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Abstract. In this paper, we propose a novel approach for finding corre-
spondence between three-dimensional shapes undergoing non-rigid trans-
formations. Our proposal is based on the computation of the mean of
curvature fields values on a local parametrization constructed around
interest points on the surface. This local parametrization corresponds
to the Darcyan coordinates system. Thereafter, correspondence is found
by measuring the L2 distance between obtained descriptors. We conduct
the experimentation on the full objects of the Tosca database which
contains a set of 3D objects with non-rigid deformations. The obtained
results show the performance of the proposed approach.
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1 Introduction

Finding correspondence among three-dimensional shapes undergoing non-rigid
transformations is one of the most fundamental recent problems in computer
vision. It is actually a highly active research area, since it represents a key task in
diverse applications such as motion tracking and recognition, shape interpolation
and morphing, space-time reconstruction, shape retrieval and videos indexing.

Formally, matching pairs of shapes consists on establishing a map f : S → T
between two given surfaces S and T which are semantically equivalent or their
geometrical properties are similar.

Finding a correspondence between shapes in the rigid transformations case
has been efficiently treated. It consists on the estimation of a rotation and a
translation. However, matching two shapes undergoing non-rigid deformations,
still, remains a challenging problem. Unlike the rigid case, the non-rigid one
involves an important number of freedom degrees increasing with the number of
matched points and thus, estimating these non-rigid transformations is, always,
a hard task.
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The process of non-rigid shapes matching could be formulated as an opti-
mization problem. It consists on finding the full correspondence mapping all
point of one surface to their equivalent points on a second one with the minimal
distortion.

The non-rigid correspondence methods can be classified on two major cat-
egories. We consider full and partial correspondence. The full or the complete
one aims mapping the entire surfaces. While Partial matching is more complex,
since it requires identifying optimal sub-parts or regions on shapes for which a
right correspondence can be found.

According to the matched points resolution, the matching task can be also
distinguished by dense or sparse. For the dense correspondence, the goal is to
establish mapping between a large number of points on surface or even to find
point-to-point matching of the corresponding shape. The sparse one is defined for
a small number of elements or a set of feature points locally described. Besides,
considering smaller sets of points permits to reduce the computational com-
plexity comparing with the dense correspondence. Note that these categories of
shapes matching may be combined, hence full as well as partial correspondence
can be whether sparse or dense.

This challenging task has been widely addressed in the literature. Van Kaick
et al. [20] proposed a detailed survey on 3D shapes matching methods.

For the full correspondence category, notably the sparse resolution, diverse
methods have been proposed to tackle this problematic. The most common ones
of these methods consist first on extracting a set of feature points and then
constructing intrinsic surface descriptors.

Within this context, Ovsjanikov et al. [13] proposed an approach which relies
on matching feature points in a space of a heat kernel for a given point on a
surface and then the correspondence is obtained by searching the most simi-
lar heat kernel maps. Otherwise, Funkhouser et al. [17] used a Mobius voting
approach. This approach consists on applying a Mobius transform for triplets
of points, then generating conformal maps and voting for each couple of corre-
spondences. The pairs with high votes are hence matched. On the other hand,
Zhang et al. [21] proposed a method based on searching for correspondences
while minimizing alignment and deformation error. Other alternative for the
sparse correspondence searching, is presented by Bronstein et al. [2], by intro-
ducing the generalized multidimensional scaling (GMDS) which allows finding
the minimum-distortion embedding of one surface into another. In the same con-
text, Sahillioğlu et al. [16] presented a method based on greedy optimization of
an isometric distortion function.

For the dense resolution of full matching, various methods in the literature
seek to find correspondences for all points on a surface. Kim et al. [8] proposed
to combine multiple low-dimensional intrinsic maps to produce a blended map.
They, then, associated confidence and consistency weights to each map and find
the best blending to establish a final correspondence. For the same purpose,
Bronstein et al. [3] replaced the geodesic distance in the GromovHausdorff frame-
work by the diffusion distance. Jiang et al. [7] proposed to embed the shapes into
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a spectral domain, and, then, to find the correspondence using a non-rigid vari-
ant of the ICP (Iterative Closest Point) algorithm. Very recently, Lähner et al.
[10] proposed an algorithm for non-rigid 2D-to-3D shape matching, which con-
sists on finding the shortest circular path on the product 3-manifold of the surface
and the curve. In [14], Sahillioğlu et al. implemented an optimization mechanism
of the method proposed by Sahillioğlu et al. [16] idea improved within the EM
(Expectation-Maximization) framework and coupled with a more sophisticated
sampling scheme.

Furthermore, for the partial category, with either dense or sparse resolu-
tion, different approaches exist for searching the correspondent parts of two
given shapes. The common strategy to establish partial correspondence, for some
methods, is to represent regions by descriptors and, then, to search the similarity
between them. In this context, Funkhouser et al. [5] introduced a priority-driven
algorithm for searching similar shapes from a large database of 3D objects. The
authors used a priority queue of potential sets of partial matches sorted by
a cost function representing feature dissimilarity and geometric deformation.
Van Kaick et al. [19] explored the bilateral map in order to present a local shape
descriptor whose region of interest is defined by two feature points instead of
one unlike classical descriptors. Van Kaick et al. proved that their approach is
more effective for partial matching but it’s not the case when the shapes have
strong intrinsic symmetries.

