Skip to main content

2-Amino-5-Bromo-3-Iodoacetophenone and 2-Amino-5-Bromo-3-Iodobenzamide as Synthons for Novel Polycarbo-Substituted Indoles and Their Annulated Derivatives

  • Conference paper
  • First Online:
Emerging Trends in Chemical Sciences (ICPAC 2016)

Included in the following conference series:

  • 632 Accesses

Abstract

2-Amino-5-bromo-3-iodoacetophenone and 2-amino-5-bromo-3-iodobenzamide represent important synthons for the design and synthesis of various nitrogen-containing heterocyclic compounds and their annulated derivatives. We have demonstrated that these halogenated aniline derivatives undergo palladium catalyzed Sonogashira cross-coupling with terminal acetylenes to afford the corresponding 2-amino-3-(arylalkynyl)acetophenones and 2-amino-3-(arylalkynyl)benzamides. These alkynylated aniline derivatives in which the alkynyl moiety is adjacent to the nucleophilic nitrogen atom were, in turn, subjected to palladium chloride-mediated heteroannulation to yield novel 1-(2-aryl-1H-indol-7-yl)ethanones and 2-aryl-1H-indole-7-carboxamides, respectively. Molecular hybridization to append an indole moiety to a chalcone framework was achieved via initial Claisen-Schmidt aldol condensation of 2-amino-5-bromo-3-iodoacetophenone with benzaldehyde derivatives followed by sequential palladium catalyzed Sonogashira cross-coupling and heteroannulation. Likewise, boric acid-mediated cyclocondensation of the 3-alkynyl-5-bromoanthranilamides with benzaldehyde derivatives followed by palladium chloride-mediated cyclization afforded the corresponding 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang M-Z, Chen Q, Yang G-F (2015) A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 89:421–441

    Article  CAS  Google Scholar 

  2. Carbone M, Li Y, Irace C, Mollo E, Castelluccio F, Pascale AD, Cimino G, Santamaria R, Guo Y-W, Gavagnin M (2011) Structure and cytotoxicity of phidianidines A and B: first finding of 1,2,4-oxadiazole system in a marine natural product. Org Lett 13:2516–2519

    Article  CAS  Google Scholar 

  3. Lin H-Y, Snider BB (2012) Total synthesis and biological evaluation of phidianidines A and B uncovers unique pharmacological profiles at CNS targets. J Org Chem 77:4832–4836

    Article  CAS  Google Scholar 

  4. Raghunath SA, Mathada KN (2014) Synthesis and biological evaluation of aminonaphthols incorporated indole derivatives. Int J Med Chem:1–12

    Google Scholar 

  5. Shigemitsu Y, Wang B-C, Nishimura Y, Tominaga Y (2011) Photophysical properties of arylcarbonitrile derivatives: synthesis, absorption and emission spectra, and quantum chemical studies. Dyes Pigments 92:580–587

    Article  Google Scholar 

  6. Pannipara M, Asiri AM, Alamry KA, Arshad MN, El-Daly SA (2015) Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: excited state intramolecular charge transfer and fluorescence quenching studies. Spectrochim Acta A 136:1893–1902

    Article  CAS  Google Scholar 

  7. Kim KN, Song KC, Noh JH, Chang S-K (2009) A simple phenol-indole dye as a chromogenic probe for the ratiometric determination of water content in organic solvents. Bull Kor Chem Soc 30:197–200

    Article  CAS  Google Scholar 

  8. Hwu JR, Hsu YC, Josephrajan T, Tsay S-C (2009) Fine tuning of blue photoluminescence from indoles for device fabrication. J Mater Chem 19:3084–3090

    Article  CAS  Google Scholar 

  9. Chandrasekhar S, Mukherjee S (2015) A convenient modification of the Fischer indole synthesis with a solid acid. Synth Commun 45:1018–1022

    Article  CAS  Google Scholar 

  10. Bobko MA, Evans KA, Kaura AC, Shuster LE, Su D-S (2012) Synthesis of 2,5-disubstituted-3-cyanoindoles. Tetrahedron Lett 53:200–202

