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Abstract Huntington’s disease (HD) is a fatal, dominantly inherited neurodegen-

erative disorder caused by a CAG trinucleotide expansion in the Huntingtin (HTT)
gene, leading to an expanded polyglutamine (polyQ) region in the encoded protein

HTT. We have used homologous recombination (HR) to genetically correct HD

patient-derived induced pluripotent stem cells (iPSCs) and found that this reversed

HD disease phenotypes. We have utilized exploited genome editing tools including

TALENs (Transcription like activator effectors) and CRISPR (Clustered Regula-

tory Interspaced Short Palindromic Repeats)/Cas9 technology to carry out genetic

correction or expansion, and we were able to detect HR without selection in human

cells. The overall goal is to use this technology to model HD-relevant cell types and

better understand disease progression by leveraging system biology approaches. To

understand the disease progression, isogenic iPSC lines were created. We found

that the disease phenotypes only manifested in the differentiated neural stem cell

(NSC) stage, not in iPSCs. Transcriptomic analysis of HD iPSCs and HD NSCs

compared to isogenic controls was utilized to understand the molecular basis for the

CAG repeat expansion-dependent disease phenotypes in NSCs. Differential gene

expression and pathway analysis identified transforming growth factor β (TGF-β)
signaling, netrin-1 signaling and medium spiny neuron (MSNs) maturation and

maintenance as the top dysregulated pathways in HD NSCs. The ability to create

additional isogenic cell lines through CRISPR-mediated HR will further enhance

our understanding of HD progression. These lines can be manipulated with CRISPR

to understand the effects of common SNPs (single nucleotide polymorphism) that

modulate disease onset in HD, allowing the identification of new pathways and

helping to elucidate potential therapeutic targets for HD. Beyond drug discovery,

the CRISPR system could eventually be optimized to use in vivo, correcting a

patient’s disease-causing mutation, in the asymptomatic stages of HD.
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Huntington’ Disease

Huntington’s disease (HD) is a devastating, dominantly inherited movement and

psychiatric disorder that is caused by expansion of a CAG trinucleotide repeat in the

first exon of the Huntingtin gene (HTT), resulting in translation of an expanded

polyQ repeat in the HTT protein. The production of the abnormal expanded polyQ-

containing HTT protein leads to a dramatic loss of striatal and cortical neurons and

pro-survival growth factors such as BDNF (brain derived neurotrophic factor) in

HD patients. The polyQ expansion in the HTT protein leads to disrupted cellular

homeostasis and activation of cellular death pathways (Fig. 1). Since the disease is

inherited in an autosomal dominant fashion, each child of an affected parent has a

50% chance of being affected. HD generally manifests in mid-life, with a mean age

of onset of 35–45 years of age. The disease begins with cognitive disturbances and

progresses to severe and debilitating motor symptoms (chorea) usually accompa-

nied by psychiatric disturbances, with death following in about 15–20 years

(Landles and Bates 2004). The current therapeutic approaches in HD focus on

normalizing molecular pathways disturbed in HD or on lowering the levels of the

mutant HTT protein (Canals et al. 2004; Conforti et al. 2008; Zuccato et al. 2008).

To date none of these approaches are approved for use outside of clinical trials and

they will not cure the disease.

In this chapter, we discuss the use of gene editing tools to model neurological

diseases such as HD as well as the potential to use this technology to treat genetic

neurological diseases.

Fig. 1 Illustration on the neuronal changes occurring in the striatum of a Huntington’s disease

patient. The exon 1 CAG expansion in the HTT allele results in a mutant protein being formed; the

mutant protein aggregates and is also cleaved into toxic fragments. The aggregates and the toxic

fragments result in a disrupted cellular homeostasis and eventual neuronal cellular death in the

striatum
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Gene Editing Enzymes

Targeted gene editing has evolved dramatically in the last 25 years. While originally

a technique that a handful of laboratories had mastered, it is now a common tool used

in hundreds of laboratories around the world. One family of gene editing proteins is

the customized zinc finger proteins (Segal and Barbas 2000; Wolfe et al. 2000; Pabo

et al. 2001; Nagaoka and Sugiura 2000). These proteins were adapted for targeted use

in the late 1990s (Liu et al. 1997; Segal et al. 1999; Dreier et al. 2001). Each zinc

finger protein could be designed to recognize three different base pairs on DNA

through various interactions between the proteins alpha helix amino acids and the

DNA base pairs (Segal and Barbas 2001). To recognize a specific sequence of DNA,

the zinc fingers could be attached to each other, with six zinc fingers recognizing a

unique 18-base pair sequence in an organism’s genome. The zinc finger proteins

could have effector or nuclease domains attached, allowing for gene regulation or

gene replacement. The effector domains included VP64 for gene activation, KRAB

for gene silencing and DNMT1 for methylation (Beerli et al. 1998; Rivenbark et al.

