
Decentralised Authoring, Annotations and
Notifications for a Read-Write Web with dokieli

Sarven Capadisli1(B), Amy Guy2, Ruben Verborgh3,
Christoph Lange1,4, Sören Auer1,4, and Tim Berners-Lee5

1 University of Bonn, Bonn, Germany
info@csarven.ca, {langec,auer}@cs.uni-bonn.de

2 School of Informatics, University of Edinburgh, Edinburgh, UK
amy@rhiaro.co.uk

3 Ghent University – Imec, Ghent, Belgium
ruben.verborgh@ugent.be

4 Fraunhofer IAIS, Sankt Augustin, Germany
5 Decentralized Information Group, CSAIL, MIT, Cambridge, USA

timbl@w3.org

Abstract. While the Web was designed as a decentralised environment,
individual authors still lack the ability to conveniently author and pub-
lish documents, and to engage in social interactions with documents of
others in a truly decentralised fashion. We present dokieli, a fully decen-
tralised, browser-based authoring and annotation platform with built-in
support for social interactions, through which people retain ownership
of and sovereignty over their data. The resulting “living” documents are
interoperable and independent of dokieli since they follow standards and
best practices, such as HTML+RDFa for a fine-grained semantic struc-
ture, Linked Data Platform for personal data storage, and Linked Data
Notifications for updates. This article describes dokieli’s architecture and
implementation, demonstrating advanced document authoring and inter-
action without a single point of control. Such an environment provides
the right technological conditions for independent publication of scien-
tific articles, news, and other works that benefit from diverse voices and
open interactions. To experience the described features please open this
document in your Web browser under its canonical URI: http://csarven.
ca/dokieli-rww.

Keywords: Decentralisation · Human-computer interaction · Linked
Data · Semantic publishing · Social machine · Social web

1 Introduction

While the Web was originally conceived as a decentralised platform where every
organisation and individual can participate, it became increasingly centralised
with less than 1% of the servers serving more than 99% of the content. The
main reason for this is rooted in technology: it is currently much easier and
c© The Author(s) 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 469–481, 2017.
DOI: 10.1007/978-3-319-60131-1 33

https://dokie.li/
http://csarven.ca/dokieli-rww
http://csarven.ca/dokieli-rww


470 S. Capadisli et al.

more efficient to author, manage, publish, and search large amounts of similarly
structured content using a centralised platform. Blogger, YouTube and Face-
book, for example, are centralised authoring, publishing, and search platforms
for blog posts, videos or social network content respectively.

However, independence of centralised platforms is a necessity for ownership of
published ideas, and to establish a relation of trust. For example, Facebook has
been accused of bias, false information, and censorship–but rather than blaming
this on any particular platform, we identify it as an unavoidable result of central-
isation. After all, there is a continued tension between unrestricted publication
rights on the one hand, and a guarantee of balanced, verified information on the
other. In a fully decentralised setting, each source is filterless and responsible
for its own quality and reputation, while others are free to selectively (dis-)trust
certain sources using any mechanism they desire.

Decentralised authoring, publication, and annotation furthermore have the
potential to impact areas in which centralisation currently determines the pace
of evolution. Scientific publishing, for instance, is often bound to centralised
review and dissemination processes. Instead, rigorous scientific discourse could
be realised with an open, decentralised environment for the annotation of man-
uscripts, which has the potential to engage more people sooner. Trust then
no longer stems from a finite process with limited transparency, but is rather
continuously assessed by repeated independent validation. Publication thereby
becomes the starting point rather than the end point.

If we want to strengthen the decentralised nature of the Web again, we need
to develop technologies to simplify the decentralised authoring, management,
exploration, and search of Web content.

In this article we present the principles and architecture for a fully distributed
authoring and publishing system in Sects. 2 and 4 respectively. We describe the
dokieli implementation of this architecture as well as an overview on its current
adoption in Sect. 5 before we conclude with an outlook on challenges and future
work in Sect. 6.

