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Abstract. Large Knowledge Graphs (KGs), e.g., DBpedia or Wikidata,
are created with the goal of providing structure to unstructured or semi-
structured data. Having these special datasets constantly evolving, the
challenge is to utilize them in a meaningful, accurate, and efficient way.
Further, exploiting semantics encoded in KGs, e.g., class and property
hierarchies, provides the basis for addressing this challenge and produc-
ing a more accurate analysis of KG data. Thus, we focus on the problem
of determining relatedness among entities in KGs, which corresponds to
a fundamental building block for any semantic data integration task. We
devise MateTee, a semantic similarity measure that combines the gradi-
ent descent optimization method with semantics encoded in ontologies,
to precisely compute values of similarity between entities in KGs. We
empirically study the accuracy of MateTee with respect to state-of-the-
art methods. The observed results show that MateTee is competitive in
terms of accuracy with respect to existing methods, with the advantage
that background domain knowledge is not required.

1 Introduction

We are living in the Big Data era where a large number of structured and semi-
structured datasets are publicly available. Such datasets are collected from differ-
ent social domains, e.g., government, scientific communities, or social media and
social networks. The semantic representation of the data in RDF Graphs helps
in the endeavor of automatically solving data-driven oriented tasks, providing
as result, more useful and meaningful services from such big and heterogeneous
data [2]. Particularly, the tasks affected by a good similarity metric between
data entities are: semantic data integration of heterogeneous data, entity linking
and clustering, as well as the generation of recommendations. The future of the
Web of Data and the Web of Things brings even more heterogeneity and larger
datasets. Streaming data coming at high rates need to be processed on-demand,
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all of which only increases the need of automation in the process of creation and
processing of semantics. Data management and Artificial Intelligence approaches
play an important role on the task of KG data analysis. Machine Learning (ML),
mostly in its supervised flavor, aims to give machines the capability to learn by
examples, essentially, labeled data. ML field has achieved promising results with
sophisticated techniques, such as Kernel methods or Deep Learning models. Fur-
thermore, the Semantic Web, and in general, all the available Knowledge Graphs
(KGs) such as DBpedia or Yago, have been built with a tremendous effort of
the scientific community having the main objective of making the data under-
standable not only by humans but also by computers. Structured data facilitates
the tasks of data integration, relations or associations discovery, as presented by
Bordes et al. 2013 with TransE [3].

On one hand, we have an immense amount of available knowledge facts,
encoded as structured data in knowledge graphs, and on the other, we have
the Machine Learning boom and techniques able to have access to Big Data
sets, for two main tasks: classification and link prediction. In the case of KGs,
we are referring to classification of entities in a set of classes, and prediction
(or discovery) of new relations between entities, i.e., RDF triples. In this paper,
we focus on the problem of determining relatedness among entities in KGs.
This problem serves as a building block for classification and link prediction, as
well as for semantic data integration. Building on results from knowledge graph
embedding, we devise MateTee a semantic similarity measure that combines
gradient descent optimization method with semantics encoded in ontologies, to
determine relatedness among entities in KGs.

We conduct an empirical evaluation to assess the quality of MateTee with
respect to state-of-the-art similarity measures. Experiments are performed on
two benchmarks: (a) The CESSM [15] KGs of proteins annotated with the Gene
Ontology1; (b) A KG of people from DBpedia. Observed results suggest that
MateTee is able to outperform existing similarity measures, while it does not
require any background knowledge or domain expertise to be configured.

In summary, our main contributions are as follows:

– An end-to-end approach named MateTee able compute similarity value
between entities in a KG. MateTee is based on TransE, which utilizes the
gradient descent optimization method to learn the features representation of
the entities automatically.

– An extensive empirical evaluation on existing benchmarks and state-of-the-art
showing MateTee behavior. Results indicate the benefits of using embeddings
for determining relatedness among entities in KGs. MateTee and experimental
studies are publicly available2.

The remainder of the paper is structured as follows. First, we motivate the prob-
lem of determining relatedness among entities in KGs using a practical example.
Then, we briefly describe preliminaries and background concepts required to

1
http://geneontology.org/

2
https://github.com/RDF-Molecules/MateTee

http://geneontology.org/
https://github.com/RDF-Molecules/MateTee
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understand the problem treated in the paper, as well as the proposed solution.
Section 4 defines the problem, the proposed solution, and MateTee architecture.
Section 5 reports on the empirical evaluation, while related work is summarized
in Sect. 6. Conclusion and future work are outlined in Sect. 7.

