
Improved Developer Support for the Detection
of Cross-Browser Incompatibilities

Alfonso Murolo(B), Fabian Stutz, Maria Husmann, and Moira C. Norrie

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{amurolo,stutzf,husmannm,norrie}@ethz.ch

Abstract. Various tools are available to help developers detect cross-
browser incompatibilities (XBIs) by testing the documents generated by
their code. We propose an approach that enables XBIs to be detected ear-
lier in the development cycle by providing support in the IDE as the code
is being written. This has the additional advantage of making it clear to
the developers where the sources of the problems are and how to fix them.
We present wIDE which is an extension to an IDE designed specifically
to support web developers. wIDE uses a compatibility knowledge base
to scan the source code for XBIs. The knowledge base is extracted auto-
matically from online resources and periodically updated to ensure that
the compatibility information is always up-to-date. In addition, develop-
ers can query documentation from within the IDE to access descriptions
and usage examples of code statements. We report on a qualitative user
study where developers provided positive feedback about the approach,
but raised some issues to address in future work.

Keywords: Testing · Compatibility · Documentation · Web applica-
tions · IDE

1 Introduction

An important part of web development is ensuring that a website will have the
desired look and behaviour on different browsers and devices. This is non-trivial
given the pace at which web technologies continue to evolve in terms of both their
specifications and their implementations in different browsers. Taken together
with the diversity of devices and the number of browsers and browser versions,
with differences between implementations for specific operating systems, the task
of ensuring compatibility across browsers is significant. Responsive design partly
addresses the problem by ensuring that adaptation to different viewing contexts
is central to the design and development processes [1], however developers still
need to keep abreast of variations in browser support for specifications and test
their code in a large number of viewing contexts.

Fortunately, there are a number of tools and services that developers can use
to test their code and check for cross-browser incompatibilities (XBIs). For exam-
ple, Browsershots1 will perform testing of websites on a wide range of browsers
1 http://browsershots.org.

c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 264–281, 2017.
DOI: 10.1007/978-3-319-60131-1 15

http://browsershots.org


Improved Developer Support for the Detection 265

in a distributed screenshot factory and, therefore, return feedback in the form of
screenshots. However, while these services can detect XBIs, the developer still
has to trace the source of any problems and find out how to correct them.

Online resources such as Can I Use2 help developers by providing compati-
bility information about which code features are fully supported, partially sup-
ported or not supported in different browser versions. Depending on developer
experience, these sites may be consulted frequently either during code develop-
ment, or after testing, to track the source of XBIs. This requires the developer to
switch from the IDE to the browser and studies have shown that web developers
spend around 19% of their time in a browser [2].

To address these issues and provide improved developer support for the detec-
tion of XBIs, we propose an approach that integrates a tool for compatibility
analysis into the IDE so that XBIs can be detected in the source code ahead of
testing. This is achieved by performing a static analysis of the HTML, CSS and
JavaScript source code, using a compatibility knowledge base extracted from
online resources such as Can I Use. Developers can specify the set of browser
versions that they want to support and they then receive a compatibility report
with feedback on the level of support covered by the current implementation,
together with links to the parts of the source code which cause compatibility
issues. Although our approach could be applied to any IDE, we have imple-
mented it as an extension to IntelliJ IDEA to specifically support web devel-
opers. The resulting environment, called wIDE, also provides direct access to
documentation extracted from the Mozilla Development Network3 for code fea-
tures used so that developers can avoid having to switch between the IDE and
the browser.

We discuss the background to this work and related research in Sect. 2 before
going on to detail our approach in Sect. 3. The wIDE system that we developed to
support our investigations is presented in Sect. 4. We then report on a qualitative
user study that we carried out to evaluate the system in Sect. 5. Concluding
remarks and a discussion of future work are given in Sect. 6.

2 Background

In the software engineering community, it has been recognised that developers
spend a lot of their time browsing the web looking for solutions and documenta-
tion. This has led to various proposals for integrating support for browsing activ-
ities into the IDE. For example, HyperSource [3] is an IDE augmentation that
links source code modifications to browsing histories, making use of a browser
extension that logs pages visited, a facility that tracks use activity in the IDE and
an interface that allows developers to interact with the browser histories. Since
many developers actually prefer to view the full documentation pages in the
browser rather than IDE pop-ups, Codetrail [4] instead integrated Eclipse with
a browser extension for Firefox which automatically opens documentation pages
2 http://caniuse.com.
3 https://developer.mozilla.org.

http://caniuse.com
https://developer.mozilla.org


266 A. Murolo et al.

when the developer browses them in the IDE. As well as creating links between
the source code and online documentation based on an analysis of browsing his-
tory, Codetrail creates links when a user performs interactions such as copying
code from an online resource, thereby guaranteeing traceability in the future.