2 Principles

This describes the principles against which decentralised approaches for author-
ing, annotation and notifications should be designed. These principles are derived
from current literature on decentralisation, and Web development best practices.

Data storage independent of service providers: Users should have a choice
in where they store their data and full control over it e.g. with regard to who
is allowed to access it. The Industrial Data Space [1] initiative calls this “data
sovereignty”.

Interoperability: By allowing the application logic to be decoupled from the
data, users can switch between applications and personal data storage servers,
thereby avoiding a vendor lock-in. To achieve maximum interoperability, applica-
tions should conform to well-defined Web standards and protocols (rather than



Decentralised Authoring, Annotations and Notifications 471

properietary software implementations). Dangers of data silos and some example
standards to use to decentralise are given in [2].

Separation of concerns: A progressive enhancement strategy to connect the
structural, presentational, and behavioural layers allows content and base func-
tionality to be accessible through different media and devices (as described
in [3]).

Accessibility: To lower the entry barrier for all forms of participation, enhanced
functionality should be accessible to users based on the capabilities of their user-
agents, storage availability, network access or personal preferences (we consider
this to be self-evident, and there are a plethora of Web best practices in this
area).

Freedom of expression: Because there are no central authorities, we must
assume applications follow the open-world principle, where “any author can say
anything about anything”. Identifying everything using [de]referenceable IRIs
allows any distributed authoring or annotation application to reference and link
to previously published content (this overlaps with Principles 1, 3 and 4 in the
W3C Semantic Web Activity [4] charter).

Web of Trust: The Web as a collaborative medium makes it possible for people
to take responsibility (or be accountable) for their contributions. It should be
possible for people to publish, share, and annotate information while ensuring
their provenance, authenticity and integrity [5–7].

3 Related Work

An overview on relevant related work is given in [8]. A range of quality attributes
such as collaboration, interoperability, and scalability, while relevant to our work,
we also consider systems and tools on dimensions based on the principles that
we have outlined.

Centralised authoring and annotation platforms: Google Docs, Medium,
and Authorea are examples of Web applications for collaborative creation and
publication of content which require account creation and data storage with
respective centralised services. They allow multiple participants to annotate and
hold discussions around the primary content; users must access their accounts
to be notified of updates to conversations, and data from both the main content
and related discussion is confined to the service which was used to create it.

WordPress is a free and open-source platform for article publication which
can be self-hosted on a server controlled by the user. Visitors may sign-in with
their WordPress accounts to leave comments on others’ articles, however they
are typically under the hosting site’ database.

Hypothesis makes it possible for users to leave annotations on different types
of documents on the Web using a browser plugin or via a proxy. Annotations
may be private or public, and can be threaded to form conversations around a
piece of content. Despite allowing the attachment of annotations to resources



472 S. Capadisli et al.

hosted anywhere, they depend on centralised account creation and storage for
the annotations themselves. Hypothesis is open source, with an API that uses
Web Annotations data model, and may be self-hosted, but currently it is not
possible to federate between different instances.

Pundit is a set of tools that allow web annotation with highlights, comments
and semantic annotations. It is similar to Hypothesis in its architecture and
deployment, i.e., annotations made through the pundit client require it to be
saved on its corresponding annotations server.

Decentralised authoring and annotation systems: Some authoring and
publishing systems already go into a decentralised direction. However, they only
realize a relatively small subset of the principles outlined in the last section.
LibreOffice Online, for example, allows collaborative editing of office documents
(e.g., Writer) from the Web browser. Content can be stored under different CMSs
in the cloud. The document’s interface consists of image tiles which are sent from
the server and rendered in the browser. However, it hardly provides accessibility,
rich interlinking and annotations or separation of concerns.

The Smallest Federated Wiki allows pages to be forked; users can maintain
personal copies.

Amaya is a desktop Web editor application (to create and update documents)
as well as a lightweight browser developed by W3C to test its technologies.