Fig. 1. Motivating Example. A portion of a Knowledge Graph (KG) describing
relationships among persons and the places where they have been born. There exist
different types of relations and multiple connectivity patterns among entities in KG

2 Motivating Example

Consider a knowledge graph in Fig. 1. Nodes of the same color indicate they
share the same properties, while nodes of different colors differ in at least one
property. Determining relatedness among same-colored nodes, e.g., Camilo with
Diego, requires to compare, in a 1-1 fashion, values of each property of those
entities and aggregate the results. This computation can be done as Camilo and
Diego have the same set of properties, i.e., Child of and Birth Place. Contrary,
if entities have different properties, i.e., they are on different colors, the problem
is to measure their relatedness considering the complete set of properties of both
nodes while is not possible to use the 1-1 approach, e.g., Germany and Camilo.
Moreover, whenever entities are compared in terms of their neighborhoods and
reachable nodes, Camilo should be more similar to Diego than to Mike, as Diego
and Camilo are from Europe, while Mike is from China.

These difficulties come inherently with the multi-relational datasets. In rela-
tional data tables, all elements have the same properties, i.e., columns, and
therefore, the similarity computation is performed aggregating a 1-1 similarity
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value between each pair of the properties. With multi-relational data, nodes need
to be made comparable, which means that they all must have the same set of
properties or features. This can be done manually, handcrafting the features,
and creating a list of them for each node, based on previous knowledge of the
specific field or domain of the data. These sets of features will be regarded as
a new representation of the nodes in KG. Then, these sets of features can be
compared, again, in a 1-1 fashion. The problem is that manual creation of the
features requires deep domain knowledge, not to mention it is error-prone and
time consuming. Thus, to solve these problems a similarity measurement app-
roach that automatically creates a canonical entity representations is required.
In this paper, we present MateTee, a similarity approach that relies on embed-
ding the original KG into a vector space in order to make all entities comparable.
Similarity values among embeddings are measured based on any distance metric
defined for vector spaces, e.g., Euclidean distance.

3 Preliminaries

MateTee determines relatedness between entities in Knowledge Graphs based on
Encoding Generation methods such as TransE [3]. MateTee combines the gradi-
ent descent optimization method (used in TransE) with the explicit knowledge
encoded in the ontologies of a KG.

3.1 Translation Embeddings

MateTee is based on TransE [3], acronym of Translation Embeddings, presented
by Bordes et al. 2013. TransE tackles the problem of embedding a Knowledge
Graph (KG) into a low dimensional vector space (called embedding space) for
subsequent prediction or classification objectives, e.g., predict missing edges. The
core of TransE is to learn the embeddings of entities in a way that similar entities
in the KG should be also close in the embedding space. Additionally, dissimilar
entities in the KG should be also far in the embeddings space. Learning the
embeddings is done by analysing the connectivity patterns between entities in
a KG, and then encoding these patterns into their vector representation, i.e.,
their embeddings. The optimization technique Stochastic Gradient Descent is
executed to compute this encoding.

Modeling RDF triples in the embedding space with relations as translations
is the core contribution of TransE. The basic idea behind translation-based model
is the following:

Subject + Translation ≈ Object

TransE aims at minimizing the error when summing up the distance d
between the embeddings of the Subject + Translation pair and the embed-
ding of the Object. Stochastic Gradient Descent (SGD) meta-heuristic allows for
learning entity embeddings by minimizing the error defined as the sum of the
distances d of all the triples in the KG. A global minimum cannot be ensured
because SGD depends on a randomly selected start position of the descent.
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Fig. 2. TransE approach intuition. (a) An RDF Knowledge Graph where similar
entities are in the same color; (b) Clusters of entities in the embedding space. Entities
of the same color are close to each other in the identified cluster.

The random initialization procedure followed by TransE is presented in detail
at [8]. Figure 2 illustrates the intuition of this approach.

4 MateTee: A Semantic Similarity Measure for RDF
Knowledge Graphs

MateTee focuses on measuring the similarity between any pair of entities belong-
ing to an input RDF Knowledge Graph. Measuring the similarity between enti-
ties is an important phase for any data integration problem, and for most
machine learning tasks, e.g., clustering of nodes, or link prediction in KGs.

The main problem for computing the similarity of RDF knowledge graphs is
that not all the nodes have the same properties, therefore, a 1-1 comparison at
property level cannot be performed. State-of-the-art methods like GADES [20]
perform a semantic analysis of the entities based on multiple aspects, i.e., 1-hop
neighborhood, class hierarchy of the subjects/objects, class hierarchy of the prop-
erties, and mixtures of them. This analysis relies on domain knowledge and user
expertise about the provenance of the data, e.g., GADES requires a good design
of the hierarchy of classes and properties.

To overcome this problem, MateTee embeds an RDF knowledge graph into
a vector space, once all the entities are represented as vectors with same dimen-
sionality, it uses any common distance metric to calculate their similarity values.
MateTee relies on finding a vector representation of graph entities to produce
the similarity value. For this, MateTee utilizes TransE [3], a method based on
Stochastic Gradient Descent that encodes the connectivity patterns of the enti-
ties into a low-dimensional embedding space. TransE ensures that similar nodes
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in the RDF graph are close in the embedding space, while dissimilar nodes in
the graph are distant in the embedding space.

