
Towards Automatic Generation of Web-Based
Modeling Editors

Manuel Wimmer1(&), Irene Garrigós2, and Sergio Firmenich3,4

1 BIG, TU Wien, Vienna, Austria
wimmer@big.tuwien.ac.at

2 WaKe Research, University of Alicante, Alicante, Spain
igarrigos@dlsi.ua.es

3 LINVI, Universidad Nacional de la Patagonia San Juan Bosco,
Puerto Madryn, Argentina

sergio.firmenich@lifia.info.unlp.edu.ar
4 LIFIA, Universidad Nacional de La Plata and CONICET Argentina,

La Plata, Argentina

Abstract. With the current trend of digitalization within a multitude of different
domains, the need raises for effective approaches to capture domain knowledge.
Modeling languages, especially, domain-specific modeling languages (DSMLs),
are considered as an important method to involve domain experts in the system
development. However, current approaches for developing DSMLs and gener-
ating modeling editors are mostly focusing on reusing the infrastructures pro-
vided by programming IDEs. On the other hand, several approaches exist for
developing Web-based modeling editors using dedicated JavaScript frame-
works. However, these frameworks do not exploit the high automation potential
from DSML approaches to generate modeling editors from language specifi-
cations. Thus, the development of Web-based modeling editors requires still
major programming efforts and dealing with recurring tasks.
In this paper, we combine the best of both worlds by reusing the language

specification techniques of DSML engineering approaches for generating
Web-based modeling editors. In particular, we show how to combine two
concrete approaches, namely Eugenia from DSML engineering and JointJS as a
protagonist from JavaScript frameworks, and demonstrate the automation
potential of establishing Web-based modeling editors. We present first results
concerning two reference DSML examples which have been realized by our
approach as Web-based modeling editors.

1 Introduction

With the current trend of digitalization in a multitude of domains, effective approaches
to capture domain knowledge are a must. Modeling languages, especially
domain-specific modeling languages (DSMLs) [1], are considered an important foun-
dation to involve domain experts in the system development. A DSML consists of (i)
an abstract syntax that defines the concepts of a language and the relationships between
them, as well as the rules that establish when a model is well formed, (ii) a concrete
syntax that establishes the language notation which is used by the users of the

© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 446–454, 2017.
DOI: 10.1007/978-3-319-60131-1_31

http://orcid.org/0000-0001-9502-2189

language, and (iii) the semantics, i.e., how the modeling concepts are interpreted. In
model-driven engineering (MDE) [2], the abstract syntax of a DSML is defined in
terms of a metamodel. The concrete syntax can be both; textual and graphical; or even a
mixture of both. To support the development of DSMLs as well as supporting tools,
various metamodeling tools have emerged that allow to create textual DSMLs (e.g.,
consider EMFText [3] and Xtext [4]) and graphical DSMLs (e.g., GMF, MetaEdit+ [5,
6], Eugenia [8], and DSL Tools [7]).

Regarding graphical DSMLs, current approaches for developing them and gener-
ating modeling editors [8, 9] are mostly focusing on reusing the infrastructures pro-
vided by programming IDEs. On the other hand, several approaches exist [11, 12] for
developing Web-based modeling editors using dedicated JavaScript (JS) frameworks.
Compared to DSML-aware editors such as developed with EMF/xText, a Web-based
editor may allow a much richer graphical representation of the DSML. Another
advantage is that a Web-based modeling editor is very lightweight and simple to
access. In cases where is not possible or not desired to use a modeling framework such
Eclipse or MPS [10], you might still be able to integrate a Web-based modeling editor.
However, these frameworks do not exploit the high automation potential from DSML
approaches to generate modeling editors from language specifications. Thus, the
development of Web-based modeling editors requires still major programming efforts.

In this paper, we combine the best of both worlds by reusing the language speci-
fications for generating Web-based editors. In particular, we show how to combine two
concrete approaches, namely EuGENia [8] from DSML engineering and JointJS [11]
as a protagonist from JS frameworks and demonstrate the automation potential of
establishing Web-based modeling editors. Finally, we discuss the results of using our
approach for two existing DSMLs.