Often developers browse collections of code examples to assist in the coding
task, and the goal of Fishtail [5] is to deliver code examples and documentation
related to the current task. The system is integrated with the task management
system Mylyn4 and it tries to determine relevant web resources by analysing
the interaction history of the developer with the source code. Suggestions are
based on keywords related to program elements such as methods or classes which
last changed their degree of interest, a value that grows the more frequently the
developers interact with them.

XSnippet [6] is another system that suggests relevant code examples to devel-
opers. In this case, the system mines Java source code to extract the types used,
type hierarchies and method signatures. These are then used to construct search
queries that deliver example code snippets from crawled web sources. Muse [7] also
has the goal of sharing code snippets, in this case, by extracting them from existing
software or developer discussions, pruning irrelevant statements and duplicates.

Rather than coordinating the browser and the IDE, another approach is
to integrate online resources into the IDE directly. For example, amAssist [8]
introduces a search process inside a Java IDE which makes use of queries to
online resources augmented by the usage context as observed by the system.
The context is also used to refine the search and rank the results. Similarly,
Blueprint [9] is a system targeted at the Adobe Flex community that generates
search queries augmented with code context from Adobe Flex builder and creates
links between copied code and its source.

Some projects have integrated code examples from online Q&A communi-
ties such as StackOverflow into the IDE to help developers find solutions to
errors that lead to exception stack traces [10,11]. Seahawk [12,13] integrates
StackOverflow code examples directly in the IDE, allowing code snippets to be
dragged-and-dropped into the IDE and using annotations for the traceability of
snippets with the original crowdsourced solutions. Prompter [14] also goes in this
direction, combining the relevance ranking from StackOverflow with an internal
ranking based on the context of the code.

Clearly, the problem of switching between the browser and the IDE can also
be addressed using the opposite approach of moving the IDE to the browser
entirely. Arvue [15] is a browser-based tool that allows developers to create and
publish web applications to the cloud. Adinda [16] also investigates the collabora-
tive aspect, integrating web services into the IDE that not only allow traditional
development tasks for Java to be performed, but also boost collaboration and
communication tasks appropriate for development projects.

In our opinion, introducing support from online sources into existing IDEs
(web-based or not) is a preferable strategy as opposed to navigating these
resources manually, since modern IDE applications usually provide a baseline

4 http://www.eclipse.org/mylyn/.

http://www.eclipse.org/mylyn/


Improved Developer Support for the Detection 267

of functionalities which can be easily extended to achieve the desired integration
with online resources. Further, it can be argued that such an approach is more
likely to achieve wider acceptance since developers are already using these IDEs.
We therefore chose to investigate how web developers could be better supported
by developing an extension to an IDE that would check for XBIs and provide
links to online documentation resources.

A number of tools and services already exist to help developers check for
cross-browser compatibility and avoid having to manually test their applica-
tions in a wide variety of browser/device viewing contexts. One of the earliest
research proposals addressing this problem was by Eaton and Memon [17], who
used an inductive model based on HTML tags which end-users and developers
were expected to keep up-to-date. Systems such as X-PERT [18], WebDiff [19],
and its follow-up CrossCheck [20], rely on detecting XBIs by comparing various
cues, such as the visual rendering or the DOM of the web pages. Mesbah and
Prasad [21] present a fully automated solution for detecting XBIs under differ-
ent browser environments based on building and comparing hierarchical screen
models. XD-Testing [22] is a recent tool specifically designed for testing cross-
device applications on simulated devices where developers write test cases that
run in different browser environments, exploiting the paradigm of UI Testing.

A number of commercial tools and services for cross-browser testing exist.
These include the previously mentioned BrowserShots as well as BrowserStack5,
BrowserSandbox6, and Browsera7. Such services run the web application on
either real or simulated devices, accessing the rendered page in various browsers
and reporting layout discrepancies or, in some cases, functionality errors such as
console logs.

Our goal was to improve developer support by checking for XBIs earlier in
the development process, at the time of writing the code rather than later during
testing. This can be done using a static analysis of the source code to anticipate
any failures that could arise in services and tools like the ones mentioned above.
In contrast to such services, it not only detects an XBI but also identifies the code
that is the source of the problem and hence makes it much easier to resolve it.
To the best of our knowledge, the only previous work that uses static code analysis
to detect XBIs is a recent proposal by Xu and Zeng [23], which aims at finding
HTML5 incompatibilities with a manually crafted database of XBIs. In contrast
to this, we check for XBIs in CSS and JavaScript as well as HTML, and do so using
a compatibility knowledge base generated automatically from online resources.