The tools that provide good collaborative editing UIs appear to do so at the
expense of data ownership and interoperability; those which promote data cre-
ation and publication in open reusable formats are lacking facilities for linking
discourse and conversation to concepts published. Decentralised creations also
mean that each author can choose their own semantics (e.g. their own vocab-
ulary to annotate RDF), and then such decentralised documents can link to
each other and their schemas can also be mapped to each other, whereas in
centralised platforms this is (if they support semantics at all) often prescribed,
either technically enforced, or encouraged by social convention.

4 Architecture and Technologies

In this section we discuss an architecture to bridge the gaps in existing work for
a decentralised authoring and semantic annotation client-side application, which
decouples itself from data and specific server requirements.

4.1 Architectural Overview

Decentralised read-write environments make it possible for different actors (e.g.,
authors, reviewers) to have their own personal online storages where they can:
manage their data; have socially-aware access controls on the data (e.g., who
gets to see and update what); send notifications based on their interactions; and
permit different applications to operate on the data, including moving the data
from one server to another seamlessly. Figure 1 depicts the contrast between
typical centralised and decentralised architectures.



Decentralised Authoring, Annotations and Notifications 473

Fig. 1. Entities and relations within dokieli’s architecture

dokieli as a client-side application can be deployed on a single-page or through
a browser extension, which can consume and interact with Linked Data anywhere
on the Web. We consider an HTML document with embedded JavaScript as the
default UI of a document. It is independent from specific server-side software,
proprietary APIs or the requirement to have an account.

On the other hand, if desired and available, users can participate using their
own profiles (WebIDs) located anywhere on the Web, and get to store and make
their annotations in their own personal storage, as well as assign access controls
to documents. Similarly, a decentralised communications protocol, Linked Data
Notifications [9] (W3C Proposed Recommendation [10]), is used get past the
limits of centralisation by enabling communication to happen across independent
servers. Figure 2 depicts relations between the kinds of entities which underly
dokieli’s architecture, where nodes are under different domains and authority.

Fig. 2. Typical centralised and decentralised architectures

dokieli is self-replicating, in that the reader of a dokieli document can spawn
an instance–either a copy or a brand new empty document–into their own storage
space at the click of a button.

4.2 Creating Documents

Documents use HTML5 Polyglot Markup [11] to ensure that when served as
(X)HTML respectively, they can be processed as either HTML or XML, which



474 S. Capadisli et al.

is useful in XML ecosystems and toolchains. Semantics is embedded directly
into human-visible prose using RDFa. The machine-readable data is thus kept
in context, reusing the article’s text as literal object values, and avoiding data
duplication or data ‘islands’, which can occur when other RDF serialisations are
included within HTML <script> elements.

The appearance of documents is determined with CSS3. Different stylesheets
can be applied to the same HTML structure so that a document can be presented
flexibly, in the most appropriate way for a particular circumstance. Stylesheets
can be switched from either dokieli’s menu or through Web browsers with native
controls, for example from a two-column layout required by an academic journal
to a design in keeping with the author’s blog.

When JavaScript is enabled, dokieli provides a rich editing interface which
includes visual and structural formatting of text as well as embedding machine-
readable semantics, media, dynamic citations, and inclusion of statistical charts
from live endpoints. An external personal data store, or even internet connection,
are not needed at this stage as modifications to a document made in the browser
this way can be persisted to a local filesystem using the dokieli menu export
function (or the browser’s save as).

