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Abstract. Access control mechanisms are a necessary and crucial design
element to any application’s security. There are a plethora of accepted
access control models in the information security realm. However,
attribute-based access control (ABAC) has been proposed as a general
model that could overcome the limitations of the dominant access control
models (i.e., role-based access control) while unifying their advantages.
One issue with migrating to an ABAC model is the information that
needs to be encoded in the model is typically buried within existing nat-
ural language artifacts, hence difficult to interpret. This requires process-
ing natural language documents and extracting policies from those docu-
ments. Software requirements and policy documents are the main sources
of declaring organizational policies, but they are often huge and consist of
a lot of general descriptive sentences that lack any access control content.
Manually processing these documents to extract policies and then using
them to build a model is a laborious and expensive process. This paper
is the first step towards a new policy engineering approach for ABAC
by processing policy documents and identifying access control contents.
We take advantage of multiple natural language processing techniques
including pointwise mutual information to identify access control policy
sentences within natural language documents. We evaluate our approach
on documents from different domains including conference management,
education, and healthcare. Our methodology effectively identifies policy
sentences with an average recall and precision of 90% on all datasets,
which bested the state-of-the-art by 5%.

Keywords: Access control policy · Attribute-based access control · Pol-
icy engineering · Natural language processing

1 Introduction

A fundamental management responsibility is securing information and informa-
tion systems. Almost all of the applications that deal with safety, privacy, defense
and even finance include some form of access control, which regulates who or
what can view or use resources in a computing environment. Access control poli-
cies (ACP) are those rules that a corporation exerts in order to control access to
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its information assets. They determine which activities are allowed for authorized
users, controlling every attempt by a user for accessing system resources. They
also reveal a lot of information about the internal processes within an orga-
nization, which sometimes mirror the structure of the organization. The risks
of not using adequate access control policies range from inconvenience to criti-
cal loss or corruption of data. A big challenge for security administrators while
implementing an access control model is to properly define ACPs, especially
in large corporations. Most of these corporations have high-level requirement
specification documents that specify how information access is manipulated and
who, under which circumstances, can access what asset. All US federal agen-
cies are required to provide information security by the “Federal Information
Security Act of 2002” [2], and policy documentation is part of that requirement.
Although it is not necessary for private industry to prepare such documenta-
tion, the remarkable costs affiliated with recent cyber-attacks have forced many
corporations to record their security policies. In addition, recording security
policies aid corporations in transitioning from access control lists into a more
robust access control model such as Attribute-based Access Control (ABAC)
with more ease. In this paper, we refer to these documents as natural language
access control policies (NLACPs), which are described as “statements governing
management and access of enterprise objects. They are human expressions that
can be translated to machine-enforceable access control policies” [10].

An issue with NLACPs is they are usually declared in human understandable
terms, are unstructured, and also may be ambiguous, hence it is difficult to
encode them directly in a machine-enforceable form. In our previous work [19], we
addressed this issue by proposing semantic role labeling technique, where we were
able to process sentences and extract necessary elements such as subject, object
and action to create machine-enforceable ACPs. However, prior to identifying
ACP elements, one has to first process the unstructured NLACP documents in
order to identify those sentences that express policies. NLACPs are often huge
and consist of many sentences. Several of these sentences are general descriptive
sentences that lack any access control policy content (non-ACP sentences). The
process of manually sifting through NLACPs to extract the buried ACPs is very
laborious and error-prone.

This paper is the first step towards our ultimate goal of building an ABAC
system from existing information. Current ABAC solutions try to convert
already existing policies in the form of ACL [32], RBAC, etc. to an equiva-
lent ABAC model. However, the previous work ignores an important source of
information, NLACP documents, in the process of building an ABAC model. In
this paper, we aim to propose a new technique to solve this issue in order to
make it easier for corporations to extract ACPs from NLACPs. We will limit our
discussion to identifying ACP sentences and separating them from other non-
informative, irrelevant sentences. In the future, we aim to use the extracted ACP
sentences to build a new ABAC model. Our proposed technique takes advantage
of four different types of features in order to come up with a final discriminating
feature set. These features include pointwise mutual information (PMI) features,
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security features, syntactic complexity features and dependency features. To the
best of our knowledge, this is the first report that elaborates on the effectiveness
of using four different feature vectors to extract policies.