Hence some other alternatives compute a partial correspondence without
relying on shape descriptors, such as the method of Bronstein et al. [1] whose
main contribution is a framework for regularized partial matching of shapes
taking into account three criteria, which are the regularity, the similarity and the
size of parts. The authors relied on the Mumford-Shah functional to formulate
the regularization criterion. Moreover, Sahillioğlu et al. [15] proposed a rank-
and-vote-and-combine (RAVAC) algorithm that identifies and ranks potentially
correct matches by exploring the space of all possible partial maps between shape
extremities.

We propose in this paper a novel method for the sparse correspondence
between 3D shapes undergoing non-rigid transformations. Our approach consists
on an intrinsic local description of surfaces extremeties based on the construc-
tion of local discrete representation known by Darcyan Coordinates System. For
each discrete representation around an extreme point on the surfaces, principal
curvatures field are computed as well. The most similar point descriptors are
therefore matched in the mean of the L2 distance.

Thus, the present paper is organized as follow: We present in the second
section the proposed descriptor construction steps. The next section is conse-
crated to the representation of our 3D local matching approach. Experimenta-
tions on 3D objects from the Tosca database and results discussion are illustrated
in the fourth section.
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2 3D Local Surface Description

We propose to locally describe the partial part of a surface around an extreme
point of the surface with curvature. Since two acquisitions of the same object
can lead to two different meshes, it is necessary first of all to extract a local
representation around the extreme point which is invariant under the initial
parametrization of the mesh. We propose to use the Darcyan representation. We
present in this part all the steps of the proposed approach construction.

2.1 Brief Recall of the Darcyan Representation

Here, we recall the construction process of the well known Darcyan Coordinates
System introduced by D’Arcy Thompson [18]. The parametric surface represen-
tation based on these coordinates system relatively to a given reference point
on surface is, in fact, obtained by the superposition of the geodesic level curves
around the reference point and the radial lines coming from the same point.

Let S be a two dimensional differential manifold, and let consider Ur the
geodesic potential field coming from a reference point r on S. The function
Ur : S → R+ computes for any point p on S the length of the geodesic curve
joining it to the reference point r. This function is well defined, since a geodesic
curve between two points of a 2D differential manifold exists [4].

Construction of the Geodesic Level Curves. A geodesic level curve of
value equal to λ around a reference point r on the surface S can be formulated
as follows:

Lλ
r = {p ∈ S;Ur(p) = λ} (1)

Lλ
r is materialized by a set of all points on S having the same geodesic distance

λ from r. Therefore, the surface S can be approximately reconstructed by all
geodesic level curves, as shown in Fig. 1, so that, S ≈ ∪λLλ

r .

Fig. 1. Geodesic level curves analytically extraction on a sphere around a reference
point
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Construction of the Radial Lines Curves. We remind as well as the process
of radial lines curves construction from a reference point r of the surface S.

Like mentioned in [6], the radial curves represent a solution of the following
system:

⎧
⎨

⎩

dP (t)
dt = −∇Ur(P )

P (0) = r
dP (t)

dt |t=0= α

(2)

where P (t) is the geodesic path emanating from r and following the opposite
gradient ∇ direction on Ur. Radial lines curves, denoted by Cα, are therefore
generated according to the angular direction α which can be arbitrary taken.
Similar to geodesic level curves, a reconstruction of the surface S can be approx-
imated by ∪αCα, which is illustrated in Fig. 2.

Fig. 2. Radial lines analytically extraction on a sphere from a reference point

The Darcyan Representation. Here we define Darcyan representation D as
the superposition of both n geodesic level curves and m radials lines curves
relatively to a given point r.

Dk,l(r) =
{

Lλk
r

⋃
Cαl

r , 1 ≤ k ≤ n, 1 ≤ l ≤ m
}

The Fig. 3 illustrates the steps of Darcyan coordinate system construction.
We propose to compute the curvature values on the intersection points between
the radial line curves and the geodesic level ones of the Darcyan coordinate
system. These intersection points are invariant under the M(3) group. They are
also ordered since each point on the surface is indexed by the geodesic level curve
and the radial one to which it belongs.

2.2 Brief Recall of the Curvature Computation

First, we recall some useful facts for the curvature calculation on surface.
Let X : (u, v) ∈ D ⊂ R2 → (x(u, v), y(u, v), z(u, v)) ∈ S ⊂ R3 be a parame-

trization of S.
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Fig. 3. Darcyan system reconstruction: Radial curves (a), geodesic level curves (b) and
the superposition of both system of curves (c)

We consider (u, v) the corresponding basis of the tangent plane to S at a
point p = X(xu, xv). N(p) = xu∧xv

‖xu∧xv‖ is the normal vector to S at p, according
to a chosen orientation.