3 Approach

The static analysis in wIDE can provide documentation and compatibility
reports about each specific element in the project using online resources. These
elements differ between each supported language, and we refer to them as
5 https://www.browserstack.com.
6 https://turbo.net/browsers.
7 http://www.browsera.com.

https://www.browserstack.com
https://turbo.net/browsers
http://www.browsera.com


268 A. Murolo et al.

Elements of Interest (EOI). EOIs can be identified by each language handler
in the system.

3.1 Elements of Interest

EOIs can be of three different types. A Central EOI is a crucial type of element
in a language which is interesting as a target for documentation and/or com-
patibility support. A Satellite EOI is, instead, an element which is also relevant
for compatibility and documentation lookup, but generally depends on a Cen-
tral EOI. Finally, Potentially Foreign EOIs are elements that usually are not
relevant for documentation or compatibility lookups. However, in certain cases
and conditions, these can still produce results for a documentation lookup or a
compatibility analysis.

The languages currently supported in wIDE are the three main client-side
languages connected to cross-browser compatibility issues: HTML, CSS and
JavaScript. We will now provide details about the different EOIs that we have
defined in each language.

HTML. Tags are clearly central EOIs since they are the principal means of
structuring and defining the content of an HTML document. Documentation
sources will be centred around HTML tags and therefore will be able to pro-
vide information about their support in various browsers as well as providing
documentation on their usage, together with some examples. These also usually
include attributes of the various tags, which we therefore define as satellite EOIs,
since they obviously depend on the tag to which they belong. Finally, we define
two potentially foreign EOIs in HTML. Attributes may have limitations for their
values, implying that, in these cases, only a subset of attribute values can be
applied to an attribute, each with a specific effect. This of course means that
these effects will be described in documentation sources, and can also be subject
to cross-browser compatibility analysis. Plain-text elements are also categorised
as potentially foreign EOIs since usually they have no result in documentation
lookups. However, sometimes the content of HTML pages can be written in other
languages, which need to be analysed by the appropriate language handler.

CSS. Provides four different elements: selectors, pseudo-selectors, properties
and property values. While properties are clearly a central EOI, property val-
ues necessarily need to be a satellite EOI since the possible values depend on
the property. Both are very relevant elements for documentation and compat-
ibility lookup. Selectors and pseudo-selectors, such as: nth-child, are instead
generally supported across every browser. Pseudo-selectors are also generally self-
explanatory and, therefore, generally not very interesting in terms of documen-
tation lookup. IDE support for automatic suggestions of these pseudo-selectors
is, in our opinion, enough to provide support to the developers in terms of usage.
For these reasons, we have decided not to include these in our EOIs.



Improved Developer Support for the Detection 269

JavaScript is more complicated. Functions are crucial elements in this language,
because developers often use a lot of built-in functions that are dependent on the
native browser implementation, making them the perfect central EOI. References
to built-in objects and types are categorised as satellite EOIs and may be very
interesting for documentation purposes. JavaScript also contains many other ele-
ments such as language keywords, blocks and other constructs which are common
to programming languages in general. While these could return results for a doc-
umentation lookup, we argue that these should generally be supported across the
various browsers and, more importantly, are not very interesting in terms of doc-
umentation lookup. Therefore, we discarded these as candidates for EOIs.

EOIs are the inputs for the two main functionalities offered by wIDE to devel-
opers: the documentation lookup and the compatibility scan. The former will be
triggered on individual EOIs that appear in the source code, while the latter can
be triggered on both single and multiple EOIs at the same time, for example
a project-wide compatibility scan. We will now describe both functionalities in
detail.

Fig. 1. An IDE suggestion from IntelliJ.

3.2 Documentation Lookup

The documentation lookup process queries online documentation pages, such as
the Mozilla Developer Network (MDN). Usually, the content of these resources
is rather exhaustive, including syntax of features, code examples, compatibility
information and available attributes/parameters and so on. Currently, little sup-
port is provided in IDEs for describing web technologies in order to assist web
developers in writing code, forcing them to switch to the browser to navigate to
the documentation pages online.