The contributions of this paper are as follow:

– We take the first step towards proposing a new policy engineering approach
for ABAC by processing NLACP documents and extracting policy contents.

– We introduce a new technique to effectively distinguish ACP sentences from
non-ACP sentences.

– We introduce four different types of features in order to come up with a final
discriminating feature set.

– We introduce the first publicly available policy dataset to encourage more
research on this area.

The rest of this paper is organized as follows: We begin with a discussion of
related work in Sect. 2. Section 3 will discuss some background concepts and then
Sect. 4 will present our methodology. The experiments are presented in Sect. 5,
and finally, conclusion and future works wraps up the paper.

2 Related Work

Previous work in the literature took advantage of predefined patterns and com-
bining machine learning approaches to find access control policy sentences. Xiao
et al. proposed Text2Policy, which employs shallow parsing techniques with finite
state transducers to match a sentence into one of four access control patterns
[30]. One example of such a pattern is Modal Verb in Main Verb Group, which
helps recognize that the main verb contains a modal verb, which leads to iden-
tifying the sentence as an ACP sentence. If the matching is successful, it uses
the annotated portions of the sentence to extract the subject, action, and object
from the sentence. Text2Policy does not need a labeled data set. However, it
misses ACPs that do not follow one of its four semantic patterns. It is reported
that only 34.4% of the identified ACP sentences followed one of Text2Policy’s
patterns [25].

Slankas et al. proposed access control rule extraction (ACRE), a supervised
learning approach that uses an ensemble classifier to determine whether a sen-
tence expresses an ACR or not [25]. Their ensemble classifier is composed of
a k-nearest neighbors (k-NN) classifier, a näıve bayes classifier, and a support
vector machine classifier. To determine how to use these classifiers, they calcu-
lated a threshold value for the ratio of the computed distance to the neighbors
compared to the number of words in the sentence. If the k-NN classifier’s ratio
for a sentence is below a threshold value of 0.6, they return the k-NN classifier’s
predication. Otherwise, they output a majority vote of the three classifiers. Even
though this approach performs very well, the k-NN classifier suffers from a slow
processing time since it has to compare each sentence to all other sentences to
make a decision.
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In our previous work, we proposed semantic role labeling (SRL) to auto-
matically extract ACP elements from unrestricted natural language documents,
define roles, and build an RBAC model [20]. We did not attempt to identify
ACP sentences, but instead used the already extracted sentences by [25] and left
implementing the ACP sentence identification step for future work. In this work,
we propose our methodology for ACP sentence identification.

The problem of mining ABAC policies from natural language documents
has not been studied in the literature. However, there are few works for deriving
ABAC policies from request logs. This problem was first investigated in [31]. The
authors present an algorithm for mining ABAC policies from logs and attribute
data. The algorithm iterates over tuples in the user-permission relation extracted
from the log, uses selected tuples as seeds for constructing candidate rules, and
attempts to generalize each candidate rule to cover additional tuples in the user-
permission relation. Finally, it selects the highest quality candidate rules for
inclusion in the generated policy. In [16], the authors proposed a multi-objective
evolutionary approach for learning ABAC policies from sets of authorized and
denied access requests. They used the same ABAC language and the same case
studies of the [31]. They presented a strategy for learning policies by learning
single rules, each one focused on a subset of requests, an initialization of the
population; a scheme for diversity promotion and for early termination. Most
recently, we introduced a policy engineering framework for ABAC where we were
able to identify access control policy sentences using deep learning techniques
and convert some ACP sentences to ABAC policies using semantic role labeling
technique [18]. There are also some other work for inferring RBAC policies from
logs for less expressive access control models (e.g., RBAC [7]). Usage of evolu-
tionary techniques for inferring RBAC rules explaining the observed actions in
environments with tree-structured role hierarchies was also proposed in [9].

3 Background

This section provides background with regards to PMI, syntactic complexity,
ML, and ABAC with the motivation behind using these techniques.

