Improving GISBuilder
with Runtime Product Preview

Alejandro Cortinas!®) | Carlo Bernaschina?,
Miguel R. Luaces!, and Piero Fraternali?

! Databases Laboratory, Universidade da Corufia, A Corufia, Spain
{alejandro.cortinas,luaces}@udc.es
2 DEIB, Politecnico di Milano, Milan, Italy
{carlo.bernaschina,piero.fraternali}@polimi.it

Abstract. Software product lines allow users with little development
experience to configure and generate applications. On the web this app-
roach is becoming more and more popular due to the low time required
to bring a new release to the final users. The architecture of web appli-
cations though require complex development environments in order to
allow users to test and evaluate a new configuration. In this work we
present a novel approach, based on in-browser generation and emulation
techniques, which can be applied to real-world state of the art software
product lines, reducing test deployment complexity and enabling an agile
development cycle.

Keywords: Software product lines - Agile software development + Rapid
prototyping + Geographic information systems

1 Introduction

Software Product Lines Engineering is a discipline that tries to apply industriali-
sation techniques, such as mass-customisation and reusing strategies, to software
development with the focus on improving quality of products and, at the same
time, decreasing costs and time-to-market of new products [1]. Developing costs
of a SPL are compensated from the third product built [1], so their applica-
tion is very convenient for software development companies that usually create
similar systems, i.e., a product family. This is the case of Enxenio!, a Spanish
SME (small and medium-sized enterprise) with a certain grade of expertise in
GIS [2—4]. In a previous work [5], we have approached the design of a SPL for
the automatic generation of web-based GIS applications for its usage at Enxenio
as an internal tool. GISBuilder provides a web interface where an analyst can
design and generate the source-code of web-based GIS. The generated applica-
tions must be deployed afterwards within a Java web server. From the point of
view of agile development, this is far from optimum since it requires a full rede-
ployment for any small change that the analysts want to try in a product. [6]

! http://www.enxenio.es.

© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 549-553, 2017.
DOI: 10.1007/978-3-319-60131-1_41

http://www.enxenio.es

550 A. Cortinas et al.

describes a totally different approach, illustrated with a web tool able to design,
generate and run web/mobile applications, doing it all within a web browser.

Following the mentioned approach, we have adapted GISBuilder web speci-
fication interface to provide the analyst a run-time preview of the product he or
she is designing. In the demo, we will use the adapted version of GISBuilder to
design, preview and generate some simple web-based GIS applications.

2 GISBuilder

GISBuilder architecture is shown in Fig.la. We describe it thoroughly in [5],
but we can summarize its workflow as follows. When a new application has to
be created, an analyst interacts with the specification interface, a Node.js Web
Application (more specifically, an Express app). In this interface he or she can
decide: (1) Which features the application provides. Examples of features are csv
importer or user management. (2) The data model for the application: entities,
properties and relationships. The analyst can define lists, forms and maps from
this data model that can be then linked through menu items. (3) Several aspects
of the graphical user interface, such as the menu configuration, the static pages
or the theme.

GISBuilder is not a traditional SPL because its capabilities are enhanced
through the usage of a scaffolding-based derivation engine, able not only to
assemble static software assets common to every product (the features) but also
to generate product-specific code (lists related to data model or specific menu
configuration for an application). This derivation engine is invoked with the
product specification, which is nothing but a JSON document that complies
with a JSON Schema, when the analyst finishes the configuration of the prod-
uct. The product specification is also stored in the project repository, a Mon-
goDB instance. The derivation engine takes the product specification and
assembles/generates the source code of the final products getting the required
components/templates from the component repository. Then, the product
source code is generated and the analyst gets it as a downloadable zip file.

In order to deploy and try the generated product, the analyst needs a com-
puter with some previously installed software: Node.js, npm or yarn, Java 8 and
PostgreSQL with PostGIS. Then, he or she needs to run some processes to down-
load all the dependencies and compile the product, and also to modify a text
file to set the database connection configuration. These steps are very easy to
follow for a developer, but (i) it is still somehow slow to do that for every little
change on the product configuration and (ii) one of the goals of GISBuilder is
that the analyst does not need to have any advanced knowledge on IT.

3 GISBuilder with Runtime Live Preview

In [6] we have presented a methodology for Rapid Prototyping in a Model-
Driven Development context. IFMLEdit.org, a prototype created to validate
this approach, is a web tool that allows the user to design web applications

Improving GISBuilder with Runtime Product Preview 551

GISBuilder
- N, project]
specification < GISBuilder with Runtime Preview
= 2 = ~
[\ 2 g é .5 Derivation Engine 3 / Specification Interface N o
- o o e b4
2 SE|agd ‘ Node.js library | E (Desit . T 8
= = e 2 gn project ; ine |
g E‘[// E E % I~ - 3 Interface 5pemflica1inn Derivation Engine §
& =< annotated 8 & angular ‘1‘5 library ‘ E
) B R Nlé
project “Component ™ annotated =
Mot Repository generated source code
specification NPy : —_— Ftoes)
— — S H Preview Engine ¢/ Component ™
(~ _Project templates on & angular [-Repository |
~—Repository -~ standard 2 | component P,
filesystem | H — zip file
MongoDB g, = —
L >, ~ _ | Nodejs Web Application | -
(a) Original architecture (b) Adapted architecture

Fig. 1. Architecture changes in GISBuilder

using IFML [7], and to try them directly in the web browser before downloading
them. If the user makes a change in the design, he or she can relaunch the
application within the web browser and examine the change at runtime.