Therefore, the curvature expression is given using the following coefficients:

E = xu.xu, F = xu.xv, G = xv.xv, L = xuu.
→
N,M = xuv.

→
N andN = xvv

→
N

KG =
LN − M2

EG − F 2

KM =
EN − 2FM + GL

2(EG − F 2)

where E, F and G are the first fundamental coefficients, while L, M , N are the
second fundamental coefficients.

The quantities KG and KM are the Gaussian curvature and the Mean cur-
vature p = X(xu, xv) respectively.

Thus, the principal curvatures are derived from these expressions KG =
kmax.Kmin and KM = (kmax+kmin)

2 .
kmax and kmin define the principal curvatures of the surface as, respectively,

the maximal and the minimal curvature.

2.3 The Proposed Local Descriptor

We propose, here, a novel 3D shape descriptor which explores an intrinsic geo-
metric property, principal curvatures fields on a local parametrization which is
invariant under Euclidean motions.

The proposed descriptor relies on the computation of both principal maximal
and minimal curvature field for a discrete point picked on a given geodesic level
curve in the parametric representation, since these set of curves are invariant
under motion group.

We propose to compute the mean of both principal maximal and min-
imal curvatures on the intersection points of each geodesic level curve. We
denote ki

max and ki
min the mean of, respectively, kmax and kmin for the ith
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Fig. 4. Illustration of the proposed descriptor: (a) the Darcyan representation con-
struction, (b) the vector of curvature fields computation and the obtained intersection
points (in red) (Color figure online)

geodesic level curve. Thus the novel descriptor is defined by
{

k1
max, k1

min, ..,

ki
max, ki

min, ..., km
max, km

min

}

1≤i≤m
. The proposed descriptor is illustrated in

Fig. 4.

3 3D Local Matching

Once we have extracted a set of interest points from shape extremities by appling
an Average Geodesic Distance function (AGD) [12], we compute the proposed
descriptor around each point of interest. Thus, we obtain vectors consisting on
the mean of principal curvature field values.

After executing this process, the similarity between the acquired vectors is
measured in term of L2 distance. The full approach that we propose in shown

Fig. 5. 3D local correspondence approach
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in Fig. 5. We compute, indeed, the distance between all the pairs of vectors and
thereafter, correspondent points are found when the resulting distance is the
minimal one.

4 Experimentation

In order to evaluate the efficiency of our approach, we have conducted experi-
ments on 3D shapes in different poses from the TOSCA database with non rigid
deformations.

4.1 The Used Database

We have conducted experiments on the high resolution TOSCA database, widely
used in a variety of 3D shape correspondence approaches, which contains 80
meshes representing people and animals in a variety of poses. The meshes are
grouped in 8 groups with common topology [1]. The reference points and the
correspondence ground truth are provided in the evaluation benchmark proposed
by [8].

4.2 Approximation on 3D Meshes

Since 3D surfaces are usually approximated by 3D meshes, we use the Fast
Marching Method [9] for the geodesic distances computation. We, as well as, use
Meyer et al. [11] algorithm for estimating the principal curvatures. Moreover,
All the objects of the database need a scale normalization.

Fig. 6. Local parametric representation around points of interest on David model and
the obtained matches
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Fig. 7. Matching results for various models from the Tosca database

Fig. 8. Obtained correspondence rates for Tosca database

After being constructed, the sets of two curves require an interpolation step
in order to increase their resolution and have more accuracy. Figure 6 illustrates
local parametric representation around points of interest on the object David
and the obtained matches.
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Fig. 9. Incorrect matches (in blue) due to symmetric shapes (Color figure online)

4.3 Obtained Results

We evaluate our matching approach on different objects of the Tosca database.
The Fig. 7 illustrates the matching results obtained after applying our process
for finding correspondence between some pairs of shapes in various poses. In
fact, our method involves important correspondence rates varying from 75% to
100% according the used objects. The Fig. 8 shows the resulting rates.

Beside the correct matches, correspondence errors exist in some cases. One
of the factors of these errors, is the symmetry which appears in the majority of
the used database models. Figure 9 shows some matching errors which are due
to symmetric objects.

5 Conclusion

We have presented a novel approach to find correspondence between pairs of sur-
faces undergoing non-rigid transformations. This procedure relies on the mean
values of principal curvature fields computation on a intrinsic local parametriza-
tion around reference points extracted on the extremities of the surface.

The performance of our local descriptor is evaluated on different models
from Tosca Database. The first obtained results have shown the accuracy of
our approach to establish correspondence among non-rigid shapes relying on the
reached rates. Nevertheless, our matching process may lead to some errors and
this is due to certain limitations such as symmetric shapes.

We intend, in the future works, to handle the problem of symmetry. In other
hand, we aim to optimize the resolution of our intrinsic descriptor by finding the
optimal number of the geodesic levels curves and the radial lines curves. We also
intend to perform the experimentation on others 3D non-rigid databases with
different properties.
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