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Abstract. While basic Web analytics tools are widespread and provide
statistics about website navigation, no approaches exist for merging such
statistics with information about the Web application structure, content
and semantics. Current analytics tools only analyze the user interac-
tion at page level in terms of page views, entry and landing page, page
views per visit, and so on. We show the advantages of combining Web
application models with runtime navigation logs, at the purpose of deep-
ening the understanding of users behaviour. We propose a model-driven
approach that combines user interaction modeling (based on the IFML
standard), full code generation of the designed application, user tracking
at runtime through logging of runtime component execution and user
activities, integration with page content details, generation of integrated
schema-less data streams, and application of large-scale analytics and
visualization tools for big data, by applying both traditional data visual-
ization techniques and direct representation of statistics on visual models
of the Web application.

1 Introduction

In recent years, the software language engineering community has put more and
more emphasis on the design and experimentation of languages that cover the
requirement specification [5,6], design [30], and verification/validation [10,14–16,
19] of software artifacts. Some of these experiences have also spawned commercial
products and thus have been applied in industrial settings, with excellent results.

On the other side, a completely different line of work is ongoing regarding
the usage analysis of Web applications with the aim of extracting leads to opti-
mizing the user experience. Indeed, with the increasing need to meet customer
preferences and to understand customer behavior, Web analytics has become the
tool of choice towards taking informed business and interaction design decisions.
Several tools exist that support analysis of Web server logs and extract informa-
tion on application usage (based on data mining, machine learning, and big data
analysis; or simpler pragmatic approaches in the UX field, like A/B split testing).
However, those tools are unaware of the design structure and the actual content
managed by the application. Therefore, understanding the relation between the
output of the quantitative log analysis, the structure of the application, and the
displayed content is not an easy task, especially for large and complex systems.
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Some analytics tools, like Google Analytics [22], can take into account the page
content but this implies a high development overhead which yields to high risk
of errors and maintainability.

In this paper we propose a model-driven engineering approach that com-
bines user interaction models with user tracking information and details about
the visualized content in the pages. Our claim is that integration of appropri-
ately designed modeling languages for user interaction development and Web log
analytics approaches has high potential of delivering valuable insights to design-
ers and decision makers on the continuous improvement process of applications.
We show our full development cycle from visual application modeling (through
the OMG’s standard Interaction Flow Modeling Language, IFML [8,24]), to
full code generation, user interaction log collection and integration with content
and semantics of visualized data, down to display of results both through tradi-
tional data visualization techniques and with direct representation of statistics on
visual models of Web applications represented with the OMG’s IFML standard.
Our proposal can be applied to applications developed using any model-driven
development approach and generating runtime usage logs containing references
to the conceptual model elements.

The paper is organized as follows: Sect. 2 introduces some background on
model-driven development of Web applications, the IFML language and the
WebRatio toolsuite; Sect. 3 describes our method for merging logs, enriching
them with information coming from models, and applying analysis over them.
Section 4 presents a case study that demonstrate the approach at work; Sect. 5
reviews the related works; and Sect. 6 summarizes the results and concludes.

2 MDD of User Interaction with IFML and WebRatio

This work focuses on the general concept of model-driven integration of user
interaction designs with user navigation logs. However, to make things working
in practice, we exploit as background: a specific modeling language, namely
IFML, and a specific toolsuite, called WebRatio.

2.1 The IFML Language

The Interaction Flow Modeling Language (IFML) [24] is an international stan-
dard adopted by the Object Management Group (OMG) that supports the
platform independent description of graphical user interfaces for applications
accessed or deployed on such systems as desktop computers, laptop comput-
ers, PDAs, mobile phones, and tablets. An IFML model supports the following
design perspectives:

– The view structure specification, which consists of the definition of view con-
tainers, their nesting relationships, their visibility, and their reachability;

– The view content specification, which consists of the definition of view compo-
nents, i.e., content and data entry elements contained within view containers;
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Fig. 1. WebRatio architecture: design time, generation time, and runtime environ-
ments.

Fig. 2. Example of IFML diagram.

– The events specification, which consists of the definition of events that may
affect the state of the user interface. Events can be produced by the user’s
interaction, by the application, or by an external system;

– The event transition specification, which consists of the definition of the effect
of an event on the user interface;

– The parameter binding specification, which consists of the definition of the
input-output dependencies between view components and between view com-
ponents and actions; and

– The reference to actions triggered by the user’s events.