2012). The nuclease domain could cut targeted genomic sites and allow for muta-

genesis or homologous recombination at enhanced efficiency. Zinc finger proteins

have been successfully used in human cells, animal organs and have reached Phase II

human clinical trials (Geurts et al. 2009; Urnov et al. 2005; SangamoBiosciences

2001; Eisenstein 2012). Although promising, zinc fingers presented several chal-

lenges for researchers. Their targeting ability was limited, they required specialized

design techniques and they exhibited a frequent incidence of off-target events (Cornu

and Cathomen 2010; Gupta et al. 2010; Gabriel et al. 2011). Some advances have

been made to reduce the off-target potential and increase detection of these events

(Zykovich et al. 2009; Cornu et al. 2008). The therapeutic potential of zinc fingers for

a variety of diseases, including HD, continues to be explored by the biotechnology

company Sangamo (Cornu et al. 2008; Wolffe 2016).

In 2009, a new gene editing protein was described, transcription activator-like

effectors (TALEs; Boch et al. 2009; Moscou and Bogdanove 2009). These proteins

were originally characterized in Xanthomonas bacteria and represented a major

advance for DNA regulating proteins. TALEs, unlike zinc fingers, made contact with

individual DNA base pairs, which greatly expanded the sequences that could be

targeted in the genome (Moscou and Bogdanove 2009). They were also much easier

to design and assemble. Much like zinc fingers, TALEs could have effector or nuclease

domains attached to the DNA binding domain, allowing for the DNA to be cut or for

genes to be regulated (Christian et al. 2010; Maeder et al. 2013a, b; Cong et al. 2012).

Promising experiments in a variety of organisms have validated the efficacy of TALEs,

although no human clinical trials have begun. A recent publication has shown the

ability of TALEs to specifically silence the mutant HTT allele in cell culture models or

to engineer an allelic series into the HTT locus (Fink et al. 2016;Wang et al. 2013). The

TALEs still exhibit off-target effects and may have potential immune issues (Guilinger

et al. 2014).

Gene editing became a widely accessible technology in 2012 with the charac-

terization of the CRISPR system and its implications for targeted gene editing and
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regulation. The CRISPR system is composed of a Cas9 nuclease and a gRNA

complex. To cut the DNA, Cas9 attaches to the guide RNA (gRNA), which targets

a specific site in the organism’s DNA (Jinek et al. 2012; Wiedenheft et al. 2012).

This system is found in archea and bacteria and is used as a natural defense

mechanism against bacteriophages. The system has been characterized and adapted

for mammalian-targeted genome editing. The gRNA has one targeting requirement,

a PAM motif (typically a NGG) at the 30 end of the DNA targeting site; this

sequence is common in DNA and thus almost any gene can be targeted with the

CRISPR system (Gilbert et al. 2013; Qi et al. 2013). As with previous gene editing

proteins, the Cas9 can be modified to either silence or activate gene transcription

(Fig. 2; Sander and Joung 2014; Larson et al. 2013). Due to some initial off-target

cleavage events, the Cas9 nuclease was modified to become a Cas9 nickase (Cas9n;

Ran et al. 2013). This modification drastically increased targeting specificity, as the

binding of two Cas9n proteins targeting two different DNA sites was required to

make a double strand break in the DNA and encouraged homologous recombination

(HR) with a potential donor DNA strand. Overall the off-target effects of Cas9n

could be reduced to background levels (O’Geen et al. 2015; Wu et al. 2014). The

modified Cas9n was found to have similar cleavage efficiency when two gRNAs

were used, one targeted on each strand of the DNA, resulting in a double strand

break. The technique has been widely adopted to create disease-modeling cell lines,

rodent and non-human primate models and in non-viable human embryos

Fig. 2 Illustrations of

different CRISPR/Cas9

uses with variable effector

domains. The wild-type

Cas9 nuclease can be used

to initiate double strand

breaks, encouraging

homologous recombination.

The inactive Cas9 (dCas9)

attached to a DNMT3 can

be used for site-specific

methylation, resulting in

semi-permanent gene

repression. A dCas9 can

have a KRAB domain

attached for temporary gene

repression or a VP64

domain for activation
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(Liang et al. 2015; Chen et al. 2015). What has made the CRISPR system so

accessible is that, unlike the zinc fingers and TALEs, the same core protein,

Cas9, is used to target any sequence, whereas the targeting portion of the CRISPR

system, the gRNA, is what varies. The gRNA can be designed and synthesized

either in a standard lab or by an outside company. This separation of the targeting

portion (gRNA) of the CRISPR system from the modifying portion (Cas9 or other

effectors) allows for targeting multiple genes in one experiment (Wang et al. 2013).