3.1 Pointwise Mutual Information

Pointwise mutual information (PMI) has been extensively applied in information
retrieval (IR) and text based applications. PMI was introduced by Turney [27]
as an unsupervised learning algorithm for finding synonyms based on statistical
information. It gives an estimation of semantic similarity between two words
based on word co-occurrence1 on a very large corpus, e.g., Web, Wikipedia.
Given two words t1 and t2, their PMI score is defined as Eq. 1:

PMI(t1, t2) = log2
P (t1, t2)

P (t1) ∗ P (t2)
(1)

1 Frequent occurrence of two words from a text corpus alongside each other in a certain
order.
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where P (t1, t2) is the probability of P (t1) and P (t2) under the joint distribution
and P (t1), P (t2) is the probability of each word independently. Thus, if P (t1)
and P (t2) are independent, P (t1, t2) = P (t1)P (t2), and PMI is log(1) = 0,
meaning that P (t1) and P (t2) share no information.

We take advantage of PMI scores in order to extract informative features
that are relevant to the current task. This will also narrow down the number of
features significantly as will be described in Sect. 4.2.

3.2 Measures of Syntactic Complexity

ACP sentences usually contain more complex structures such as clauses than
non-ACP sentences (e.g., “If by chance a student is employed at a particular
clinic or health care institution for any reason, that student may not be placed
at that clinic or institution for any of their clinical practical.” compared to
non-ACP content such as “All Health providers and staff.” Hence, we evaluate
syntactic complexity of written English texts to better discriminate ACP sen-
tences from non-ACP contents. Although many different measures have been
suggested for characterizing syntactic complexity, previous literature only con-
sidered a small set since not many computational tools are available and manual
analysis is laborious. Recently Lu [13] proposed a computational system that
uses 14 different measures to analyze syntactic complexity in second language
writing. These 14 syntactic complexity measures are chosen from a large number
of measures that were discussed in [22,29].

Table 1. The 14 syntactic complexity measures used in previous research [13]

Mean length of clause MLC # of words / # of clauses

Mean length of sentence MLS # of words / # of sentences

Mean length of T-unit MLT # of words / # of T-units

Sentence complexity ratio C/S # of clauses / # of sentences

T-unit complexity ratio C/T # of clauses / # of T-units

Complex T-unit ratio CT/T # of complex T-units / # of T-units

Dependent clause ratio DC/C # of dependent clauses / # of clauses

Dependent clauses per T-unit DC/T # of dependent clauses / # of T-units

Coordinate phrases per clause CP/C # of coordinate phrases / # of clauses

Coordinate phrases per T-unit CP/T # of coordinate phrases / # of T-units

Sentence coordination ratio T/S # of T-units / # of sentences

Complex nominals per clause CN/C # of complex nominals / # of clauses

Complex nominals per T-unit CN/T # of complex nominals / # of T-units

Verb phrases per T-unit VP/T # of verb phrases / # of T-units

This system takes input as a plain text file and then counts the frequency of
the following nine structures:
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– Words (W)
– Sentences (S)
– Verb phrases (VP)
– Clauses (C)
– T-units (T)
– Dependent clauses (DC)
– Complex T-units (CT)
– Coordinate phrases (CP)
– Complex nominals (CN)

Using these calculated frequencies, the system produces 14 indices of syn-
tactic complexity, presented in Table 1. We use these 14 features to measure
syntactic complexity of sentences, which will help classification.

3.3 Machine Learning

Machine learning (ML) is a method of data analysis that automates building an
analytical model. Using algorithms that iteratively learn from data, ML allows
computers to find hidden insights without being explicitly programmed. ML
algorithms are often categorized as being supervised or unsupervised. Super-
vised algorithms can apply what has been learned in the past to new data.
Unsupervised algorithms, however, draw inferences from new data. In this work,
we have a labeled dataset and hence we use supervised ML algorithms. We will
take advantage of two ML algorithms, näıve bayes and support vector machines.
The näıve bayes algorithm is based on conditional probabilities. It uses Bayes’
Theorem, to find the probability of an event occurring given the probability of
another event that has already occurred. Using these probabilities, the algorithm
calculates the probability of any sentence being either ACP or non-ACP and
then makes the final decision based on the higher probability. We also employ
support vector machine, which is a supervised ML algorithm that constructs a
hyperplane or set of hyperplanes in a high-dimensional space that is used for
classification. The algorithm plots all sentences in a n-dimensional space (where
n is number of features) with the value of each feature being the value of a
particular coordinate. Then, the algorithm finds the hyper-plane(s) that best
separates ACP and non-ACP sentences.