However, IDEs usually provide at least suggestions on which features can be
used once the developer starts to type, in an auto-completion fashion, as shown
in Fig. 1. While the developer navigates the suggestions, for example by hovering
on them or through arrow keys, wIDE will request documentation information
to be shown in a sidebar panel, dividing it into separated extensible panes (see
Fig. 2). As an alternative, a documentation lookup can be triggered from existing
source code by highlighting the corresponding EOI, through mouse or keyboard
selection, and using a hotkey. The extensible panes offer the advantage of reduc-
ing the size needed to display the various sections, still allowing them to be
expanded if the developer wants to see more of any of them, thereby reducing
the time needed to navigate across the sections and also avoiding information
overload.



270 A. Murolo et al.

Fig. 2. Extending a documentation pane.

3.3 Compatibility Scan

The second functionality offered by wIDE is the compatibility scan, which can
target anything from a single selected EOI to the whole project, scanning for all
the EOIs contained in the entire code base. This functionality involves querying
an online compatibility knowledge base such as Can I Use. Depending on the
type of EOI, sometimes there can also be solutions or work-arounds suggested
to improve compatibility for the browsers, for example the use of polyfills in the
case of JavaScript.

Clearly there needs to be a specified compatibility set, which is a set of
browsers that the developers want to support, in order to detect any incom-
patibilities which are relevant for the project. Developers using wIDE can define
this set from a preferences panel (see Fig. 3), where they can specify ranges of
versions that they want to support. They can also include preview releases, to
address cross-browser incompatibilities before these reach a broader set of users,
which can be quite useful in the maintenance stage. An additional flag can be
selected to keep the project preferences up with new browser releases, as soon
as they come out. In this way, when a new browser version is released, it will
automatically be included in the compatibility set. By default, all browser ver-
sions, from the first release to the latest preview release, are included in the
compatibility set.

The compatibility scan can be invoked at three different levels: on a single
EOI, on an entire file, and on an entire project. The first level is triggered auto-
matically together with the documentation lookup: an extensible pane about
compatibility will be added to the functionality, as shown in Fig. 4. The compat-
ibility scan will show colour-coded results for each browser. For each browser,
a vertical bar is presented with the first and the latest versions shown as side
labels. The most recent will be at the top, while the oldest will appear at the



Improved Developer Support for the Detection 271

Fig. 3. The preferences panel in wIDE, to set compatibility goals.

bottom. Every transition in the support state, for example a browser starting to
support a feature, shows the label of the version implementing the transition on
the side. The bar itself is coloured in red if the versions shown do not support
the feature, while they are shown in green if they do. Partial support, such as
a prefixed, browser-specific implementation, is marked in yellow. Browser ver-
sions which are not of interest to the developer, based on the preferences set,
are coloured in grey. Finally, the different browser versions are related to their
corresponding user base as reported by the knowledge-base, showing the per-
centage of users that are left out because of the selected EOI. Figure 4 shows
this in detail.

Fig. 4. Compatibility result for an EOI. (Color figure online)



272 A. Murolo et al.

The second and third levels of compatibility scan, require a file traversal to
scan for EOIs. Reports for identical EOIs are aggregated, although it is still
important for the developer to see how many different occurrences of an EOI
there are in the source code, and where they are. For example, if a call to getEle-
mentsByClassName is used multiple times in the source files, the compatibility
report will only perform one query to the knowledge base, while still showing all
of the occurrences in the compatibility results. This allows all parts of the code
which may need to be altered to be traced, for example, to replace this call with
a polyfill implementation.

All the unique EOIs are presented in the compatibility report, each of which
can be extended to list the various occurrences in the source code. Clicking on
each of these will navigate the source code to the corresponding occurrence.
Since the results are aggregated by unique EOIs, these receive a compatibility
score which is used to rank the issues by compatibility, in ascending order, so
that the most severe issues appear at the top. The compatibility score Cs ∈ [0, 1]
where 0 means that no browser supports the functionality, while 1 stands for full
support in every browser version.

Let Ss be the number of browser versions that support the feature, Ps be the
number of those that partially support it, Pfs be the number of those that only

Fig. 5. Compatibility result for a scan of an entire JavaScript file. Issues with higher
severity (i.e. lower compatibility score) are ranked at the top, with a colour marking
on the side. The same colour is used in the source to locate the issues quickly. (Color
figure online)



Improved Developer Support for the Detection 273

have the features in a prefixed implementation, Ns be the number of those that
do not support the functionality and n be the total number of browser versions
in the knowledge base. Then the compatibility score Cs is calculated as follows:

Cs =

⎧
⎪⎨

⎪⎩

0.45 ∗ Ss+Ps+Pfs
n , if Ns > 0

0.5 + 0.45 ∗ Ss

n , else if Ps + Pfs > 0
1, otherwise

An example of the results from a compatibility scan of the second level is
shown in Fig. 5. The results are ordered by severity, with a yellow colour tone
for the top EOIs, while the ones at the bottom appear green. In addition, the
occurrences of the EOIs in the code are also highlighted with the corresponding
colour, so the developers can locate the occurrences and the issues in the source
code at a glance.