    Article  CAS  Google Scholar 

  11. Matcha K, Antonchick AP (2014) Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes. Angew Chem Int Ed 53:11960–11964

    Article  CAS  Google Scholar 

  12. Köhling P, Schmidt AM, Eilbracht P (2003) Tandem hydroformylation/Fischer indole synthesis: a novel and convenient approach to indoles from olefins. Org Lett 5:213–216

    Article  Google Scholar 

  13. Eduque RM, Creenia EC (2015) Microwave-assisted Fischer indole synthesis of 1,2,3,4-tetrahydrocarbazole using pyridinium-based ionic liquids. Procedia Chem 16:413–419

    Article  CAS  Google Scholar 

  14. Hu Y-L, Fang D, Li D-S (2016) Novel and efficient heterogeneous 4-methylbenzenesulfonic acid-based ionic liquid supported on silica gel for greener Fischer indole synthesis. Catal Lett 146:968–976

    Article  CAS  Google Scholar 

  15. Kouznetsov V, Zubkov F, Palma A, Restrepo G (2002) A simple synthesis of spiro-C6-annulated hydrocyclopenta[g]indole derivatives. Tetrahedron Lett 43:4707–4709

    Article  CAS  Google Scholar 

  16. Barluenga J, Sanz R, Granados A, Fananas FJ (1998) First intramolecular carbometalation of lithiated double bonds. A new synthesis of functionalized indoles and dihydropyrroles. J Am Chem Soc 120:4865–4866

    Article  CAS  Google Scholar 

  17. Oskooie HA, Heravi MM, Behbahani FK (2007) A facile, mild and efficient one-pot synthesis of 2-substituted indole derivatives catalyzed by Pd(PPh3)2Cl2. Molecules 12:1438–1446

    Article  CAS  Google Scholar 

  18. Cacchi S, Fabrizi G, Goggiamani A, Lazzetti A, Verdiglione R (2015) A facile palladium-catalyzed route to 2,5,7-trisubstituted indoles. Tetrahedron 71:9346–9356

    Article  CAS  Google Scholar 

  19. Zhou H-B, Lee JH, Mayne CG, Carlson KE, Katzenellenbogen JA (2010) Imaging progesterone receptor in breast tumors: synthesis and receptor binding affinity of fluoroalkyl-substituted analogues of tanaproget. J Med Chem 53:3349–3360

    Article  CAS  Google Scholar 

  20. Khoza TA, Makhafola TJ, Mphahlele MJ (2015) Novel polycarbo-substituted imidazo[1,2-c]quinazolines: synthesis and cytotoxicity studies. Molecules 20:22520–22533

    Article  CAS  Google Scholar 

  21. Mphahlele MJ, Makhafola TJ, Mmonwa MM (2016) In vitro cytotoxicity of novel 2,5,7-tricarbo-substituted indoles derived from 2-amino-5-bromo-3-iodoacetophenone. Bioorg Med Chem 24:4576–4586

    Article  CAS  Google Scholar 

  22. Maluleka MM, Mphahlele MJ (2013) 6,8-Dibromo-4-chloroquinoline-3-carbaldehyde as a synthon in the development of novel 1,6,8-triaryl-1H-pyrazolo[4,3-c]quinolines. Tetrahedron 69:699–704

    Article  CAS  Google Scholar 

  23. Mphahlele MJ, Khoza TA, Maluleka MM (2014) Suzuki cross-coupling of the 2-aryl-6,8-dibromo-2,3-dihydroquinazolin-4(1H)-ones and transformation of the resulting 2,6,8-triaryl-2,3-dihydroquinazolin-4(1H)-ones. Bull Chem Soc Ethiop 28:81–90

    Article  CAS  Google Scholar 

  24. Mphahlele MJ, Khoza TA, Mabeta P (2017) Novel 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones: synthesis and biological evaluation. Molecules 22:55–68