3.4 Attribute-Based Access Control

Attribute-based access control (ABAC) is an access control model wherein the
access control decisions are made based on a set of attributes, associated with
the requester, the environment, and/or the resource itself. An attribute is a
property expressed as a name:value pair that can capture identities and access
control lists (DAC), security labels, clearances and classifications (MAC), and
roles (RBAC). ABAC was proposed as a general model that could overcome
the limitations of the dominant access control models (i.e., discretionary-DAC,
mandatory-MAC, and role-based-RBAC) while unifying their advantages. Our
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Fig. 1. Overview of the proposed system

central contribution is to take the first step towards proposing a new policy
engineering approach for ABAC by processing policy documents and extracting
those sentences that exhibit ACP content. We then use these ACP sentences to
extract ABAC policies.

4 The Proposed Methodology

In order to effectively distinguish ACP sentences from non-ACP sentences, we
take advantage of different NLP and ML techniques. Our proposed system is
composed of a set of components that extract various types of features. The
overview of the system is presented in Fig. 1. In the next sections, we will describe
each of these components in detail.

4.1 Preprocess Engine

Figure 2 presents part of a large NLACP document2. It is obvious that there are
many non-relevant contents such as titles, tables, etc. that need to be removed.
As these formal NLACP documents are usually expressed in PDF format, the
first step is to read each PDF document. For this purpose we used Apache
PDFBox [1] toolkit, which extracts texts and ignore the other contents such
as tables. In order to parse the extracted text, we fed it into Stanford Corenlp
toolkit [15]. The tool split the text by sentence boundaries where each sentence
was on a separate line and ended by a period. As many of the extracted sentences
are not statements (e.g., titles), we introduce the following equation to filter out
everything other than sentences.

Ratio(sent) =
Capitals(sent)
Tokens(sent)

2 http://policy.unt.edu/sites/default/files/07.022 AdministrativeEntrySearches
UniversityResidenceHalls 2012.pdf.

http://policy.unt.edu/sites/default/files/07.022_AdministrativeEntrySearchesUniversityResidenceHalls_2012.pdf
http://policy.unt.edu/sites/default/files/07.022_AdministrativeEntrySearchesUniversityResidenceHalls_2012.pdf
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Where Capitals stand for the number of capital letters in the sentence (sent)
and Tokens counts for the number of tokens in each sentences. If this ratio is
less than 0.6, we consider the sentence for further processing. We used different
ratios but 0.6 gave us the most accurate results. We also limited ourselves to
sentences with more than 15 characters, which helped us remove more incomplete
sentences. After this step, the following four sentences are extracted:

– The University respects its resident students’ reasonable expectation of pri-
vacy in their rooms and makes every effort to ensure privacy in university
residences.

– However, in order to protect and maintain the property of the university and
the health and safety of the university’s students, the university reserves the
right to enter and/or search student residence hall rooms in the interest of
preserving a safe and orderly living and learning environment.

– Designated university officials are authorized to enter a residence hall room
unaccompanied by a resident student to conduct room inspections under the
following conditions.

– To perform reasonable custodial, maintenance, and repair services.

Next, the extracted sentences were fed to feature engine in order to extract
discriminating features.

Fig. 2. Part of a NLACP document
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4.2 Feature Engine

Feature engine is responsible for extracting various types of features and creating
the final feature vector. The following sections will describe each sub-component
in detail.

Security Features. Kong et al. proposed a system called AUTOREB that was
able to infer the mobile app security behaviors using apps’ reviews from different
users with an average accuracy of 94% [12]. As their problem is quite similar
to ours in terms of classifying security sentences, we decided to take advan-
tage of their proposed methodology to extract more discriminating features.
Our adapted methodology is described as follows:

First, we ranked all words in ACP sentences based on their frequencies of
occurrence and chose the top 15 most frequent keywords. These 15 keywords
were considered as the initial set of our security features. Then, the new keywords
were chosen from those that had a high co-occurrence with current keywords in
our feature set. If this co-occurrence exceeded a threshold, we added the new
keyword into the feature set. To avoid repetitive calculations, at each round we
only considered those keywords that were added in the previous round. This
process was repeated until no more new keywords were added. In the case of
applying the same methodology on any other dataset, the same process can be
applied to identify the keywords relevant to that dataset.