4.3 Consuming Documents

Documents can be retrieved from Web servers with a single HTTP GET request, by
either a browser (for human-readable HTML) or script (machine-readable RDF).
Through the use of progressive enhancement, document contents are available in
text-only browsers, and further functionality of CSS and JavaScript are layered
on according to the user agent’s abilities.

dokieli’s approach to marking human-visible content in RDFa makes it pos-
sible to further decouple itself, the application that produced the data, from the
data itself, facilitating potential reuse of the data by other applications. A dokieli
document can be parsed into a graph, and users can use any other RDF-aware
application with the data that was generated by dokieli. Thereby, dokieli can
effectively remove itself as a dependency when it comes to data consumption
and reuse.

dokieli is able to authenticate users via WebID-TLS if they provide a WebID.
This enables further functionality: the user can use dokieli to access protected
resources and write to non-public data storage containers if their WebID is autho-
rised to do so. For authenticated users leaving annotations on other documents
dokieli fetches their name and display picture from their online profile if avail-
able, to display alongside their comment.

dokieli uses the following vocabularies as standard: schema.org to describe
the general-purpose relations about the document as well as profiles, the SPAR
Ontologies for scholarly articles and referencing, Web Annotations for annota-
tions (with motivations e.g., replying, bookmarking, commenting, assessments),
LDP for personal storage management, WebAccessControl/ACL for access con-
trol, LDN Inbox and ActivityStreams for social notifications, Creative Commons
for rights and licensing, PROV Ontology for provenance, and the RDF Data



Decentralised Authoring, Annotations and Notifications 475

Cube vocabulary to consume multi-dimensional data from SPARQL endpoints.
Authors can optionally include other vocabularies to mark up specific concepts
through dokieli’s UI.

4.4 Publishing Documents

Documents can of course be published on ordinary Web servers, as ordinary Web
pages. The next layer of enhancement is for authors who wish to edit documents
on a Web server directly rather than locally; they can make use of dokieli’s write
operations. This uses JavaScript, and moves the burden of processing user input
from servers (i.e., offering HTML forms and processing of the form submission)
to the client. In essence, the expectation is that dokieli should be a “smart
client”.

dokieli implements the Linked Data Platform (LDP) protocol for creating,
updating and deleting documents. As such, personal data stores or servers which
implement the server portion of the protocol can be used to store and edit
dokieli documents directly. An HTTP PUT request to a URL is used to create a
new document, to clone an existing one with save as, to save changes, and so
that readers of a document can create their own document in reply. All of these
operations are available through the dokieli menu.

4.5 Social Interactions and Annotations

Interactions with a document take the form of: a comment or (dis)like about the
document as a whole, or an comment or (dis)like of a selection of text, i.e. an
annotation. In both cases, the dokieli menu presents an input to the commenter,
and then, adding additional semantic markup where necessary, sends the data
off for appropriate storage so it can be retrieved and re-displayed on future
document loads.

Document authors can point to a storage service (using the Web Annotations
annotationService property) which lets readers without their own personal
storage comment nonetheless. Readers who have a preferred storage location
against which they can authenticate are able to direct dokieli to store their
input there instead (or in addition). Conforming to LDP, dokieli allows users to
remove their annotations with an HTTP DELETE operation. In this way, dokieli
does not impose a centralised mechanism for social interactions, and allows users
to effectively ‘own’ their comments, annotations, and reviews, in their own space.

4.6 Notifications

When readers interact with a document, the author is notified by means of
the Linked Data Notifications (LDN) protocol. A notification, composed of the
data from the interaction or annotation, is sent to the inbox advertised by the
document or arbitrary parts, thereof. This inbox may be on the same server as
the document itself, or may be elsewhere. dokieli subsequently reads this inbox
to display interactions and annotations on the document.



476 S. Capadisli et al.

As the author of the document has control of the inbox, they can remove
notifications for interactions they find inappropriate, without needing to worry
about their inability to access the original source of the interaction. Conversely,
annotators do not lose control or authority over their contributions, even if the
object of their interaction wishes to disassociate itself. Each contributor retains
their own respective rights over the entities they create on the Web.

5 Implementation

dokieli is open source (https://github.com/linkeddata/dokieli) and available to
try at https://dokie.li/ (or at any instance on the Web, see Adoption).

