clusters.

Another important line of prior work focuses on privacy-preserving database
queries over sensitive data distributed among multiple parties. Recently, the
advances in the theory of secure multiparty computations [6,17,18] proved that
comparison, addition, and multiplication (XOR and AND) can be computed
securely with reasonable computation cost. Based on these primitive protocols,
a line of research has focused on developing efficient secure multi-party com-
munication protocols for various database queries, such as set operations [4,28],
top-k queries [34]. These protocols focus on protecting the privacy of the data
among multiple parties and only the final query results are released to the pub-
lic, while our work presents an approach to release the query results without
compromising individual privacy of the individuals. What’s more, there are no
existing secure protocols for k-skyband queries, and building such protocols is
not trivial.

6 Conclusion

In this paper we have addressed the problem of k-skyband queries with differ-
ential privacy. We propose a general technique BBS-Priv that accepts any space
decomposition tree with differential privacy as input and selective performs data
synthesis for interested tree nodes to compute private k-skyband results. To
improve the query accuracy, we further devise a new space decomposition tree
k-skyband tree specifically optimized for k-skyband queries, which partitions the
space based on k other than median value or midpoint of each dimension. We
further present a suite of techniques to publish a k-skyband tree satisfying differ-
ential privacy, and propose a post-processing technique to improve accuracy by
suppressing data synthesis on those partitions whose noisy counts become posi-
tive from zero. In the future, we will investigate under differential privacy other
categories of multi-criteria decision making queries, such as top-k dominating
queries.

A Algorithm of k-Skyband Tree

Algorithm 2 shows the detailed steps of generating k-skyband tree. Given a region
〈(xmin, xmax), (ymin, ymax)〉, k-skyband tree first inserts the input region node r
into a queue Q (Line 1), and then removes a node n from Q for splitting (Line 3).
If the height of n reaches the maximum height h, n is considered as a leaf node
(Line 4) and k-skyband tree continues to process a new node from Q (back to
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Line 2). If the point count of n is larger than k+1, k-skyband tree uses a function
SplitByK (Algorithm 3) to choose a splitting point s = (sx, sy) based on k (Line
7), such that the upper-right region ne = 〈(sx, sy), (xmax, ymax)〉 contains more
than k data points. When SplitByK cannot find such a ne (i.e., ne is the same as
n at Line 8), k-skyband tree uses the midpoint of each dimension as the splitting
point (same as quadtree) (Line 9). If the point count of n is smaller than k+1 (not
possible to find ne whose point count is larger than k+1), k-skyband tree also uses
the midpoint of each dimension as the splitting point (same as quadtree) (Line
11). After splitting, the dominance region of s, sw = 〈(xmin, sx), (ymin, sy)〉, is
considered as a leaf node and no further split is required. The splitting terminates
when there are no more nodes in Q to be split (Line 2).

Algorithm 2. k-skyband tree
Input: A region r, k in k-skyband queries, the max height of the tree h
Output: A spatial decomposition tree T
1: Q.enqueue(r)
2: while Q is not empty do
3: n = Q.dequeue()
4: if isLeaf(n, h) then
5: continue // back to Line 2

6: if n.count > k + 1 then
7: N = splitByK(n, k, −1) // -1 means no noise added
8: if N.ne = n then
9: N = splitByMidPoint(n)

10: else
11: N = splitByMidPoint(n)

12: Q.enqueue(N.ne, N.nw, N.se)
13: if N.ne.count ≤ k then
14: Q.enqueue(N.sw)

15: return N

To obtain an upper-right region with more than k points, we propose an
efficient algorithm shown in Algorithm3. Given a region n, the algorithm uses
two max heaps (Hx and Hy) to sort the data points within n (Line 2), where
Hx (Hy) sorts the points based on their x (y) coordinates. The algorithm accesses
a point nx from Hx and a point ny from Hy, and uses the x coordinate of nx

and the y coordinate of ny as a new splitting point s = 〈sx, sy〉(Line 8). Then
nx and ny are put into a set P (Line 9), which are later checked to see whether
they fall into the upper-right region ne split based on s. The reason is that the
y (x) coordinate of nx (ny) may be smaller than sy (sx), and thus nx (ny) may
not fall into ne. To compute the point count of ne, we only need to check the
points in P : each c ∈ P is checked to see whether it falls into ne (Lines 10–12).
If so, then c is moved from P to S, which holds all the points that dominate
the current split point (Line 12); otherwise, c remains in P and will be checked
again when a new splitting point is formed in the next iteration. Also, due to the
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way split points are generated, if a point dominates an early split point, it will
also dominate later ones. That is why we can safely put that point into S. The
algorithm terminates when S contains more than k points (Line 4), i.e., splitting
by s guarantees that the upper-right region contains more than k points. The
non-private k-skyband tree directly returns the split regions (Lines 16–17) and
skip the steps for obtaining the private values for s (Lines 14–15).

B Results with Different Error Tolerance Rates

A real skyband point is considered to be hit by a private skyline point if the
private skyband point is close enough to the real skyband point. Error tolerance
rates quantitatively define how close they should be in order to be considered as
a hit. Larger error tolerance rates mean more loose constraints on the distance
between the private and the real skyband points, and thus make F1-measure
become better. In other words, when the error tolerance rates become larger,
the privacy technique provides better guarantee in utility. We compute results
of F1-measure by varying error tolerance rates to observe the impacts of error
tolerance rates on the performance.

Algorithm 3. SplitByK
Input: A region n, k in k-skyband queries, εs privacy budgets for splitting
Output: A set N that contains four children nodes sw,se,nw,ne
1: S = ∅, P = ∅
2: Hx.insert(n.data), Hy.insert(n.data)
3: sx = n.xmax, sy = n.ymax

4: while S.size < k + 1 do
5: if Hx is empty or Hy is empty then
6: break
7: nx = Hx.remove(), ny = Hy.remove()
8: sx = nx.x, sy = ny.y
9: P .add(nx), P .add(ny)

10: for c ∈ P do
11: if c.x ≥ sx and c.y ≥ sy then
12: S.add(c), P .remove(c)

13: if εs > 0 then
14: sx = EM(sx,εs)
15: sy = EM(sy,εs)

16: N = {sw, se, nw, ne} = n.split(sx,sy)
17: return N

Figure 7 shows the F1-measure results for the two real-world datasets when
the error tolerance rate tx and ty ranges from 1% to 7%. In each figure, the
x-axis shows different values for the error tolerance rates and the y-axis shows
the values of F1-measure. Due to space limit, we choose to show the results with
k set to 40 and ε set to 1.0 as the representative results. Clearly, k-skyband tree
performs much better than the other two trees in all the error tolerance rates,
and its F1-measure improves significantly when tx and ty reach 7%.
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Fig. 7. F1-measure of 3 techniques based on k-skyband tree, kd-tree and quadtree on
the real datasets for k = 40, ε = 1.0, and error tolerance rate ranges from 1% to 7%
on each dimension.
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