For the last two levels of compatibility scan, the colour coding is more com-
plex than the first level. The compatibility score Cs is mapped to a colour in the
range between red and green. The brightest tones of every colour are not used
in order to improve readability.

4 Architecture and Implementation

The architecture of wIDE was conceived with the goal of having a shared server
that can be deployed for a team or small development organisation. Therefore,
it has a client-server infrastructure which is shown in Fig. 6. The client is imple-
mented as a plugin for IntelliJ IDEA, which is responsible for handling the user
interaction, parsing the project source code, and communicating with the server.
In our implementation of the approach, the server is also responsible for fetching
the content from the online sources for the relevant EOIs and parsing it, before
caching it in a MySQL database. In this way, the lookup results can be stored in
the knowledge base for the entire development team, rather than in each client,
thereby minimising the number of queries performed to the sources. In addition,
the privacy of the source code in the project is ensured since only the EOI is
sent in a request to each online source, and nothing else.

As seen in Fig. 7, each client listens to the various actions that the developer
performs in the IDE, such as triggering the lookup of an EOI through a keyboard
shortcut. The client contains an appropriate code parser for each language in
the language registry, which contains HTML, CSS and JavaScript in our current
implementation. Note that other languages such as PHP and Ruby could be
added to the registry and we provide more details on how this could be done
later in this section.

The identification of EOIs is implemented through code parsing that builds
up a Program Structure Interface tree (PSI tree), integrated with IntelliJ. An
example of such a tree is shown in Fig. 8. Based on these trees, wIDE auto-
matically detects the best suited EOI for a lookup by searching for pre-defined
patterns. For example, in the case of JavaScript functions, the interesting nodes



274 A. Murolo et al.

Fig. 6. The architecture of wIDE.

Fig. 7. The components of the wIDE client. The left side processes a query for the
knowledge base, while the right side manages the response from the server once the
queries have produced a result.

are mostly represented by a REFERENCE node as the first child of a CALL
node. Clearly, different patterns need to be applied depending on the language.
In addition, different parsing rules have to be considered when wIDE has to
handle lookup requests on incomplete code.

Identifying which are the interesting EOIs in a selection of HTML or CSS is
quite simple. In HTML, any code selection between the tag delimiters <> will
lead to a lookup either of the tag or of the attribute. In the case of CSS, wIDE
will only allow lookups on properties, meaning that a selection that contains
either the property or its value, will lead in any case to a lookup of the property
through the PSI tree.

In the case of JavaScript, wIDE needs to perform an additional step before
performing a lookup in the knowledge base because of two main issues. First, the



Improved Developer Support for the Detection 275

Fig. 8. A simple JavaScript code snippet with the corresponding PSI tree. The red box
highlights the EOI which will be found as appropriate for the query, based on pattern
matching. (Color figure online)

potential amount of defined functions is unlimited and, second, there could be
name conflicts between functions, especially in the case where multiple libraries
are included in the project. Therefore, wIDE traces back the function definition
to distinguish whether it is natively defined, for example getElementById, or was
defined in a library that has been included. We found this step quite challenging
for two reasons. First of all, JavaScript is loosely typed and the receiver of a
function call is not simply distinguishable before runtime. Second, it may be
possible that some libraries are available in the project files, while others may
be linked from a content delivery network. In our implementation, wIDE is only
able to look for JavaScript definitions within the files of the project workspace
and the native functions. Once possible definitions have been traced back, wIDE
performs a lookup of all potential function definitions, ordered by the probability
that each individual function may be the one called at runtime.

Once the EOI is identified through the appropriate language handler, the
client communicates with the server by sending a JSON-based request that con-
tains various information items such as the type of EOI and the content, and it
even allows for composite requests, as shown in Fig. 9. The composite requests
allow for a request to contain additional sub-requests, which can be useful in
special cases, such as when a central EOI is sent, and additional EOIs need to
be shipped with the parent request, for example satellite EOIs.



276 A. Murolo et al.

Fig. 9. The format of JSON requests and responses being exchanged between the wIDE
client and the server.