5.1 Components

dokieli’s components include data (for structure and semantics), stylesheets (for
presentation) and scripts (for interaction). All data (articles, annotations, noti-
fications) are represented in HTML and RDF with vocabularies expressing the
underlying content, resources are self-descriptive to increase their reuse, and
contain relations to related external resources to foster follow-your-nose type of
exploration.

Several stylesheets provide alternative views for consumption (e.g.,
stylesheets for different media: screens, print, slideshow). dokieli’s JavaScript
includes: a library for editing (MediumEditor) in its authoring environment ;
features to fetch and display statistical data from SPARQL endpoints (Spar-
qlines [12]); retrieval of profile information, as well as means to sign in with
WebID Authentication over TLS [13]; functionality for write-operations, which
includes checking authorisation against access-control level settings on the server
with the authenticated user’s WebID and personal certificate; creation and con-
sumption of Web Annotations and Linked Data Notifications; and fetching infor-
mation from remote articles when adding a citation.

The scope of dokieli includes documents and the interactions around them.
The creation and maintenance of user profiles, personal storage spaces, and
access control rules are not managed by dokieli; since they are all standard mech-
anisms, users are expected to be able to accomplish this using other specialised
applications.

5.2 Deployment

dokieli employs two complementary deployment approaches: single-page appli-
cation and Web browser extension.

dokieli’s presentational and behavioural code layers can be included in Web
pages in order to trigger them as active single-page applications. It is a smart
client that allows different kinds of articles e.g., academic, blog posts, news,
to be authored and annotated from within Web browsers, without necessarily
having them deployed from a server, i.e., it can be used offline or on localhost.

https://github.com/linkeddata/dokieli
https://dokie.li/


Decentralised Authoring, Annotations and Notifications 477

dokieli internally handles its content and well-formed structural and semantic
representation based on user’s interactivity. Articles, profiles and their contact
information, notifications, annotations with different motivations, for instance,
can be read and written ubiquitously to any Web space with standard LDP and
access control mechanisms.

The Web browser extension is a thin wrapper around dokieli’s core code in
order to embed itself in any HTML-based Web page on the Web. It inherits all
of the features of a single-page application. While HTML based documents on
the Web vary in their quality, dokieli’s write operations generate well-formed
HTML+RDFa. One of the primary utilities for the extension is to have a consis-
tent interface for annotating (comment, bookmark, like) any text selection on a
Web page, as well as sharing parts of pages with ones contacts via notifications,
without having a service dependency or being limited by the Web page’s UI.

5.3 Interactions

Screencasts for the following use-cases showcase dokieli’s social features where
users interact by creating and sharing information are at https://dokie.li/.

Annotations: A core feature to facilitate collaboration is the possibility to
annotate arbitrary parts of a Web document. Users can select an entity or a
span of text of interest, a context menu is presented to input their annotations
along with the choice to select a license for their contribution. If the user is
signed-in with their WebID, and provided they have a personal storage space,
dokieli discovers this through their online profile and saves the annotations to
that location. Once the annotation is submitted by the user, dokieli proceeds
with three operations: (1) the annotation is requested to be saved at the user’s
personal storage, and if it is access controlled, the user will be prompted to
authenticate themselves against that server, before the annotation is saved and
is assigned its own URL, (2) if the article or any identifiable statement or seg-
ment has its own inbox, dokieli sends a notification to the inbox indicating that
an annotation was made and with its retrievable location, and accompanying
metadata like creator, date, license, etc., (3) the annotation is fetched from its
canonical location, and integrated into the article e.g., in marginalia. If the arti-
cle has a reference to a public annotation service (a writeable space adhering to
the Web Annotation Protocol [15]), the user has the option to send a copy of
the annotation there as well. In cases where the user does not want to have the
canonical copy of the annotation on their server, or if a user does not have write
access to a storage, they can use this option to engage with the article (Figs. 3
and 4).