The outline of the paper is as follows. Section 2 introduces and compares the two
approaches we are connecting in our proposal (i.e., Eugenia and JointJS). Section 3
presents our approach based on code generation and two concrete cases realized by our
approach. Finally Sect. 4 presents the related work, before Sect. 5 concludes and
outlines future work.

2 Background

In this section, we explain the basics of graphical modeling languages as well as the
two worlds we connect with our approach. In particular, we present EuGENia as a
concrete approach to specify DSMLs and automatically generate graphical modeling
editors and JointJS for implementing graphical Web-based modeling editors.

2.1 Anatomy of Graphical Modeling Languages

A graphical concrete syntax (GCS) [2] has to define the following elements: (i)
graphical symbols, e.g., lines, areas, complete figures such as SVG graphics, (ii) labels
for representing textual information, e.g., for visualizing the names of modeling ele-
ments; (iii) compositional rules, which define how these graphical symbols are nested

Towards Automatic Generation of Web-Based Modeling Editors 447

and combined, e.g., a label visualizing the name of a model element is centered within
a rectangle representing the model element; and (iv) mapping of the graphical symbols
to the elements of the abstract syntax for stating which graphical symbol should be
used for which modeling concept, e.g., a specific model element type is visualized by a
rectangle.

Current graphical modeling editors use modeling canvases which allow the posi-
tioning of model elements in a two-dimensional raster. Each element has an assigned x,
y coordinate which normally stands for the upper-left corner of the graphical symbol.
The model elements are mostly arranged as a graph which is contained in the modeling
canvas. This graph is called diagram and represents a graphical view on the model.
Please note that not all model information has to be actually shown in the modeling
canvas. Several property values may be shown and may be editable in an additional
property view. This, on the one hand, allows accessing and editing every property of a
model element, while, on the other hand, avoids overloading the diagram with too
much information.

2.2 Eugenia

We selected EuGENia for demonstrating the bride between DSML engineering
approaches and JS-based modeling editors, because it allows to introduce a GCS on an
appropriate level of abstraction and complements the Eclipse Modeling Framework
(EMF) in this respect. In particular, EuGENia provides several annotations for speci-
fying the GCS for a given Ecore-based metamodel which describes the abstract syntax
of a modeling language, i.e., the concepts and their properties without describing the
concrete notation for the users of the language. In the following, the main annotations1

are first enumerated and subsequently applied for an application example.

Diagram: The root element of the abstract syntax representing the model, i.e., the
element containing (directly or indirectly) all other elements, is a perfect match for
representing the modeling canvas.

Node: Instances of metamodel classes are often visualized as nodes within the dia-
grams. Thus, EuGENia allows annotating classes with the Node annotation. This
annotation has several features, such as selecting the attribute of the annotated class
which should be used as the label for the node, layout information such as border
styles, colors, and either an external figure (e.g., provided as a SVG graphic) or a
predefined figure by EuGENia (e.g., rectangle or ellipse) may be used to render the
node.

Link: This annotation is applicable to classes as well as to non-containment references
that should appear in the diagram as edges. This annotation provides attributes for
setting the style of the link, e.g., if it is dashed, and the decoration of the link end, e.g.,
if the link end should be visualized as an arrow.

1 More information on EuGENia annotations is provided at: http://www.eclipse.org/epsilon/doc/
articles/eugenia-gmf-tutorial.

448 M. Wimmer et al.

http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial
http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial

Compartment: Containment references may be marked with this annotation. It
defines that the containment reference will create a compartment where model elements
that conform to the type of the reference can be placed within.

Label: Attributes may be annotated with this annotation which implies that these
attributes are shown in the diagram for nodes or links.

Figure 1 exemplifies the usage of EuGENia for a simple hypertext modeling lan-
guage (HML). In the upper part there is the definition of HML by stating the three
modeling concepts, i.e., the hypertext model is composed of pages and links. Fur-
thermore, with annotations shown in comments notation, the concrete syntax of the
modeling concepts is described. The hypertext models are represented by the diagram
which is used to contain pages and links of the hypertext system. Furthermore, pages
are shown as rectangles and links are shown as arrows pointing from the source page
to the target page. The bottom part of the figure shows an example model using the
concrete syntax of HML.