The ability to target multiple genes in a single experiment drastically reduces the

time needed to model complex genetic disorders in which more than one gene is

involved. All of these unique characteristics have resulted in a rapid popularization

of the CRISPR system in research labs, with thousands of papers having been

published in the last five years.

Uses for Gene Editing to Understand Human Diseases

Due to their ability to precisely target a gene or regulatory element, genome editing

tools have been widely utilized to model human diseases both in cells and in animals.

Neurodegenerative diseases such as Parkinson’s disease and HD have been modeled

by introducing disease-causing mutations into human induced pluripotent stem cells

(iPSCs) facilitated by genome editing tools (O’Brien et al. 2015; Soldner et al. 2011).
CRISPR/Cas9 or TALENs can also be injected into zygotes or embryos to get

genetically modified animals. Researchers have injected TALEN-expressing

mRNAs into zebrafish embryos to target the gene glucocerebrosidase 1, which is

mutated in the lysosomal storage disorder Gaucher’s disease. The introduction of

these TALENs caused a deletion mutation of the protein Glucocerebrosidase 1, and

characteristics of the Gaucher’s disease were present in this zebrafish model

(Keatinge et al. 2015). Duchenne muscular dystrophy (DMD) is a neuromuscular

disorder caused by a loss-of-function mutation of the gene dmd. A DMD rat model

was generated by delivering CRISPR system into rat zygotes to target the dmd gene

(Nakamura et al. 2014). These disease models are valuable tools for the exploration

of disease mechanisms and for the pursuit of therapeutics.

When combined with human pluripotent stem cells, genome editing tools can

provide some unique advantages in disease modeling and mechanism study. Human

pluripotent stem cells, including iPSCs and embryonic stem cells, can be directed to

any cell types of the human body with the correct differentiation conditions. Thus

relevant cell types for the disease and changes in this development can be studied in

these models. When genome editing tools are used to add or remove a mutation at the

pluripotent stem cell stage, isogenic cell lines with an almost identical genetic back-

ground are obtained. As cells are differentiated into more restricted stem cells and

terminally differentiated cells, the isogenic background will persist. Phenotypic

changes of these cells are most likely a result of the mutation, as they have an identical

genetic background. However, one may still have to consider epigenetic changes and

mitochondrial mutations that may remain harbored in the patient’s iPSCs’ background
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(Chinnery et al. 2012; Calvanese et al. 2009). These isogenic cell lines can be subjected

to systematic approaches including DNAmicroarray, RNA-seq and mass spectrometry

for transcriptomic and proteomic information. Bioinformatic analysis can identify

interesting gene/protein targets or signaling pathways that have distinct disease-

associated patterns. The cleaner background of isogenic cell models should result in

more relevant and reliable hits. After proper validation, these potentially important

disease targets may lead to discovery of new mechanisms or drugs.

Recent advances in stem cell research suggest that iPSCs may provide novel

models of disease and new treatments for diseases. An isogenic iPSC line was

established in the Ellerby lab through traditional means of HR on a human HD

patient iPSC line. This isogenic line introduced a corrected donor strand for the CAG

expansion and corrected the disease allele to a wild type allele (An et al. 2012). The

isogenic corrected line had the exact same genetic background as the patient,

reducing the genetic variables that are present when one compares disease pheno-

types across multiple different patients to matched wild type individuals. One of the

first questions we addressed was whether we could take HD patient-derived iPSCs

and, through genetic correction of the disease allele, reverse disease phenotypes.

Interestingly, we did not detect phenotypes in the undifferentiated HD iPSCs but only

observed disease phenotypes in the differentiated neural stem cell (NSC) state, and

these phenotypes were reversible upon genetic correction of the patient mutation.

To understand the molecular basis for the CAG repeat expansion-dependent

disease phenotypes in iPSCs and NSCs, RNA-Seq was performed comparing the

isogenic corrected lines to HD iPSCs and HDNSCs.We observed that there were few

phenotypic differences between HD and wild type iPSCs, but there were substantial

differences—over 2000 dysregulated genes—in the NSCs. Some of the key pathways

that were dysregulated included TGF-β, netrin-1 signaling and development of the

striatum (Fig. 3; Ring et al. 2015). Particularly important, our isogenic HD-iPSCs

with corrected alleles identified the maturation or maintenance of medium spiny

neurons (MSNs) as being dysregulated (Ring et al. 2015). We showed that the

pathways or factors that were involved in this process were therapeutic targets for

HD (Ring et al. 2015). A subsequent publication from another group emphasized the

de-differentiation of MSNs or loss of MSN identity in HD is a major source of

dysfunction (Langfelder et al. 2016). These pathways offer new options for thera-

peutic treatments and drug targets. Using genetic engineering, we generated an

isogenic allelic HD iPSC series for HD modeling (CAG repeat of 21, 45, 72, 100).