Social Sharing: A key aspect of the Social Web is sharing with others. After
(optionally) authenticating with a WebID, dokieli documents can be shared with
contacts, which are discovered from the user’s WebID profile. Contacts whose
profiles advertise an LDN Inbox will receive a notification of the share. The
notification contains Activity Streams 2.0 vocabulary terms, and recipients can

https://dokie.li/


478 S. Capadisli et al.

Fig. 3. dokieli Web Annotation Fig. 4. dokieli Share

Fig. 5. Semantic inline citations in
dokieli

Fig. 6. Sparqlines interaction in dokieli

use any LDN-compatible application to view the notification, without needing
to have ever used dokieli before.

Inline Citations: Rich semantic links can also be established between dokieli
documents themselves. The author selects a text fragment and inserts the URL
of the document to be linked to as well as a semantic link type (e.g. “agrees
with”, “confirms”, “cites as evidence”) from the CiTO and schema.org ontolo-
gies. dokieli automatically retrieves metadata (e.g. title, authors) from the linked
document and adds a proper scientific endnote reference. If the linked document
advertises a standard LDN Inbox, a notification of the citation is sent as well,
thus allowing bi-directional linking (Figs. 5 and 6).

Statistical Data and Diagrams: Embedding dynamically generated diagrams
and charts is possible: after selecting text, the dokieli context menu offers results
of a search across registered SPARQL endpoints for the keywords in the selected
text, and presents a list of available data series to visualise. The result is an
inline sparkline diagram.



Decentralised Authoring, Annotations and Notifications 479

5.4 Adoption

The W3C Working Group Note Embedding Web Annotations [16] in HTML
includes examples from dokieli’s use of the Web Annotation data Model [14] and
Vocabulary [17] with motivations for example for “Lightweight, decentralised
Annotation Tools”. The Linked Data Notifications specifications use dokieli’s
HTML+RDFa template, and the Editor’s Draft showcase dokieli as a consumer
of LDN and Web Annotations. The LDN tests suite also uses dokieli’s templates
and stylesheets.

The academic workshop SemStats series use dokieli in its Website templates,
including the call for contributions. CEUR-WS.org, an “Online Proceedings for
Scientific Conferences and Workshops” offers the ceur-make tool to help organis-
ers generate proceedings using dokieli’s HTML+RDFa template. We list a com-
munity (of academics) who self-publish their articles and thesis using dokieli
with different stylesheets and derived scripts under its examples in the wild.
The conference series: WWW e.g., LDOW, WOW, ISWC, and ESWC propose
dokieli as one tooling in which authors can use to for their contributions.

https://linkedresearch.org/ uses dokieli in its templates on the site as well
as workshop proposals and call for contributions. http://csarven.ca/ uses dokieli
in full, where some articles (like this article) offer pointers to a public anno-
tation service which users may wish to use for their annotations. Articles also
dynamically embed annotations from personal storage spaces.

6 Conclusions

The Web’s design stands out because of its absence of centralised control, both
for technical reasons of scalability and resilience as well as a societal need for
freedom of expression. A challenge in such large-scale decentralised networks
is how related publications can be semantically interlinked, even if they are
authored and published by different parties. Centralising their publications is
practiced by the majority of authoring networks today, demanding authors to
give up some or all of their control in exchange for technical simplicity.

dokieli shows it is possible to build a social machine wherein people interact
with each other without the need of centralised coordination. Users can choose
storage space for their content independently of the applications with which
they edit and view that content. Documents are connected statically through
links and dynamically through Linked Data Notifications. This is a proof for
the viability of a decentralised authoring and annotation environment built with
Web standards.

On the other hand, dokieli’s use of standards shows that dokieli itself is only
one means to an end: once the document has been created, it lives on as an
independent Web citizen. The social machine consists of people and documents,
connected by Web standards, with dokieli acting as just one possible catalyst.
Different Web applications can incorporate any of dokieli’s functions and imple-
ment the principles to varying extents. Since the data is loosely coupled to the

https://linkedresearch.org/
http://csarven.ca/


480 S. Capadisli et al.

application, we avoid the walled garden problem of many current social platforms
today.