IFML concepts can be stereotyped to describe more precise behaviours. For
instance, one could define specific stereotypes for describing web pages (a specific
kind of view container); forms, lists and details (specific kinds of view compo-
nent); submission or selection events; and so on. By exploiting this extensibil-
ity feature, we defined custom extensions of IFML for covering Web [2] and
mobile [3,9,28] applications.

Figure 2 shows an example of an IFML diagram: the Home Page ViewCon-
tainer contains a ViewComponent displaying a list of book categories. The user
can click on the books event and thus selects a category in order to see the books
belonging to it in the Book List ViewComponent. By clicking on a book (through
details event) the user navigates to the Book Details page, where he can see the
details of the selected book.



Big Data for Model-Based Web User Behavior Analytics 101

2.2 WebRatio Implementation of IFML

WebRatio Web Platform [1] is a model-driven development tool which imple-
ments the Web-extended version of IFML. The tool supports developers in the
specification of the domain model and of the interaction flow model for web appli-
cations. The tool features model checking and full code generation that produces
application code executable on top of any platform conforming to the J2EE spec-
ifications. Figure 1 represents an high level view of the WebRatio architecture,
which supports developers ad design time, code generation time, and execution
time.

Design time. WebRatio provides four main integrated modeling and develop-
ment environments, supporting respectively: the modeling of IFML diagrams
for the specification of the user interaction; the modeling of UML class diagrams
(or ER diagrams) for the content design; the graphical layout template and style
design environment; and the specification and development of the modeling level
and execution level of custom IFML elements defined as extensions of IFML. The
WebRatio models are saved as XML documents.

Code generation. Based on the input provided through the modeling and devel-
opment environments, WebRatio provides code generators which transform the
specifications of the application into concrete, executable implementations. The
code generators are implemented using ANT, XSLT, and Groovy. The gener-
ated code consists of a Java EE code covering both front-end of back-end of web
applications. The generated components include:

– The configuration file of the Controller which contains the navigation control
flow logic;

– The action classes which are invoked by the Controller and, in turn, invoke
the runtime services;

– The XML configuration files (called runtime descriptors) of the runtime ser-
vices. In particular, every IFML ViewComponent in the the model produces
one runtime descriptor configuring the behavior of a generic runtime service.
For example, a specific List ViewComponent generates a runtime descriptor
containing, among other things, the SQL code for extracting the content of
the index from the data repository;

– The server-side templates for dynamically building the actual pages of the
application.

Execution time. The WebRatio run-time framework consists of object oriented
components and services for organizing the business tier, clustered in three main
layers: the service layer, the application layer, and the logging layer.

The service layer is deployed once and for all for every application and does
not actually need code generation, because it comprises general purpose ser-
vices. Therefore, at runtime one single service class is deployed for each type of
component, which is then instantiated with the smart service creation approach
described next. The deployed services are:
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– a Page Service, that is in charge of calculating the whole page structure for
every page of the site;

– a set of ViewComponent Services (one for each component type), in charge
of executing the logic of each view component;

– a set of Action Services (one for each action type), in charge of executing the
business logic of each IFML action;

These services get configured based on the XML configuration files (descrip-
tors) allocated at the application layer: the code generator produces one JSP
template and XML descriptor for each Page in the IFML model; and one XML
descriptor for each IFML Action and ViewComponent. The execution logic fea-
tures a emphsmart service creation policy: services that implement ViewCom-
ponents or business actions are created upon request, cached, and reused across
multiple requests, i.e., for evey designed IFML element, which gets configured
through the XML descriptors. Access to the information stored in the XML
ViewComponent descriptors is granted by standard parsing tools. This behav-
iour is tracked by the Activity log : a set of pre-built functions for logging each
service is provided. The logging service can be extended with user-defined mod-
ules, so as to log the desired data.

In our approach, we are more concerned with the logging service. It represents
a valuable asset, as it allows the logging of the execution of all application
objects and shows the queries executed to fulfill the HTTP page requests. This
information, along with the HTTP access log data available on the Web server,
and information from conceptual models are the inputs of the proposed user
interaction analysis framework.