PMI Features. N-grams have been extensively used for text classification as
a good syntactic feature. However, they often result in large and sparse feature
vectors. By taking advantage of PMI scores, we can limit ourselves to only those
words that are informative and correlated to the current task. This will improve
the performance of classification algorithm and speed it up considerably. To
have an accurate calculation of PMI scores, a large corpus is required. In the
original arrangement of PMI by Turney [27], it is required to consult the Web
for counting words. However, there are some disadvantages with using the Web.
The Web is always changing and the search scheme of commercial search engines
is always changing too, which makes it hard to maintain the functionality of the
system. For computing semantic relations, it has been shown that Wikipedia
is more reliable and effective than a search engine and covers more concepts
than WordNet [23]. In order to extract PMI scores, we used two different setups.
For the first one, we gathered pre-calculated PMI data through Semilar project
[24]. This data was calculated using whole Wikipedia text (as of Jan 2013).
For the second setup, we calculated PMI scores from access control contexts as
mentioned briefly in Sect. 3.1 so that it will be more adaptable to our approach.
We gathered over 10 MB of text consisting all of our datasets and then calculated
PMI scores based on the formula described in Sect. 3.1. To calculate relevant
keywords, we adopt the same process that was described in previous section.
Starting with the same initial set of 15 keywords, we calculated the PMI score of
all words in our dataset. For each setup, we used the corresponding set of PMI
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scores. If this PMI score was more than a threshold, we added the other word to
the feature set too. After the first round, we came up with a new set of features
in addition to the initial 15 keywords. Then in the second iteration, we repeated
the process using newly found keywords in the previous step. We followed this
process until no more features were added to our feature set.

Syntactic Complexity Features. This component computes complexity mea-
sures based on the explanations in Sect. 3.2. For each sentence a feature vector
of 23 values were created.

Dependency Relations. Marneffe et al. described a methodology for extract-
ing typed dependency parses of English sentences [4]. A dependency parse
demonstrates dependencies among single words. It also labels dependencies with
grammatical relations, such as subject or indirect object. Consider the sentence:
“Bills on ports and immigration were submitted by Senator Brownback, Repub-
lican of Kansas.” The corresponding typed dependency tree is drawn in Fig. 3.

Fig. 3. Typed dependency parse for the sentence “Bills on ports and immigration were
submitted by Senator Brownback, Republican of Kansas.”

Typed dependency parses of ACP sentences capture inherent relations occur-
ring in ACP sentences that can be critical in discriminating them from non-ACP
contents. Using this structure, we extracted the ratio of occurrences of each of
the following attributes to the length of sentence and used them as features:
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– Subject
– object
– auxiliary verb
– verb

Feature Fusion. This component stacks all the four feature types in a single,
long feature vector that were used for classification. For PMI and security fea-
tures, there are some redundancies in extracted keywords that were removed too.

4.3 Classification

After building the final feature vector for each sentence and creating the final
dataset consisting of all vectors, we train a predictive model using ML algo-
rithms. Since our training set has fairly little data, we need to choose a classifier
with high bias according to machine learning theory [14]. For this work, we chose
näıve bayes as there are many theoretical and empirical results that näıve bayes
does well in such circumstances (e.g. [6,21]). We also employed support vector
machines classifier as it has consistently achieved good performance on text cat-
egorization tasks (see [11]). The created model will be used to categorize unseen
sentences to either ACP or non-ACP.

5 Experiments and Results

5.1 Dataset(s)

The access policy domain suffers from a scarcity of publicly available data for
researchers. To help alleviate this issue, we created a dataset to serve the dual
purpose of (1) making our evaluation of the proposed method more robust, and
(2) providing the research community with more data, which will in turn allow
other researchers to evaluate their work both more comprehensively and in direct
comparison to others.