The format of the server response is also shown in Fig. 9. In the server response,
the lookup results are attached as a payload of individual objects for each source.
Once the response is received, the client can present the received lookup result
through the presentation handler of each source, as shown in Sect. 3.

On the server, requests get analysed and, if the response has already been
stored from previous queries, it can be returned immediately. If not, the request
gets decomposed by a Query handler and a Compatibility handler, which, respec-
tively, will query resources from the corresponding source registry (see Fig. 10).
Source handlers will manage the communication with the respective source. Note
that while Can I Use offers an API to query for individual EOIs, MDN does not.
Once the querying is complete, the result can be sent back to the client and
saved in the cache, with an expiration time of 7 days.

As mentioned earlier, wIDE currently only supports JavaScript, HTML and
CSS, but could be extended to support other languages commonly used in web
applications such as PHP and Ruby, for example to compare support for func-
tionalities across different runtime versions. The architecture is designed so that
such extensions can be supported easily. To add support for a language, the
developer must implement a language handler for the client and a source han-
dler for both the client and the server. A language handler consists of three main
components:

– an abbreviation of the language to distinguish on the server side which lan-
guage is being queried,

– a language parser, which identifies the EOIs and builds up the lookup request
to the server,



Improved Developer Support for the Detection 277

Fig. 10. The decomposition of the wIDE server.

– a window factory, that handles the presentation of the lookup result in the
wIDE sidebar, allowing for language specific presentation styles of the results.

In addition to the language handler, it may be possible that the existing client
source handlers are not able to present any information for the new language
being added. Therefore, wIDE provides extensibility of the source handlers for
result presentation in the client. Essentially, any implementation of a source
handler needs to define three main methods:

– a constructor that takes and parses the server response in JSON format,
– a method that allows the construction and the population of the extensible

panes with content from the new source,
– a method to compute compatibility support, if required, for example for dif-

ferent runtime versions in the case of PHP.

Clearly, the source handlers on the server need to implement a method to
query and extract the appropriate content depending on each source’s public
interface. For example, the source handler for MDN will extract data and styling
for the appropriate sections from the public website.

5 Evaluation

We evaluated wIDE in a qualitative user study with 9 developers to receive
feedback on our approach of integrating documentation and compatibility infor-
mation into the IDE.

5.1 Tasks and Procedure

We designed two tasks: one that focused on the documentation lookup and one
for the compatibility scan. For the documentation lookup task, participants were



278 A. Murolo et al.

asked to solve a development task in JavaScript. The task was tailored to include
language features that the participants were likely unfamiliar with to encourage
the use of the documentation lookup. We asked participants to verify email
addresses for a simple newsletter sign up page using regular expressions. This
functionality can be achieved with the built-in RegExp object. Participants were
provided with a skeleton of the application and asked to implement the missing
functionality. To solve the task, the participants were allowed to use the wIDE
plugin, switch to the browser and ask questions. Browser usage and questions
were noted and used in the analysis of the results.

For the compatibility task, participants received an existing project and were
asked to find compatibility issues. For the identified issues, participants had to
analyse if they were crucial to the functionality of the application and resolve
them so that the required browser versions were supported. The provided project
was a simple to-do application consisting of one HTML, one JavaScript and one
CSS file and had the following CSS and JavaScript compatibility issues.

– CSS border-radius not supported in IE versions <9. Cosmetic.
– CSS text-decoration full support only in Firefox, partially supported by

Safari and behind experimental flags in Chrome and Opera. Cosmetic.
– JavaScript getElementsByClassName not supported in IE versions <9.

Crucial.
– JavaScript addEventListener not supported in IE versions <9. Crucial.

Before the first tasks, participants were introduced to the wIDE plugin and
guided through an introductory task with the aim of familiarising them with the
plugin’s features and usage. After all tasks had been completed, participants were
asked to fill in a questionnaire. In addition, we logged usage data from the plugin
and took notes of the participants’ behaviours such as when they struggled, when
they used the browser and what they were looking for in that case.

5.2 Participants

We recruited nine participants from our university. Participants were between 22
and 41 years old, with an average age of 27 years. Two participants were female
and seven were male. All but one had a background in computer science and
the remaining participant was a student of electrical engineering. We required at
least basic knowledge of HTML, CSS, and JavaScript to participate in the study
and relied on self-assessment for these skills. All participants reported having
encountered compatibility issues as developers before our study. When asked
about documentation sources that participants were familiar with, the most
common answer was StackOverflow, which was known to all of them, followed
by w3schools (6 mentions) and the official w3c web standard documentation
(5 mentions). Only three users were aware of Can I Use and MDN.