3 Modeling, Integration, Analysis, and Visualization

In this section we describe the steps of our method, as summarized in Fig. 3.
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Fig. 3. Architectural overview of the approach and flow of artifacts.
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3.1 Application Modeling and Generation

The first phase of our approach consists on modeling the Web application using
a visual modeling editor (Fig. 3(a)) supporting the IFML standard presented in
Sect. 2. A code generator (Fig. 3(b)) takes in input the IFML application models
and deploys the web application on a web server (Fig. 3(c)), ready to be executed.

3.2 Analysis

The second phase (Fig. 3(d)), is concerned with two main aspects: (i) the inte-
gration of the website log, the database containing the information displayed
in the site pages, and the Web application models specified in IFML; and (ii)
the analysis of the resulting schema-less enriched stream. The outcome is a rich
analytics able to provide deep insights regarding the behavior the user visiting
the website. Since this phase is the core step of our approach, we provide full
details about inputs, process and output.

Inputs. Four pieces of information are consumed in this phase:

1. The Application Model : The IFML model of the deployed web application, as
designed in the first step of the process (see Sect. 2.1).

2. The Application Server Log : The common access log produced by the server
where the website is deployed. The access log records all the requests
processed by the application server in the standard Extended Common Log
Format. Listing 1.1 shows an example of a Web server log line.

Listing 1.1. Example of Application Log line.

0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 − − [ 22/ Jun /2016 : 11 : 10 : 52 +0200] ”GET /
BookStore /page21 . do?kcond4 . att60=11&sp=page14&l i n k=
ln67&var6=true&var10=f a l s e&f l l b c k =. sv1&cbck=
wrReq32387 HTTP/1.1” 200 21973

3. The Runtime Components Log : The runtime component log (RTX) that stores
events and data produced and consumed by the application runtime for serv-
ing page requests. It traces the history of the ViewContainers, ViewCom-
ponents, and operations that are executed, along with the executed queries.
Moreover, the RTX log contains the data about the requested pages and their
contents. Furthermore, all logged information contains a reference to the rel-
evant application model elements and to the consumed data in the database.
Each log line has the following structure (exemplified in Listing 1.2):

– Timestamp, the time when the logged instruction is written in the log;
– Log Level, the level to which the log line belongs;
– Host, the host sending the request, i.e., the IP address of the client com-

puter used by user to navigate the application;
– Java class, the Java class executed;
– Session ID, the User session identifier;
– Model element, the model element executed;
– Message, the log message.
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Listing 1.2 shows an example of RTX log line.

Listing 1.2. Example of WebRatio RTX log line.

22 Jun 2016 11 : 10 : 51 , 761 DEBUG [ http−bio−8080−exec −5] (
com . webrat io . r tx . core . Se rv i c eProv ide r : 4 5 ) − [119354
A67C7C0177D4A7F411E75BCDE7 ] [ page21 ] [ pwu6Block ]
Creat ing s e r v i c e : WEB−INF/ desc r /pwu6Block . de sc r

4. Database: Detailed reference to the database used to populate the requested
pages.

While the application model is given at design time and we can assume it as
persistent, the information contained in the logs and in the database changes as
the users visit the website. The model can be changed in order to add or evolve
features in the web application, but in that case the whole analysis process will
be restarted.

Process. The analyzer (Fig. 3(d)) integrates the logs with the IFML model and
database content. More precisely the following steps, summarized by Fig. 4, are
performed:

– The logs, the models and are transformed in a tabular format in order to be
easily queried and manipulated (Fig. 4(a)).

– The domain instances are imported from the database of the web application
(Fig. 4(a)). In order to be domain independent and support any type of data,
our process takes all the tables present in the database and create a unique
table with the structure: table name,attribute name,value.

– The Runtime Component Log is joined with the Application Server Log using
the session id and the timestamp (Fig. 4(b)). This Enriched Log shows, for
each page requested by a user, the corresponding model element computed for
serving the page content. Moreover it contains information regarding the link
(if any) used for navigating the website. At this stage of the process we know
all the elements involved in the users navigation, but only limited to their id.
For instance, by imaging a possible user navigation in the model shown in
Fig. 2, we may know that a user went to page2 from page1 through link ln66
and he was shown elements with oid 3 of table t1 by the component d2.