We constructed our dataset from real-world policy documents from the
authors’ home institution. To do this, we gathered over 430 policy documents in
PDF format from the university policy office3, as well as policy documents from
the university’s health science center4. The documents described security access
authorizations for a wide variety of departments, including humanresources,
information technology, risk management services, faculty affairs, administra-
tion, intellectual property, technology transfer, and equity development, among
others. Altogether, these documents were comprised of more than 21,000 sen-
tences. Since manually labeling the sentences is a labor-intensive process, in this
work we limited our data to a randomly selected subset of 1,000 sentences from
the full dataset.

3 https://policy.unt.edu/policy-alphabetical/a.
4 https://app.unthsc.edu/policies/Home/ByChapter.

https://policy.unt.edu/policy-alphabetical/a
https://app.unthsc.edu/policies/Home/ByChapter
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The sentences were annotated for the presence of ACP content by two Ph.D.
students studying cybersecurity, who are familiar with access control policies and
the contexts in which they occur. They were also provided a coding guide that
told them what should be considered as an access control policy sentence and
what should not. The first author of this paper adjudicated any discrepancies
in the annotations after discussing them with both annotators. We computed
kappa on the annotations, finding κ = 0.75 between the two annotators. The
final annotated dataset is comprised of 455 ACP sentences and 545 non-ACP
sentences. This dataset is available upon request.

5.2 Evaluation Criteria

In order to evaluate results, we use recall, precision, and the F1 measure. Pre-
cision is the fraction of ACP sentences that are relevant, while recall is the
fraction of ACP sentences that are retrieved. To compute these values, the clas-
sifier’s predictions are categorized into four categories. True positives (TP) are
correct predictions. True negatives (TN) are sentences that we correctly pre-
dicted as not an ACP sentence. False positives (FP) are sentences that were
mistakenly identified as an ACP sentence. Finally, false negatives (FN) are ACP
sentences that we failed to correctly predict as an ACP sentence. Using these
values, precision is calculated using P = TP

TP+FP and recall using R = TP
TP+FN .

To have an effective model, a high value for both precision and recall is required.
Lower recall means the approach could more likely miss ACP sentences while
a lower precision implies that the approach could more likely identify non-ACP
sentences as ACP sentences. We define F1 as the harmonic mean of precision
and recall, giving an equal weight to both elements. F1 measure is calculated
using the F1 = 2 × P×R

P+R respectively.

5.3 Experimental Results

After performing the preprocessing, the dataset is divided into 70% training (700
sentences) and 30% testing sets (300 sentences). In order for both datasets to be
independent and identically distributed, stratification was performed to make
sure the distribution of both classes (ACP and non-ACP) are the same in both

Table 2. Obtained results using two classifiers (näıve bayes and support vector
machines (SVM)) alongside comparison with baseline and the implemented ensemble
classifier

Methodology Precision (%) Recall (%) F1 (%)

ZeroR 30 54 39

Ensemble 74 70 72

SVM 76 76 76

Näıve Bayes 82 80 80



94 M. Narouei et al.

train and test sets. Then, the training set is fed to feature engine for feature
extraction. The initial set of seeds for all datasets are presented in Table 4. All
the experiments were performed using weka toolkit [8], which is a collection of
ML algorithms for data mining tasks. We used SMO (support vector machine’s
implementation in weka) as well as näıve bayes classifier for classification task.
We trained both classifiers using the training set. The performance of the system
on the testing dataset is reported in Table 2. The second row shows the baseline
results generated using weka’s ZeroR classifier. The ZeroR algorithm selects the
majority class in the dataset and uses it to make all predictions.

Table 3. Study document set statistics

Dataset Domain # of sentences # of ACP sentences

iTrust for ACRE Healthcare 1160 550

iTrust for Text2policy Healthcare 471 418

IBM Course Management Education 401 169

CyberChair Conference Mgmt 303 139

Collected ACP Documents Multiple 142 114

The third row shows the comparison with the ACRE system proposed by
Slankas et al. [25]. In their ensemble classifier, an object is assigned to the class
most common among its k nearest neighbors. The classifier used a modified ver-
sion of Levenshtein distance as distance metric. The details of this classifier was
presented in Sect. 2. We were not able to receive the source codes for their ensem-
ble classifier and hence we implemented it based on the description provided in
their paper as well as the main author’s thesis [26]. We did our best to make sure
that our implemented ensemble classifier is similar to their methodology. Finally,
the fourth and fifth rows present results obtained using our proposed method.
As Table 2 shows, our methodology was able to outperform the majority baseline
and previous work by a huge margin.