5.3 Results

For the documentation tasks, participants triggered 11.4 documentation lookups
explicitly on average, while 71.5 lookups were trigged automatically as users were



Improved Developer Support for the Detection 279

scrolling through the auto-complete suggestions. On average, a user opened 7.7
documentation panes to look at the content. We observed two participants who
mainly accessed documentation through the browser and only opened one and
two panes, respectively. For the compatibility, we measured 2.5 project scans
and 3.2 file scans on average per participant. Analysing the questionnaires, we
found that all participants stated that wIDE provides relevant or very relevant
information. Some participants would have liked to have even more example-
centric content that demonstrates the usage of a feature or provides alternative
solutions in the case of compatibility issues. Based on our observations, users
might benefit from a natural language access point to the documentation. Our
approach based on the auto-complete suggestions requires the user to be aware
of the name of an EOI, or at least the first few characters of it. In our study,
many participants struggled to find the RegExp object and either switched to
the browser or asked for help. Only three participants managed to access the
documentation for this object using the auto-complete suggestions without help.

The compatibility scans received positive feedback8. Suggestions for improve-
ment included automatic background scans for changed code that would high-
light problematic elements as the user is writing code. Currently, wIDE will only
highlight compatibility issues but developers have to figure out how to address
them. Multiple participants requested more assistance for resolving issues. For
example, the system could provide alternative solutions or polyfills. One partici-
pant suggested to have small tiles that visually display the output of an applica-
tion loaded into different browsers. Another participant requested an extension
for PHP.

6 Conclusion

We have presented wIDE, a system to support web developers obtain compati-
bility and documentation information directly in the development environment.
To provide support for web technologies in the IDE, wIDE builds a knowledge
base that centralises information extracted from various online resources and
displays it to the user non-intrusively and in-place, thereby reducing the need to
switch the context to the browser. The sources are queried through a context-
aware parsing of the source code, to provide information about documentation
for the various functionalities and their compatibility across various browsers.
This helps in locating cross-browser compatibility issues, either before moving
to a cross-browser testing stage, or after such stage has been completed and the
issues in the source code have to be located and addressed.

Currently, our implementation of wIDE for IntelliJ IDEA supports the lan-
guages which are relevant for a cross-browser compatibility analysis, namely
HTML, CSS and JavaScript. However, it could be extended to even perform
compatibility analysis of server-side languages, with the goal of analysing the
compatibility of functionalities across different runtime versions. In addition,
8 Questionnaire and responses at https://github.com/fabwid/wIDE/blob/master/

user study/userStudyResponses.xlsx - Accessed 21 March 2017.

https://github.com/fabwid/wIDE/blob/master/user_study/userStudyResponses.xlsx
https://github.com/fabwid/wIDE/blob/master/user_study/userStudyResponses.xlsx


280 A. Murolo et al.

together with the support for additional languages, wIDE also offers support
for introducing new knowledge resources, which might be required if additional
languages were added.

We designed and conducted a user study to evaluate the implementation
of wIDE in terms of the feedback that it provides to developers. The study
consisted of a development task and a compatibility analysis task. The data logs,
observations and qualitative feedback provided by the participants have shown
that wIDE provides relevant information based on the user’s needs. However,
they also expressed the desire for additional support for the automatic resolution
of compatibility issues, and more assistance in looking for features beyond the
current support which relies on the IDE auto-completion.

The problem of automatically resolving compatibility issues could be
addressed in future work. For example, in some cases, MDN provides a polyfill
implementation of missing JavaScript functionalities, which could be included
automatically. We also plan to introduce more example-centric sources such as
StackOverflow based on compatibility issues in order to improve support for
resolving issues once these are located. We have opened the project sources9

with the hope that this might encourage others to extend the set of languages
supported, and even extend the scope of the compatibility analysis to consider
server runtimes.