By creating additional isogenic lines, the contribution of the CAG expansion to the

disease phenotypes can be elucidated from background variation; this information

can help guide researchers towards additional treatment targets (O’Brien et al. 2015).
Besides directly modifying the disease gene, genome editing tools can also be used

to engineer cells to facilitate disease research by making reporter cell lines. In an effort

to investigate the roles of a gene encoding a sodium channel subunit in epilepsy, a

tdTomato fluorescence protein gene cassette was inserted into iPSCs under a

GABAergic neuron-specific promoter with CRISPR/Cas9. When differentiated into

GABAergic neurons, these cells were red fluorescently labeled and could be readily

followed for electrophysiological studies (Liu et al. 2016). Another example is in the
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peripheral neuropathy Charcot–Marie–Tooth disease, type 1A. With TALENs a bio-

luminescent reporter was integrated under the regulation of the disease causing gene

pmp22, which allowed high throughput screening for reagents that can decrease

expression of this gene (Inglese et al. 2014). In an effort to better track the recombi-

nation repair efficiency in HD cells, the Ellerby lab has designed a myc-tagged donor

strand that, when incorporated into the cell, is detectable by bothWestern blot and PCR

amplification; these methods are so sensitive that recombination efficiencies can be

detected at levels as low as 5% (Fig. 4). For polyglutamine disease, it is also possible to

detect the prevalence of the polyglutamine expansion through the use of specific

antibodies, which detect the expanded polyglutamine region (Fig. 4; An et al. 2014).

The ability to qualitatively assess howmany cells have been corrected will increase the

field’s understanding of what may be a therapeutic level of correction for the disease.

Having specific tags to monitor genetic correction rates and resulting phenotypic

improvements will advance the field’s understanding toward designing genetic correc-
tion and optimize treatment conditions.

Fig. 3 A flow chart comparing the donor Huntington disease (HD) and genetically corrected

isogenic iPSCs and NSCs. Transcriptomic analysis was performed on the cell lines in which

significant differences were found in multiple signaling pathways. These newly identified path-

ways could result in additional drug targets
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Gene Editing In Vivo to Treat Genetic Diseases

With its extreme ease of use and targeting, the CRISPR system is being studied

extensively with a goal of in vivo correction of genetic mutations. Recent advances

have shown that it takes about 15 h for Cas9-mediated double strand breaks to be

repaired; this is potentially due to Cas9 remaining bound to the DNA for an

extended period of time and because it asymmetrically releases the target strand

(Richardson et al. 2016). This asymmetric release of the strand has given

researchers the ability to rationally design the donor strands in an effort to increase

gene correction percentages; it also provides additional insight as to how to target

and design the donor strands. The guide RNAs have also continued to evolve since

the first characterization of the CRISPR system. Initially there were two compo-

nents to the guide RNA, a crRNA and a gRNA, and these were able to be fused

creating a simpler method in which the gRNA could be delivered already assem-

bled. Multiple assembled gRNAs could be placed on the same plasmid, allowing for

multiple gene targeting with minimal plasmids (Wang et al. 2013; Hsu et al. 2013).

A couple of new CRISPR variants have been characterized that offer even lower

off-target binding levels and are smaller (Ran et al. 2015). Both of these new

Fig. 4 (a) Use of myc tag in corrected donor plasmid allows for both insertion screening at the

DNA level by PCR (left) and at the protein level by Western blot (right); red triangles indicate
expected band size. (b) Use of 1C2 antibody screening with an expanded donor plasmid, a rapid

method to optimize different gRNA combinations for homologous recombination efficiency
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characteristics may be useful in eventual patient treatment, as a smaller CRISPR

protein could be more easily packaged for delivery and lower off-target binding

increases the specificity of the CRISPR protein, restricting the effects to the

target site.