We have applied a similar approach on GISBuilder. This is, we have made
GISBuilder able to generate and show a preview of the designed products at
runtime, directly on the browser, without the need of any server-side structure.
To achieve that, we have made several changes on the architecture of the SPL,
as we can see in Fig. 1b. The biggest difference with respect to IFMLEdit.org
is that its web applications are just prototypes, and the previewing engines are
insufficient to deal with the complex single web page applications created by
GISBuilder. The main changes made are:

(1) We have implemented a new version of the derivation engine able to run
entirely on the web browser. Instead of getting the component templates
from the file system, they are loaded from a zip file. Similarly, it can gener-
ate the products in memory and provide a zip file with them. The deriva-
tion engine is the component analogous to IFMLEdit.org’s transformation
engine.

(2) The derivation engine is integrated within the specification interface,
as well as the component repository.

(3) In IFMLEdit.org there are two components to preview applications: one for
thin-client web-applications and another for web based thick-client mobile
applications. To address for the advanced architecture of GISBuilder we
have fused and extended these components, introducing full support for
AJAX requests on which advanced frameworks, like Angular, are based. The
component is able to load a dynamic webapp in an iframe, which intercepts
XHR requests and returns mock responses to each specific REST petition.

(4) GISBuilder produces full-stack web applications with Spring in the server
side and Angular in client side. In the adapted version, GISBuilder creates

552 A. Cortinas et al.

two different versions of the products, depending on whether the analyst
wants to preview them or to download the full-stack version.

(5) To make the tool runnable without any deployment structure, the project
repository, a MongoDB instance, is now optional. Since project specifi-
cations are just JSON documents, GISBuilder now provides features for
downloading and uploading them. Therefore, the tool is totally portable.

The new workflow is as follows. An analyst interacts with the design interface
to specify a new application. If the analyst wants to preview the application in its
current status, the derivation engine takes the product specification and the
zip file with the component templates and generates a in-memory zip file with
the source code of the webapp. This in-memory zip file is sent to the preview
engine which loads it in a simulated embedded browser and starts to intercept
the Angular XHR requests. The analyst can then return back to the design
interface and modify the configuration of the product. When the product is
finished, the analyst can download the full-stack version of the application.

4 Conclusions and Future Work

In this paper we present a new version of GISBuilder, a SPL for web-based GIS,
that provides runtime live previewing capabilities. This is, an analyst can see
the product to build on the fly. We have shown how the approach in [6] can be
applied in a different context to provide live previewing to a different automatic
software generation tool. As future work, we want to apply Continuous Integra-
tion techniques to the GISBuilder, allowing it not only to facilitate the preview
to the analyst but also the final deployment of the full-stack built products.

Acknowledgments. The work of the authors from UDC has been funded
by MINECO (PGE & FEDER) [TIN2016-78011-C4-1-R, TIN2016-77158-C4-3-R,
TIN2013-46238-C4-3-R, TIN2013-46801-C4-3-R]; CDTI and MINECO [Ref. IDI-
20141259, Ref. ITC-20151305, Ref. ITC-20151247]; Xunta de Galicia (FEDER) [Ref.
ED431G/01].

References

1. Pohl, K., Béckle, G., Van Der Linden, F.: Software Product Line Engineering Foun-
dations, Principles and Techniques. Springer, New York (2005)

2. Luaces, M.R., Pérez, D.T., Fonte, J.I.L., Cerdeira-Pena, A.: An urban planning
web viewer based on AJAX. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE
2009. LNCS, vol. 5802, pp. 443-453. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04409-0-43

3. Brisaboa, N.R., Cotelo, J.A., Farina, A., Luaces, M.R., Param4, J.R., Viqueira,
J.R.: Collecting and Publishing large multiscale geographic datasets. Softw. Pract.
Experience 37, 1319-1348 (2007)

4. Places, A.S., Brisaboa, N.R., Farina, A., Luaces, M.R., Param4, J.R., Penabad,
M.R.: The galician virtual library. Online Inf. Rev. 31, 333-352 (2007)

http://dx.doi.org/10.1007/978-3-642-04409-0_43
http://dx.doi.org/10.1007/978-3-642-04409-0_43

Improving GISBuilder with Runtime Product Preview 553

5. Brisaboa, N.R., Cortifnas, A., Luaces, M.R., Pedreira, O.: GISBuilder: a framework
for the semi-automatic generation of web-based geographic information systems. In:
PACIS 2016 (2016)

6. Bernaschina, C., Comai, S., Fraternali, P.: Online model editing, simulation and
code generation for web and mobile applications. In: MiSE 2017 (2017)

7. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-Driven
UI Engineering of Web and Mobile Apps with IFML. Morgan Kaufmann (2014)

	Improving GISBuilder with Runtime Product Preview
	1 Introduction
	2 GISBuilder
	3 GISBuilder with Runtime Live Preview
	4 Conclusions and Future Work
	References