In order to have an exact comparison between our proposed methodology
and the ACRE system, we performed experiments on the same datasets that
they used in their paper. These datasets were manually labeled by Slankas et al.
[25] and consisted of five sections, described as follows:

– iTrust for ACRE. iTrust [17] is an open source healthcare application that
consists of 40 use cases plus additional non-functional requirements. iTrust
for ACRE was extracted directly from the project’s wiki.

– iTrust for Text2policy. The second version of iTrust that was taken from
the documentations used by Xiao et al. [30].

– IBM Course Management. Eight use cases from the IBM Course Regis-
tration System [3].

– CyberChair. CyberChair documents [28], which has been used by over 475
different conferences and workshops.
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– Collected ACP Documents. A combined document of 142 sentences that
were collected by Xiao et al. [30].

More information about these dataset(s) can be found in Table 3. The initial
seeds for each dataset is presented in Table 4. Using these seeds, each dataset
was independently fed to the feature engine and experiments were performed.
The obtained results are presented in Table 5. As the table presents, applying
our implemented system on all five dataset(s) achieved a macro average of 90%
F1 while the ACRE system achieved 85%.

Table 4. The top 15 frequent keywords for each dataset

UNT Policies will, must, may, health, student, shall, information, employee,
should, science, review, center, policy, university, staff

Collected can, access, read, if, customer, subject, assign, information,
paper, resident, use, patient, medical, may, reps

CyberChair reviewer, paper, submit, author, assign, number, must,
expertise, should, indicate, process, base, overview, topic,
abstract

IBM system, student, course, professor, schedule, registrar, offering,
case, use, semester, information, offering, delete, will, select

iTrustforACRE patient, office, hcp, can, name, date, message, list,
appointment, information, user, lab, representative, view,
office

iTrustfortext2policy patient, view, can, message, representative, name, list, system,
hcp, date, appointment, data, user, present, administrator

In order to extract effective PMI scores, we used both pre-calculated PMI
values using Wikipedia and also our self-calculated PMI values based on security
context. In order to come up with the best threshold, we used ten-fold cross val-
idation on the train set to evaluate the performance using features generated by
each threshold value. Figure 4(a) presents the performance using pre-calculated
PMI values from Wikipedia. The best set of features were extracted using a
threshold value of 0.4. Figure 4(b) shows the performance using self-calculated
PMI values. The best performance (83%) was obtained using a threshold value
of 0.8. As these figures indicate, our self-generated PMI scores yield a higher
performance, which seems reasonable considering the fact that they were gener-
ated from the security context while pre-calculated PMI values were generated
using public Wikipedia article, which are general to any method but not specific
to our domain. Hence, we used our self-calculated PMI scores with the threshold
of 0.8 as the output of PMI component. For security features, the best results
were obtained using a threshold value of 15 co-occurrences in the whole context,
as Fig. 5 shows, hence we used this threshold. It is obvious that the performance
decreases considerably after a threshold of 20 co-occurrences since there are not
many words that occur together more than 20 times in the dataset.
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Table 5. Comparison with ACRE system

Dataset ACRE Proposed system

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

iTrust for ACRE 90 86 88 89 90 90

iTrust for Text2policy 96 99 98 97 99 98

IBM Course Management 83 92 87 94 93 93

CyberChair 63 64 64 79 74 77

Collected ACP Documents 83 96 89 91 93 92

Average 83 87 85 90 90 90

Fig. 4. Threshold analysis using PMI values from Wikipedia (a) and self-calculated
PMI values (b)

Table 6 shows the final number of features generated by each component
while performing the first experiment (policy documents). Overall, 750 features
were extracted after combining all of the features together and removing dupli-
cates. These features were used to build a final feature vector for each sentence.
For all features except complexity and dependency features that had their own
calculated values, the presence or absence of the features in the corresponding
sentence was considered.