– The EnrichedLog is joined with the Application Model using the id of the
model elements present in both inputs to obtain a GlobalLog (Fig. 4(c)). This
allow to add to the EnrichedLog information regarding to the model elements
involved in the user interaction. For instance now we may know that the
user went to the Book Details page from the Home Page through link named
Details and he was shown the elements with oid 3 of table book by the
component Details.

– Finally the GlobalLog is joined wit the DatabaseInstances using the name
of the tables and the oid of the instances (Fig. 4(d)). With this final step
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Fig. 4. Steps for the integration of the logs with the models and the database instances

we are able to assign an actual value to the oids present in the GlobalLog.
To continue with the previous example, in addition with the information
regarding the navigation, we know that the users looked the book Lord of the
Rings.

From this global, denormalized view one can generate any desired behaviour
analysis. In particular every statistics is computed with one or more SQL-like
queries on the FinalLog. We describe in details how the analytics are computed
in Sect. 4.

Output. With our approach we can compute three kinds of user behaviour
analytics:

1. Navigation-based analytics: comprehends information regarding how the
users navigate the website (e.g., average time spent on a page, number of
requests for a page, links followed, and so on). These are the typical metrics
computed also by other tools.

2. Content-based analytics: comprehends information regarding the domain
entities involved in the user interaction, their types and their semantics. For
example, in the case of an e-commerce website for selling books, these metrics
may include the top-k visualized books, the top-k clicked authors and so on.

3. Structure-based analytics: comprehends information regarding the kind of
widget, visualization, or even navigation pattern used in the user interaction
model. For instance, analytics may include metrics like: top-k elements clicked
by users when shown in a map throughout the site, or top-k elements clicked
when shown in the first three positions of a list, or top-k elements clicked
when an attribute of type image is shown in the page versus an attribute of
type currency.
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Notice that each analytics result may refer to global statistics for the whole web-
site, or to one or more model elements (e.g., ViewCompoment, ViewContainer
and InteractionFlow).

3.3 Visualization

The results of the analyses can be visualized in two ways:

– Using a canonical data visualization tool (Fig. 3(e)), which shows traditional
charts like pie charts, bar charts, navigation flow charts and so on;

– Showing the data directly on the visual model (i.e., on the IFML dia-
grams), thus providing direct feedback of the users’ behavior to the inter-
action designer (Fig. 3(f)).

Our main contribution on the visualization side focuses on the latter; in
particular we devised three means of visualization:

– Color: the analytics is shown through the change of color of the correspond-
ing model element (e.g., ViewComponent or ViewContainer) based on some
quantitative analysis result associated to it. This is useful for statistics that
refer to many model elements and provides a immediate bird’s-eye view of
the user behavior for the whole website: for instance, one may color the pages
in the IFML diagram based on the number of page views achieved by each
of them. For instance, Fig. 6(a) shows an IFML diagram with colored pages
based on the number of visits per page (from green to red, where green means
higher number of visits);

– Label: the analytics is shown with a label on the corresponding model ele-
ment. For instance, one may display the number of clicks that a widget or a
link has received; or the most clicked content instance(s) in a list, such as the
top clicked book;

– Properties: the analytics is shown in a separate property panel, detailing
the data about the corresponding model element. This is useful when many
statistics or multi-valued results need to be displayed for the same element.
For instance, Fig. 6(b) shows the list of top-10 visited elements in a list.

4 Case Study

In order to validate our approach we conducted a case study where we modeled
mall e-commerce-like website selling books. The application (the IFML model is
shown in Fig. 5) provides information on books such as their title, authors, price,
category, description, reviews, comments and rating, and allows to navigate and
purchase goods (the actual payment phase is not covered).

In our implementation, we rely on the code generators of WebRatio (www.
webratio.com) which produces Java EE applications and deploys them on any
servlet container. We simulated the behavior of users visiting the website and
then we computed statistics related to their interaction. The entire process of

www.webratio.com
www.webratio.com
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Fig. 5. IFML model of the application used in our case study

analysis is performed on the Microsoft Azure platform, using an Apache Spark
Cluster as processing engine and technology for the processing and computation
of the required analysis. Scala was used as a programming language to write
the Spark application. We computed both navigation based and content based
statistics. In the following we describe how the statistics are computed starting
from the data obtained with the analysis step described in Sect. 31.