2.3 JointJS - JavaScript Diagramming Library

JointJS is an open source library for building interactive diagram-based modeling
editors that run in Web browsers. JointJS comes with a commercial extension called
Rappid which provides out-of-the-box UI components. Both are based on standard
Web technologies such as SVG, HTML5, CSS3, and JavaScript, and follow a MVC
architecture. This means, the model content is also separated from the model visual-
ization as it is done by most DSML engineering approaches such as by EuGENia.

A modeling language which is supported by a JointJS-based editor is mostly
defined with stencils. Within stencils, first, the modeling concepts have to be defined

Fig. 1. GCS definition with EuGENia by-example.

Towards Automatic Generation of Web-Based Modeling Editors 449

including the concrete syntax notation. For instance, consider the following code listing
excerpt for defining the Hypertext modeling concept.

joint.shapes.Hypertext = joint.shapes.Hypertext.extend({
 markup: '<g class="rotatable">

 <g class="scalable"><rect/></g>
 <image/><text/><line/>
</g>',

 defaults: joint.util.deepSupplement({
 type: 'Hypertext',
 paperWidth: pWFolder,
 paperHeight: pHFolder,
 position:{x: 0, y:0},
 …
 }… });

After having defined the concepts and their notational appearance, the composition
rules such as before done with containment structures within the metamodel, have to be
added. For instance, the following code listing specifies that Hypertext elements may
contain Page elements.

var folder = new joint.shapes.Hypertext();
folder.prop({ inherit: { container: true,

 canContain: [joint.shapes.Pages] }});

Finally, the tool palette has to be defined, i.e., which element types should be
available to be instantiated by drag-and-drop. For instance, we want to be able to
instantiate pages and links from the palette for our given hypertext modeling language.

modeler.stencil = [page, link];

3 Transforming EuGENia Models to JointJS

In this section, we describe our approach at a glance and outline the results of two
experiments that we did, in particular, how to generate JointJS-based editors from
existing EuGENia models of structural and behavioral modeling languages.

3.1 Overview

Our approach how to bridge current DSML engineering approaches and Web-based
modeling editor programming approaches is outlined in Fig. 2. As it is currently
possible to generate from EuGENia models, Java code which runs on top of the
Graphical Modeling Framework (GMF) in Eclipse, we developed a Model-to-Text
(M2T) transformation to generate stencils for the JointJS platform which provide the
definitions which we before discussed in Sect. 2. By this, we can follow a systematic
language engineering approach based on metamodeling and at the same time, exploit

450 M. Wimmer et al.

rich Web-based modeling platforms without having to re-invent the wheel. The M2T
transformation is implemented with Acceleo2 which reads in the annotated Ecore
models representing the abstract syntax as well as the graphical concrete syntax for the
DSML contained in the annotations.

As Fig. 2 outlines, our contribution is orthogonal to the existing support that comes
with EuGENia. This means, we can now have a modeling editor inside the program-
ming IDEs based on the GMF runtime, but at the same time, we can generate a
Web-based modeling editor which runs on top of the JointJS runtime from the same
DSML definition. However, an important requirement was to have a similar modeling
experience in the Web-based modeling editor as in the IDE-based one. The next
subsection describes how we approached this issue.

3.2 Development Methodology for the M2T Transformation

As development methodology for the M2T transformation we followed a reference
system based approach. We investigated several existing EuGENia-based DSML
definitions and how they are realized on the GMF platform. Based on this study, we
re-implemented these projects directly with JointJS and aimed for having a similar
modeling canvas, tool palette and graphical appearance of the modeling concepts. In
particular, we used for this structural modeling languages such as the filesystem
DSML3 as well as behavioral modeling languages such as Petri nets4.

Based on these projects, we developed the M2T transformation as an Acceleo
template. The goal was to produce the before manually written JS code. Of course, this
was an iterative process which required code adaptations in the different manually
created projects to have one common template to generate the given code structures. To
ensure the correctness and compatibility of the output files of the code generation
process, a dedicated testing phase was required. Testing was an important part of every
phase of development. Not only was the output JS file compared to the one manually

Fig. 2. Extending EuGENia with an additional M2T transformation to generate Stencils for
JointJS.