References

1. Mohorovičić, S.: Implementing responsive web design for enhanced web presence.
In: 36th International Conference on Information & Communication Technology
Electronics & Microelectronics (MIPRO), pp. 1206–1210. IEEE (2013)

2. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.: Two studies
of opportunistic programming: interleaving web foraging, learning, and writing
code. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM (2009)

3. Hartmann, B., Dhillon, M., Chan, M.K.: HyperSource: bridging the gap between
source and code-related web sites. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM (2011)

4. Goldman, M., Miller, R.C.: Codetrail: connecting source code and web resources.
J. Vis. Lang. Comput. 20(4), 223–235 (2009)

5. Sawadsky, N., Murphy, G.C.: Fishtail: from task context to source code examples.
In: Proceedings of the 1st Workshop on Developing Tools as Plug-ins. ACM (2011)

6. Sahavechaphan, N., Claypool, K.: XSnippet: mining for Sample Code. ACM Sig-
plan Not. 41(10), 413–430 (2006)

7. Moreno, L., Bavota, G., Penta, M.D., Oliveto, R., Marcus, A.: How can I use
this method? In: Proceedings of 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE (2015)

8. Li, H., Zhao, X., Xing, Z., Bao, L., Peng, X., Gao, D., Zhao, W.: amAssist: In-
IDE ambient search of online programming resources. In: Proceedings of IEEE
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE (2015)

9 https://github.com/fabwid/wIDE.

https://github.com/fabwid/wIDE


Improved Developer Support for the Detection 281

9. Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S.R.: Example-centric pro-
gramming: integrating web search into the development environment. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM
(2010)

10. Cordeiro, J., Antunes, B., Gomes, P.: Context-based recommendation to support
problem solving in software development. In: 3rd International Workshop on Rec-
ommendation Systems for Software Engineering (RSSE). IEEE (2012)

11. Rahman, M.M., Yeasmin, S., Roy, C.K.: Towards a context-aware IDE-based
meta search engine for recommendation about programming errors and excep-
tions. In: IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE). IEEE (2014)

12. Ponzanelli, L., Bacchelli, A., Lanza, M.: Seahawk: stack overflow in the IDE. In:
Proceedings of the International Conference on Software Engineering. IEEE Press
(2013)

13. Ponzanelli, L., Bacchelli, A., Lanza, M.: Leveraging crowd knowledge for software
comprehension and development. In: 17th European Conference on Software Main-
tenance and Reengineering (CSMR). IEEE (2013)

14. Ponzanelli, L., Bavota, G., Penta, M.D., Oliveto, R., Lanza, M.: Mining StackOver-
flow to turn the IDE into a self-confident programming prompter. In: Proceedings
of the 11th Working Conference on Mining Software Repositories. ACM (2014)

15. Aho, T., Ashraf, A., Englund, M., Katajamäki, J., Koskinen, J., Lautamäki, J.,
Nieminen, A., Porres, I., Turunen, I.: Designing IDE as a service. Commun. Cloud
Softw. 1(1) (2011)

16. van Deursen, A., Mesbah, A., Cornelissen, B., Zaidman, A., Pinzger, M., Guzzi,
A.: Adinda: a knowledgeable, browser-based IDE. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, vol. 2. ACM (2010)

17. Eaton, C., Memon, A.M.: An empirical approach to evaluating web application
compliance across diverse client platform configurations. Int. J. Web Eng. 3(3),
227–253 (2007)

18. Choudhary, S.R., Prasad, M.R., Orso, A.: X-PERT: accurate identification of cross-
browser issues in web applications. In: Proceedings of the 2013 International Con-
ference on Software Engineering. IEEE Press (2013)

19. Choudhary, S.R., Versee, H., Orso, A.: WEBDIFF: automated identification of
cross-browser issues in web applications. In: International Conference on Software
Maintenance (ICSM). IEEE (2010)

20. Choudhary, S.R., Prasad, M.R., Orso, A.: Crosscheck: combining crawling and
differencing to better detect cross-browser incompatibilities in web applications. In:
Proceedings of the 5th International Conference on Software Testing, Verification
and Validation. IEEE (2012)

21. Mesbah, A., Prasad, M.R.: Automated cross-browser compatibility testing. In:
Proceedings of the 33rd International Conference on Software Engineering. ACM
(2011)

22. Husmann, M., Spiegel, M., Murolo, A., Norrie, M.C.: UI testing cross-device appli-
cations. In: Proceedings of the ACM Conference on Interactive Surfaces and Spaces.
ACM (2016)

23. Xu, S., Zeng, H.: Static analysis technique of cross-browser compatibility detect-
ing. In: Proceedings of the International Conference on Applied Computing and
Information Technology/International Conference on Computational Science and
Intelligence. IEEE (2015)


	Improved Developer Support for the Detection of Cross-Browser Incompatibilities
	1 Introduction
	2 Background
	3 Approach
	3.1 Elements of Interest
	3.2 Documentation Lookup
	3.3 Compatibility Scan

	4 Architecture and Implementation
	5 Evaluation
	5.1 Tasks and Procedure
	5.2 Participants
	5.3 Results

	6 Conclusion
	References