A couple of important socio-technical challenges remain. Resources might
want to indicate in a granular way which actions they support or encourage,
such as liking, bookmarking, or sharing, and perhaps conditions about which
notifications should be sent when any of these events take place. In order to
encourage positive behaviour, we might want ways to provide moderation, and
solutions to prevent harassment and abuse. Closely related is the issue of iden-
tity, pseudonymity and anonymity, and its relation with trust and verification.
While there is likely no final solution to these issues in an open ecosystem, it is
worthwhile exploring within dokieli or other tools.

Future work can examine how additional features can be realised on top of
existing Web standards, or where more development is required. Real-time col-
laborative editing is often realised with centralised communication (even though
some p2p alternatives exist). Services like top-down annotations or automated
entity marking can improve the discoverability of a publication, yet the question
of how to offer these without being tied to certain servers needs to be still solved.
We invite you to try dokieli yourself. Annotate this article or spawn a new or a
copy that you can edit yourself at http://csarven.ca/dokieli-rww.

Acknowledgements. Special thanks to our colleagues at MIT/W3C; Nicola Greco,
Dmitri Zagidulin, Andrei Sambra, Sandro Hawke, as well as Henry Story and Melvin
Carvalho for their contributions. We are also thankful to collaborate with colleagues at
QCRI. This research was supported in part by Qatar Computing Research Institute,
HBKU through the Crosscloud project from 2015-10 to 2016-09. Kingsley Idehen and
OpenLink Software for their support and contributions to the browser extension. The
OSCOSS project (DFG grant AU 340/9-1) for supporting the publication. Last but
not least, the contributors to the dokieli code, issues, and discussion.

References

1. Otto, B., Auer, S., et al.: Industrial Data Space, TR (2016). https://www.
fraunhofer.de/content/dam/zv/en/fields-of-research/industrial-data-space/
whitepaper-industrial-data-space-eng.pdf

2. Berners-Lee, T.: Socially-aware Cloud Storage (2009). https://www.w3.org/
DesignIssues/CloudStorage.html

3. Champeon, S.: Progressive Enhancement and the Future of Web Design (2003).
http://hesketh.com/publications/progressive enhancement and the future of
web design.html

4. Koivunen, M.-R., Eric Miller, E.: W3C Semantic Web Activity (2001). https://
www.w3.org/2001/12/semweb-fin/w3csw

5. Golbeck, J.: Weaving a Web of Trust, Science Magazine, vol. 321 (2008). http://
hcil.cs.umd.edu/trs/2008-41/2008-41.pdf

6. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic
web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol.
2870, pp. 351–368. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39718-2 23.
https://link.springer.com/content/pdf/10.1007%2F978-3-540-39718-2 23.pdf

http://csarven.ca/dokieli-rww
https://www.fraunhofer.de/content/dam/zv/en/fields-of-research/industrial-data-space/whitepaper-industrial-data-space-eng.pdf
https://www.fraunhofer.de/content/dam/zv/en/fields-of-research/industrial-data-space/whitepaper-industrial-data-space-eng.pdf
https://www.fraunhofer.de/content/dam/zv/en/fields-of-research/industrial-data-space/whitepaper-industrial-data-space-eng.pdf
https://www.w3.org/DesignIssues/CloudStorage.html
https://www.w3.org/DesignIssues/CloudStorage.html
http://hesketh.com/publications/progressive_enhancement_and_the_future_of_web_design.html
http://hesketh.com/publications/progressive_enhancement_and_the_future_of_web_design.html
https://www.w3.org/2001/12/semweb-fin/w3csw
https://www.w3.org/2001/12/semweb-fin/w3csw
http://hcil.cs.umd.edu/trs/2008-41/2008-41.pdf
http://hcil.cs.umd.edu/trs/2008-41/2008-41.pdf
http://dx.doi.org/10.1007/978-3-540-39718-2_23
https://link.springer.com/content/pdf/10.1007%2F978-3-540-39718-2_23.pdf