1 The actual queries are omitted since they are quite long and do not fit in the paper.
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4.1 Navigation-Based Statistics

Number of Visits. The Number of Visits indicate the number of times a page
was visited. Listing 1.3 shows the query used for compute this statistic. From
the FinalLog we select each page and count the number of time it appears.

Listing 1.3. Queries used to compute the Number of Visits

select RequestedPageId , count ( RequestedPageId ) from FinalLog
group by RequestedPageId ;

Entrance Rate: We define as Entrance Rate the average times, expressed as
percentage, that a page is the starting point of the navigation of a user. At first
we select all the pages that appear as first in the log for each users. Then we
count the number of time a page appears.

Bounce Rate: We define as Bounce Rate the average times, expressed as per-
centage, that a page is the ending point of the navigation of a user. Similarly to
the previous case, we select all the pages that appear as last in the log and then
count the occurrences.

Outgoing Link Ratio. The Outgoing Link Ratio statistic of a link refers to
the ratio of users clicking on that link with respect to the others present in the
same page. As first step we select the couples sourcePage,linkId, that indicate
that a specific linkId was clicked on a specific sourcePage. Then we count the
occurrence grouped by page and divide the value by the total number of outgoing
navigation.

Incoming Link Ratio. The Incoming Link Ratio statistic of a link refers to
the ratio of user that uses that link to come in a specific page. Similarly to
the previous statistic, at first we compute the couples requestedPage,linkId,
that indicate that a specific linkId was clicked in order to arrive on a specific
requestedPage. Then we count the occurrence grouped by page and divide the
value by the total number of incoming navigation.

Average Staying Time: The Average Staying Time indicate the number of
milliseconds that the users, in average, spent on a given page. The computation
of this statistic is composed by four steps: (1) we select all the tuples in the form
time,sessionId,sourcePage,requestedPage ordered by time. (2) Next, for
each sessionId we identified the timestamp of the next request of a different page
(e.g., sourcePage!=requestedPage). (3) Then the residence time is computed by
making the difference of the two timestamps. (4) Finally the average is computed.
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4.2 Content-Based Statistics

Top 10 Visualized Instances. For each ViewComponent we compute the top
10 visualized instances as follows: for each visualized instance (from the Final-
Log) we assign value 1 as occurrence to the pair ViewComponent,Instance.
Then, we compute the sum of occurrences of each pair. The results are grouped
by ViewComponent and ordered in a descendant order on the number of occur-
rences.

Top 10 Clicked Instances. For each ViewComponent of type List we com-
puted the top 10 clicked instances. This statistic was extracted as follows: for
each clicked instance (from the FinalLog) we assign value 1 as occurrence of
the instance. Then, we compute the sum of occurrences of each instance. The
results are grouped by ViewComponent and ordered in a descendant order on
the number of occurrences.

4.3 Visualization

As stated in Sect. 3 we focused on a novel type of visualization, that is showing
the analytics information directly on the model. Figure 6 shows some examples:
Fig. 6(a) show the Average Staying Time as background color of the pages (green
means high staying time, red low), Fig. 6(b) shows the Top 5 displayed books on
a ViewCompent, while Fig. 6(c) show the Outgoing Link Ratio of the HomePage
link.

5 Related Works

At the best of our knowledge this work is the first one which attempts to com-
bine the information coming from the application models with runtime Web logs
of the application execution, at the purpose of deepening the understanding of
how the users consume the provided content. The works we found closer to our
approach are: (i) a Web Quality Analyzer proposed by Fraternali et al. [17], a
framework which integrates the design-time conceptual schemas of the applica-
tion and the usage data collected at runtime to analyze the quality of website.
Their approach focuses on quality analysis while ours studies the user inter-
actions; (ii) in [25], Salini et al. proposed an approach that exploits the data
coming from web usage analytics of existing web applications to generate the
mobile navigation model of their corresponding mobile applications; and (iii) a
model-driven approach for tracking information concerning the user navigation
over websites proposed by Marco Winckler and Florence Pontico [32].