2 https://www.eclipse.org/acceleo.
3 http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial.
4 https://profesores.virtual.uniandes.edu.co/*isis4712/dokuwiki/doku.php?id=tut_eugenia.

Towards Automatic Generation of Web-Based Modeling Editors 451

https://www.eclipse.org/acceleo
http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial
https://profesores.virtual.uniandes.edu.co/%7eisis4712/dokuwiki/doku.php%3fid%3dtut_eugenia

written and included in the HTML5 project to see how it behaves, there was also an
extensive testing phase at the end of the development cycle of the M2T transformation.

3.3 The Resulting Web-Based Modeling Editors

For our investigated examples we could achieve promising results. Most parts of the
DSML definition could be translated to JointJS in a similar way as it they are supported
by GMF. The mentioned annotations in Sect. 2.2 are translatable to JointJS and the
resulting modeling experience in the Web-based modeling editors is comparable to
GMF. However, in our current implementation status of the M2T transformation, we
do not support all EuGENia annotations and their properties. Thus, as future work, we
have to further investigate if there are definitions which cannot be supported by JointJS,
e.g., more complex label computations for elements which are supported by EuGENia.
Thus, we see our current work as a baseline to further compare modeling editor support
in IDEs and Web browsers and to learn if there are fundamental differences or not
between the current approaches which emerged in different development branches in
different communities.

Concerning the development efforts, we compared the Lines of Code (LoC) of the
EuGENia solutions as there is also a textual concrete syntax to define such models based
on Emfatic5 and the JointJS stencil solutions. For the given examples, the LoC for the
EuGENia solutions are between 30 and 40. However, for the JointJS stencil solutions
250 to 280 LoC are needed to realize the languages. This shows that there is a potential
effort reduction in defining the modeling languages directly on the EuGENia level.

One important difference is of course how the models are stored in EuGENia/EMF
and JointJS. In EMF the standard storage format is based on the XML Metadata
Interchange (XMI) format. In JointJS models are stored as JSON files. In order to have
model exchange capabilities between the Web-based modeling editors and the
IDE-based modeling editors, a dedicated transformation has to be developed to convert
models represented in XMI into models represented in JSON, and vice versa.

4 Related Work

The Web may be considered a natural modeling platform given its straightforward
support for collaboration, portability, and its very powerful, interactive and advanced
UIs. As pointed out in existing literature [14], the Web became a platform where model
engineering may be fully exploited in practice. The facts have shown this. A proliferation
of model editor libraries based onWeb technologies has been happening in the last years.

These libraries facilitate the development of Web-based modeling editors using
dedicated JS frameworks. A Web-based editor is very lightweight and simple, and
allows a much richer graphical representation of the DSL, as some products show [11,
13]. However, these frameworks do not exploit the high automation potential from
DSML approaches to generate modeling editors from language specifications. Instead

5 https://www.eclipse.org/emfatic.

452 M. Wimmer et al.

https://www.eclipse.org/emfatic

of this, they usually offer a low-level API that allows developers to code the editor
behavior, model constraints, define model elements, etc. Thus, the development of
Web-based modeling editors requires still significant programming efforts.

Some research works have early emerged for conducting the collaboration and
groupware concern in modeling editors based on Web technologies [12, 15]. Never-
theless, this issue is not related with the goal of this paper. Note that the collaboration
concern in this kind of applications depends on the features of the underlying JS library
being used rather than in how JS code for that library is generated automatically given a
specific metamodel. As we mentioned before, the main goal of this paper is the gen-
eration of Web-based model editors starting from the design of a metamodel, making it
compatible with our HTML5 modeling tool to create proper models. This whole
concept as a unit seems to be unaddressed by the current state of technology, in spite
that there exist some works proposing the generation of graphical editors [8, 9].

However, some existing work is more specifically related to defining the modeling
language in itself, such as Clooca [16]. Clooca allows developers to define DSMLs,
and the corresponding software that generates the code for a particular model instance.
Although Clooca proposes a tool developed with Web technologies, this is not oriented
to create the Web-based model editors for the DSML specified.