    Article  Google Scholar 

  25. Black DSC, Deb-Das RB, Kumar N (1992) Nitrones and oxaziridines. XLIII. Synthesis of an indol-7-yl-substituted 1-pyrroline 1-oxide and related compounds. Aust J Chem 45:1051–1056

    Article  CAS  Google Scholar 

  26. Owa T, Yoshino H, Okauchi T, Yoshimatsu K, Ozawa Y, Suki NH, Nagasu T, Koyanagi N, Kitoh K (1999) Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J Med Chem 42:3789–3799

    Article  CAS  Google Scholar 

  27. Mohan R, Banerjee M, Ray A, Manna T, Wilson L, Owa T, Bhattacharyya B, Panda D (2006) Antimitotic sulfonamides inhibit microtubule assembly dynamics and cancer cell proliferation. Biochemistry 45:5440–5449

    Article  CAS  Google Scholar 

  28. Outlaw VK, Townsend CA (2014) A practical route to substituted 7-aminoindoles from pyrrole-3-carboxaldehydes. Org Lett 16:6334–6337

    Article  CAS  Google Scholar 

  29. Saroj MK, Sharma N, Rastogi RC (2012) Photophysical study of some 3-benzoylmethyleneindol-2-ones and estimation of ground and excited states dipole moments from solvatochromic methods using solvent polarity parameters. J Mol Struct 1012:73–86

    Article  CAS  Google Scholar 

  30. Kumar D, Kumar NM, Akamatsu K, Kusaka E, Harada H, Ito T (2010) Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg Med Chem Lett 20:3916–3919

    Article  CAS  Google Scholar 

  31. Robinson MW, Overmeyer JH, Young AM, Erhardt PW, Maltese WA (2012) Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J Med Chem 55:1940–1956

    Article  CAS  Google Scholar 

  32. Gao W, Liu R, Li Y, Cui P (2014) Two efficient methods for the synthesis of novel indole-based chalcone derivatives. Res Chem Intermed 40:3021–3032

    Article  CAS  Google Scholar 

  33. Özdemir A, Altintop MD, Turan-Zitouni G, Çiftçi GA, Ertorum I, Alataş Ö, Kaplancikli ZA (2015) Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents. Eur J Med Chem 89:304–309

    Article  Google Scholar 

  34. Tran PH, Tran HN, Hansen PE, Do MHN, Le TN (2015) A simple, effective, green method for the regioselective 3-acylation of unprotected indoles. Molecules 20:19605–19619

    Article  CAS  Google Scholar 

  35. Faul MM, Winneroski LL (1997) Palladium-catalyzed acylation of a 1,2-disubstituted 3-indolylzinc chloride. Tetrahedron Lett 38:4749–4752

    Article  CAS  Google Scholar 

  36. Black DSC, Kumar N, Mitchell PSR (2002) Synthesis of pyrroloquinolines as indole analogues of flavonols. J Org Chem 67:2464–2473

    Article  CAS  Google Scholar 

  37. Watterson SH, Dhar TGM, Ballentine SK, Shen Z, Barrish JC, Cheney D, Fleener CA, Roleau KA, Townsend R, Hollenbaugh DL, Iwanovicz EJ (2003) Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3. Bioorg Med Chem Lett 13:1273–1276

    Article  CAS  Google Scholar 

  38. Mphahlele MJ, Maluleka MM (2016) Trifluoroacetylation of indole-chalcones derived from the 2-amino-3-(arylethynyl)-5-bromo-iodochalcones. J Fluorine Chem 189:88–95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of South Africa and the National Research Foundation (SA) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malose J. Mphahlele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mmonwa, M.M., Mphahlele, M.J. (2018). 2-Amino-5-Bromo-3-Iodoacetophenone and 2-Amino-5-Bromo-3-Iodobenzamide as Synthons for Novel Polycarbo-Substituted Indoles and Their Annulated Derivatives. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Emerging Trends in Chemical Sciences. ICPAC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-60408-4_23

Download citation

Publish with us

Policies and ethics