Web Log Analysis. Web Analytics is the measurement, collection, analysis and
reporting of Internet data for the purposes of understanding and optimizing Web
usage [11]. The Web analytics process relies on defining goals, defining metrics,
collecting data, analyzing data and implementing changes [31]. So far, several
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Fig. 6. Example of model-based statistics visualization: (a) heat-map of user behavior
on the IFML diagram; (b) fine grained statistics related to a selected model element;
(c) user navigational behavior on the IFML model as percentage of users clicking on
each outgoing navigation flow. (Color figure online)
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tools which support that process have been proposed. Among them we can cite
Google Analytics, Yahoo Web Analytics, Compete, and ClickTale. All those tools
provide the most important metrics: Unique Visitors, Visits/Sessions and Page
Views [11].

However, those tools provide analysis mainly at web page level and they
do not take into account the content of the visited pages. There exist some
analytics tools, like Google Analytics [22], which provide a way to track the
user interactions at content level but at a high cost of hard coding which yields
to high risk of errors and maintainability of the web application. Furthermore,
those event tracking mechanisms support a small subset of user interactions.
Our approach combines the application models with runtime Web logs of the
application execution, at the purpose of deepening the understanding of how
the users consume the provided content and thus help analysts and decision
makers to take more informed decisions on the website design and evolution.

The log analysis field in general, and Web log analysis in particular, has
attracted the research community due to several advantages offered by the track-
ing the interactions of the users with an information access systems. Agosti et
al. [4] have presented the current challenges and trends of this field.

Conceptual Modeling of WebApplications. This work is widely related to a large
corpus of researches that address conceptual modeling of Web applications.
Among them we can cite: (i) Araneus [23], a modeling proposal for Web appli-
cations that allows one to represent the hypertext organization, with nested
relations and inter-page links; (ii) W2000, formerly HDM [7], which introduced
a notion of model-based design, clearly separating the activities of authoring
in-the-large (hypertext schema design) and authoring in-the-small (page and
content production); (iii) OO-HDM [26], a UML-based approach for modeling
and implementing Web application interfaces; (iv) OO-HMETHOD [20], based
on UML interaction diagrams; (v) Hera [29], a model-driven design approach
and specification framework focusing on the development of context-dependent
or personalized Web information system; (vi) Web Application Extension for
UML (WAE) [13], a UML extension for describing Web application interfaces
and the client-server interactions; (vii) WebDSL [21], a domain-specific language
consisting of a core language with constructs to define entities, pages and busi-
ness logic, plus extensions.

Tools for Conceptual Modeling. Several design tools has been developed in the
past. In the work [18] the authors developed Papyrus, a open-source graphical
modeling tool for building UML models. This tool also allows the definition
of DSLs through a very advanced implementation of UML profiles. In [12] the
authors proposed beContent, a model-driven framework for developing and main-
taining rich web applications. It allows to design the application, to deploy it on
different platforms and to co-evolve it in order to adapt its components according
to changes performed on the model. Syriani et al. [27] proposed a web framework
that allows the definition, management and transformation of models. It runs
entirely on the cloud and does not require any installation.
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6 Conclusion

The main contribution of this work is to show the feasibility and advantages
of a model-driven approach that blends design-time information and runtime
execution data of websites for generating insightful analyses of user behavior.
Thanks to the proposed information fusion, new kinds of analysis can be per-
formed, which highlight the role and meaning of visualized data in the Web
pages. New analytics results can be generated based on the displayed objects,
their categorization and their properties. Results of the analysis can be imme-
diately displayed directly on the visual models of the applications, thus making
it immediate for a designer to spot possible problems or advantages of a given
user interaction design choice. As a future work, we plan to: experiment scalabil-
ity aspects on a cloud-based distributed solution; study additional Web-specific
analyses (for instance, by combining the analysis with variant-based approaches
such as A/B testing for checking how users react to different versions of the
interface or of the rendered content); and explore a different tool to enhance the
visualizations. As a limitation, this method cannot be applied to every existing
web application, the web application must have been created using the WebRa-
tio platform. A more general way to cover a wider range of web applications can
be used through covering more modeling languages. Another point is that all
the steps from analyzing to visualizing can be automatized to enable obtaining
results easily, so that users who are not familiar with big data analysis technolo-
gies can obtain results easily.
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sitional verification of real-time uml designs. SIGSOFT Softw. Eng. Notes 28(5),
38–47 (2003). http://doi.acm.org/10.1145/949952.940078
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