Decentralised Authoring, Annotations and Notifications 481

7. Golbeck, J., Parsia, B., Hendler, J.: Trust networks on the semantic web.
In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003.
LNCS (LNAI), vol. 2782, pp. 238–249. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45217-1 18. http://sir-lab.usc.edu/cs586/20151readings/w13-1.pdf

8. Khalili, A., Auer, S.: User interfaces for semantic authoring of textual content: a
systematic literature review. Web Semant. 22, 1–18 (2013). http://svn.aksw.org/
papers/2011/JWS SemanticContentAuthoring/public.pdf

9. Capadisli, S., Guy, A., Lange, C., Auer, S., Sambra, A., Berners-Lee, T.: Linked
Data Notifications: a resource-centric communication protocol. In: ESWC (2017).
http://csarven.ca/linked-data-notifications

10. Capadisli, S., Guy, A.: Linked Data Notifications, W3C Proposed Recommendation
(2017). https://www.w3.org/TR/ldn/

11. Graff, E., Silli, L.: Polyglot Markup: a robust profile of the HTML5 vocabulary,
W3C Working Group Note (2015). https://www.w3.org/TR/html-polyglot/

12. Capadisli, S.: Sparqlines: SPARQL to Sparkline, ISWC SemStats (2016). http://
csarven.ca/sparqlines-sparql-to-sparkline

13. Story, H., Corlosquet, S., Sambra, A.: WebID Authentication over TLS, W3C
Editor’s Draft (2014). https://www.w3.org/2005/Incubator/webid/spec/tls/

14. Sanderson, R., Ciccarese, P., Young, B.: Web Annotation Data Model, W3C Rec-
ommendation (2017). https://www.w3.org/TR/annotation-model/

15. Sanderson, R.: Web Annotation Protocol, W3C Recommendation (2017). https://
www.w3.org/TR/annotation-protocol/

16. Cole, T., Capadisli, S., Young, B., Herman, I.: Embedding Web Annota-
tions in HTML, W3C Working Group Note (2017). https://www.w3.org/TR/
annotation-html/

17. Sanderson, R., Ciccarese, P., Young, B.: Web Annotation Vocabulary, W3C Rec-
ommendation (2017). https://www.w3.org/TR/annotation-vocab/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-540-45217-1_18
http://dx.doi.org/10.1007/978-3-540-45217-1_18
http://sir-lab.usc.edu/cs586/20151readings/w13-1.pdf
http://svn.aksw.org/papers/2011/JWS_SemanticContentAuthoring/public.pdf
http://svn.aksw.org/papers/2011/JWS_SemanticContentAuthoring/public.pdf
http://csarven.ca/linked-data-notifications
https://www.w3.org/TR/ldn/
https://www.w3.org/TR/html-polyglot/
http://csarven.ca/sparqlines-sparql-to-sparkline
http://csarven.ca/sparqlines-sparql-to-sparkline
https://www.w3.org/2005/Incubator/webid/spec/tls/
https://www.w3.org/TR/annotation-model/
https://www.w3.org/TR/annotation-protocol/
https://www.w3.org/TR/annotation-protocol/
https://www.w3.org/TR/annotation-html/
https://www.w3.org/TR/annotation-html/
https://www.w3.org/TR/annotation-vocab/
http://creativecommons.org/licenses/by/4.0/

	Decentralised Authoring, Annotations and Notifications for a Read-Write Web with dokieli
	1 Introduction
	2 Principles
	3 Related Work
	4 Architecture and Technologies
	4.1 Architectural Overview
	4.2 Creating Documents
	4.3 Consuming Documents
	4.4 Publishing Documents
	4.5 Social Interactions and Annotations
	4.6 Notifications

	5 Implementation
	5.1 Components
	5.2 Deployment
	5.3 Interactions
	5.4 Adoption

	6 Conclusions
	References