The most exciting application of genome editing tools in human genetic diseases

is genetic correction and normalization of those disease mutations. These have been

done in cells. For example, in Myotonic dystrophy type 1, a genetic modification

has been introduced by TALEN in a NSC model and this modification has shown

some restoration of disease phenotypes (Xia et al. 2015). More encouragingly,

genetic correction has been achieved in adult animals. Recently several groups

published genetic correction in a mouse DMD model. Adeno-associated virus-

delivered CRISPR/Cas9 was used to remove a mutation from the gene dmd. Partial
phenotypic recovery has been observed in these studies (Xu et al. 2016; Nelson

et al. 2016; Tabebordbar et al. 2016). The use of CRISPR in vivo to ablate the

rhodopsin gene carrying the dominant S334ter mutation in rats with severe auto-

somal dominant retinitis pigmentosa also highlights the use of genetic correction in

disease (Bakondi et al. 2016). These proof-of-principle experiments may be the first

steps towards overcoming many currently incurable genetic diseases. CRISPR

technology is already being used in human cells and disease models with the

eventual goal of patient treatment. A recent study conducted in China has even

used CRISPR technology on non-viable human embryos (Liang et al. 2015). As this

technology has advanced so rapidly, the scientific community has held a summit

meeting to discuss the potential future of CRISPR technology, much in the same

way the Asilomar Conference discussed recombinant DNA over 40 years ago

(Baltimore et al. 2015; Berg et al. 1975a, b).

In HD, it is possible that a variety of CRISPR tools could prove beneficial for

treatment. Previous studies have shown that a reduction in mutant HTT levels can

ameliorate symptoms of the disease (Canals et al. 2004; Conforti et al. 2008;

Zuccato et al. 2008). A recent study has shown reduction of mutant Huntingtin in

cells by using TALE-ATFs (artificial transcription factors) to specifically target the

mutant allele by targeting SNPs common on that allele. The TALE-ATF has a

KRAB domain attached that represses transcription of the mutant Huntingtin allele

(Fink et al. 2016). This technique has yet to be tried in Huntington model mice;

however, previous studies have used ATFs to repress transcription in the brains of

mice (Bailus et al. 2016). Another approach using CRISPR would involve increas-

ing transcription of genes that could be neuroprotective in HD; BDNF could be a

potential target for this type of therapy (Pollock et al. 2016). As screening studies

are further refined using more genetically engineered isogenic cell lines, it will be

possible to uncover additional gene regulation targets.

The ideal therapy for HD would involve gene replacement therapy, where the

mutant allele would be replaced by a corrected donor allele. Using the CRISPR

system, it will eventually be possible to do this correction in vivo. When designing

the donor strand, it is possible to detect site-specific insertion by PCR if a small tag

is added to the donor strand, allowing for optimization of different CRISPR

components (Fig. 4). After design and condition optimization, there are still several
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issues that need to be addressed to develop CRISPR into an in vivo therapy. One

area to examine is the immune response, as Cas9 is not an endogenous protein in

mammals, although there are mouse models that constitutively express Cas9 from

birth (Platt et al. 2014). Previous studies in humans with zinc finger proteins have

shown minimal immune response. Cas9 is not endogenous to animals and may

elicit an immune response if given over an extended period of time. A second major

concern for gene correction in vivo is the delivery of the CRISPR system to the

desired organ or tissue. For certain diseases, it may be possible to directly inject the

organ and correct only a subpopulation of the cells; for other diseases, especially

those that effect the brain, delivery is more difficult (Liu et al. 2016; Yin et al.

2016). Direct injection into the brain is possible, and packaging the CRISPR system

into an appropriately pseudotyped viral vector could allow for additional coverage

beyond the injection point. The CRISPR system has been packaged into both AAV

and lentivirus and used successfully in several mouse studies (Yin et al. 2016; Senis

et al. 2014; Wang et al. 2015; Graham 2016). Nanoparticles and purified proteins

are additional methods that have been used to successfully deliver CRISPR into

cells and tissues (Wang et al. 2016; Ramakrishna et al. 2014). Each of these

delivery methods has advantages and disadvantages, but with additional optimiza-

tion successful gene replacement therapy in vivo should be possible. Since early

HD diagnosis is possible, genetic correction therapy could be performed during the

asymptomatic stage, potentially preventing onset of the disease.

Conclusion

Genome engineering is providing neuroscientists with new methods to address

critical questions in the field and offers the hope for new treatments of neurological

genetic diseases. The application of genetic engineering to disease modeling is

accelerating efforts to understand the molecular mechanism of these diseases and

offers new approaches to identifying therapeutic targets and drugs. The recent

advances in genetic engineering allow for better modeling and understanding the

role of SNPs in diseases with complex genetic alterations. These new genomic

engineering technologies, which precisely alter the genome, are already offering

insights into the complexity of the nervous system, its normal function and alter-

ations in disease. Eventually these genome engineering technologies may correct

the disease allele in human patients (in vivo) before symptoms manifest, resulting

in therapy at the DNA level.
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