5 Conclusions

The Web is currently a platform where users perform daily tasks, and with this in mind,
modeling in the context of the Web browser may be useful in several ways. Some
well-known Web modeling editors have been arising for letting users define different
software artifacts, such as the case of Node-RED [17] for modeling IoT application
flows, which support this claim.

Although it is true that there was a proliferation of libraries for developing
Web-based editors, they require advanced programming skills, which could be error
prone at the moment of defining modeling constraints. The importance of having
reliable Web-based modeling editors depends strongly on the possibility of specifying
particular behavior for these editors regarding how model elements will be managed,
their relationships, constraints, properties, etc. Our approach makes the creation of a
Web-based modeling editor simpler and more guided, even without requiring pro-
gramming skills on Web technologies. It reduces the possibility of introducing errors
when programming the editor but also improves the editor maintenance when the
underlying metamodel evolves. The next step in our research is to perform an evalu-
ation of the Web-based editor generation process for larger languages such as UML,
SysML, or BPMN and to evaluate how to generate animation code from the operational
semantic definitions of the modeling languages.

Acknowledgements. We thank Richard Sevela for his work on the M2T transformation
implementation. This work has been funded by the Austrian Federal Ministry of Science,
Research and Economy and by the National Foundation for Research, Technology and Devel-
opment and the project TIN2016-78103-C2-2-R of the Spanish Ministry of Economy, Industry
and Competitiveness.

Towards Automatic Generation of Web-Based Modeling Editors 453

References

1. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling - Enabling Full Code Generation.
Wiley, New York (2008)

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.
Morgan & Claypool, San Rafael (2012)

3. http://www.emftext.org
4. http://www.eclipse.org/Xtext
5. http://www.metacase.com/mep
6. Baetens, N.: Comparing graphical DSL editors: AToM3, GMF, MetaEdit+. Technical report,

University of Antwerp (2011)
7. Cook, S., Jones, G., Kent, S., Wills, A.: Domain-Specific Development with Visual

Studio DSL Tools. Addison-Wesley, Boston (2007)
8. Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards

disciplined and automated development of GMF-based graphical model editors. Softw.
Syst. Model. 16(1), 229–255 (2017)

9. Temate, S., Broto, L., Tchana, A., Hagimont, D.: A high level approach for generating
model’s graphical editors. In: Proceedings of ITNG (2011)

10. https://www.jetbrains.com/mps
11. https://www.jointjs.com
12. Rose, L.M., Kolovos, D.S., Paige, R.F.: EuGENia live: a flexible graphical modelling tool.

In: Proceedings of the Extreme Modeling Workshop (XM) @ MODELS (2012)
13. http://concrete-editor.org
14. Wimmer, M., Schauerhuber, A., Strommer, M., Flandorfer, J., Kappel, G.: How web 2.0 can

leverage model engineering in practice. In: Proceedings of DSML Workshop (2008)
15. Thum, C., Schwind, M., Schader, M.: SLIM—a lightweight environment for synchronous

collaborative modeling. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 137–151. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04425-0_11

16. Hiya, S., Hisazumi, K., Fukuda, A., Nakanishi, T.: Clooca: web based tool for domain
specific modeling. In: Proceedings of Demos/Posters/StudentResearch@ MoDELS (2013)

17. Node-Red. http://nodered.org

454 M. Wimmer et al.

http://www.emftext.org
http://www.eclipse.org/Xtext
http://www.metacase.com/mep
https://www.jetbrains.com/mps
https://www.jointjs.com
http://concrete-editor.org
http://dx.doi.org/10.1007/978-3-642-04425-0_11
http://nodered.org

	Towards Automatic Generation of Web-Based Modeling Editors
	Abstract
	1 Introduction
	2 Background
	2.1 Anatomy of Graphical Modeling Languages
	2.2 Eugenia
	2.3 JointJS - JavaScript Diagramming Library

	3 Transforming EuGENia Models to JointJS
	3.1 Overview
	3.2 Development Methodology for the M2T Transformation
	3.3 The Resulting Web-Based Modeling Editors

	4 Related Work
	5 Conclusions
	Acknowledgements
	References