Our dataset consists of ACP and non-ACP sentences both expressed in secu-
rity context. Even distinguishing an ACP sentence from a non-ACP sentence
was sometimes difficult as expressed by our labelers. Our proposed system was
able to distinguish between these sentences by 80% F1 while the state-of-the-art

Table 6. The number of different feature values

Feature type # of features

Security features 73

Policy PMI 721

Syntactic complexity 23

Dependency features 4
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Fig. 5. Threshold analysis of co-occurrences of security features

gains around 72% F1. The strength of our methodology comes from incorporat-
ing both lexical and semantic features. As all sentences are expressed in ACP
context, using just lexical approach is not sufficient. However, using syntactic
complexity features improves the results as ACP sentences usually consist of
clauses and more complex structures compared to non-ACP sentences. These
structures convey lots of information but are usually ignored using only lexical
approaches. The ensemble classifier that was used in the previous work consid-
ered the syntax of sentence (using a modified version of Levenshtein distance
for comparing words) to identify ACP sentences. This approach performed very
well on their reported experiments, but while analyzing policy documents, both
syntactic and semantic features proved more fruitful.

As we mentioned in the previous section, we were unable to get their codes,
and hence we implemented their methodology in Java language using Stanford
Corenlp package. On average, our implementation reported 84% average preci-
sion on all five datasets (iTrust for ACRE, iTrust for Text2policy, IBM Course
Management, CyberChair, Collected ACP Documents) while their reported aver-
age precision was 81%. The F1, however, was lower as we got around 81% while
they reported 84%. The main problem with ensemble classifier was the speed
since for each instance, the k-NN classifier needs to compute the distance to all
other sentences. This resulted in an average execution time of about 5–6 h on
the five datasets while our proposed methodology runs for less than a minute
given the features, or about 20 min for extracting features depending on the size
of dataset.

6 Discussion

There are several threats to validity of experiments including lack of represen-
tativeness of datasets, identifying a threshold for features and human factors
for determining correct ACP sentences from NLACPs. The five datasets used in
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previous literature covered mostly limited grammars and many of their policies
were of similar structure and form, not representing the diversity of policies in
real-world. To reduce the threat, we evaluated our approach on policy docu-
ments from authors’ home institution. These documents covered a large variety
of policies ranging from human resources, information technology, risk manage-
ment services, faculty affairs, administration, intellectual property, technology
transfer, and equity development, among others. To further reduce this threat,
additional evaluation needs to be done to choose a more representative sam-
ple of dataset, instead of choosing sentences randomly. Choosing the proper
threshold is another issue as it determines the quality of extracted keywords. To
reduce this threat, we examined different threshold values from different ranges.
A final threat include human factors for determining correct ACP sentences from
NLACPs. To reduce the human factor threats, the sentences were annotated for
the presence of ACP content by two Ph.D. students studying cybersecurity, who
are familiar with ACPs and the contexts in which they occur. The co-author
of this paper adjudicated any discrepancies in the annotations after discussing
them with both annotators.

To further evaluate our method’s performance on ACP sentences that were
previously used in the literature, we performed another experiment. We ran-
domly sampled 250 ACP sentences from the four dataset(s) that were previously
described (iTrust, IBM course registration system, cyberchair and collected doc-
uments). We also gathered 250 sentences that carry no ACP information from
Microsoft research paraphrase corpus [5]. This dataset contains 5,800 pairs of
sentences that were extracted from news sources on the web, alongside human
annotations indicating whether each pair capture a semantic equivalence rela-
tionship. Only one sentence has been extracted from any given news article.
Using 10-fold cross validation, our proposed system was able to correctly iden-
tify ACP sentences with an accuracy of 94%, which shows applicability of this
method in the wild.

7 Conclusion and Future Work

ABAC is a promising alternative to traditional models of access control (i.e.,
DAC, MAC and RBAC) that is drawing attention in both recent academic lit-
erature and industry. However, the cost of developing ABAC policies can be a
significant obstacle for organizations to migrate from traditional access control
models to ABAC. In this paper, we took the first step towards a new policy
engineering approach for ABAC by processing policy documents and extracting
access control contents. We took advantage of multiple natural language process-
ing techniques including pointwise mutual information to identify access control
policy sentences. Experimental results yielded an average 90% F1, which bested
the state-of-the-art by 5%. In future, we plan to extend our work to a compre-
hensive policy engineering framework that includes extracting ABAC policies
from ACP sentences.
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