By using TransE approach, MateTee aims to calculate similarity values as
close as possible to the ground truth: values accepted by the scientific commu-
nity because they were calculated manually with deep domain expertise, e.g.,
Sequence Similarity in the Gene Ontology domain. Formally, MateTee can be
defined as:

Definition 1 (MateTee Embedding). Given a knowledge graph G = (V,E)
composed by a set T of RDF triples, where V = {s | (s, p, o) ∈ T} ∪ {o | (s, p, o)
∈ T} and E = {p | (s, p, o) ∈ T}, MateTee aims to find a set M of embeddings
of each member of V , such that:

arg min
m1,m2∈M

Error(M) = arg min
m1,m2∈M

∑

m1,m2∈M

|S1(m1,m2) − S2(m1,m2)|

where S1 is a similarity metric computed using any distance measure defined for
vector spaces, e.g., Euclidean distance, and S2 is a similarity value given by the
Gold Standards. The Gold Standards are the values considered as ground truth.

Fig. 3. The MateTee Architecture. MateTee receives as input an RDF Knowledge
Graph (KG), and entities e1 and e2 from the KG. MateTee outputs a similarity value
between e1 and e2 according to the connectivity patterns found in KG. A pre-processing
step allows for the transformation of a KG into a matrix-based representation. Then,
n-dimensional embeddings are generated. Finally, values of similarity are computed

4.1 The MateTee Architecture

Figure 3 depicts the end-to-end MateTee architecture. MateTee receives as input
an RDF Knowledge Graph (KG), and entities e1 and e2 belonging to the KG. The
objective of the complete process is to calculate the similarity value between e1
and e2. The first step is to Pre-Process the original data in order to transform
it into the format required by the optimization method. As the optimization
methods are numeric based, we need a numerical representation of the data.
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In other words, the string-based triples coming as input must be translated into a
numeric format, usually sparse matrices. The implementation of TransE employs
three sparse matrices: one representing the Objects, another for the Subjects,
and a third one for the Translations. The matrices have as many columns as
RDF triples are in the original KG, and as many rows as entities, i.e., number
of Subjects + number of Translations + number of Objects. Note that if a
Subject appears also as Object in another RDF triple, it is considered as one.
Moreover, in order to map the original entities to their respective encodings, i.e.,
embeddings, dictionaries need to be created. Dictionaries map the original URIs
of the entities with the ID of their embeddings.

Once the numerical representation and dictionaries of the RDF triples are
created, the embeddings of the entities can now be learned. Learning embeddings
happens at the Encoding Generation phase. This numerical representation of
the data is now fed to the optimization method. The method aims to update
the value of the embeddings in order to minimize an overall error according to a
proposed model. MateTee is based on TransE, this method aims at minimizing
the distance (in MateTee Euclidean Distance is used) between the sum of the
embeddings of the Subject and Translation to the embeddings of the Object.
TransE also defines corrupted triples, which are triples with either the Subject
or Object replaced by another randomly selected resource from the set of entities.
This is required because TransE needs not only to ensure that similar entities
should be close in the embedding space, but also, that dissimilar entities must
be farther than the similar ones. This can be seen in the following Loss Function
used by TransE:

Definition 2 (Loss function). Given is a set of RDF triples T and their
respective set of corrupted RDF triples (original triples with either the Subject
or Object replaced) T ′. Embeddings of Subject s, Object o, and Transitions t in
T are represented as S, O, and T, respectively. Similarly, embeddings of Subject
s′ and Object o′ in corrupted RDF triples in T ′ are represented as S′ and O′,
respectively. The loss function can be defined as:

Loss(T, T ′) =
∑

(s,t,o)∈T

∑

(s′,t,o′)∈T ′
[margin + d(S + T,O) − d(S′ + T,O′)]+

The key is to notice that the loss function only considers the positive part
of the difference of the distances, plus the margin; this is denoted by [x]+ in
the loss formula. Considering positive values is crucial because if the distance
between entities of the original triple, i.e., d(S + T,O), is greater than the
distance between the entities of the corrupted triple, i.e., d(S′ + T,O′), then
the difference between the two is positive (regardless of the margin) and this
number will increase the overall error. This situation should not occur according
to the model S + T ≈ O as we want this difference to be as close to zero as
possible. On the other hand, if the opposite situation happens, the distance
between the entities of the original RDF triple, i.e., d(S+T,O), is smaller than
the distance between the entities of the corrupted triple, i.e., d(S′ + T,O′).
This state is exactly what the model looks for, and since the difference between
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both distances is negative, the overall error is not increased as only the positive
part is considered. In the case when the entities of the original RDF triple is
smaller than the distance between the entities of the corrupted triple, the margin
tightens the model as the negative difference between both distances must be at
least as big as the margin, otherwise the overall error will be increased.

TransE - Gradient Descent Algorithm. The core of TransE learning algo-
rithm performs the following steps:

1. Initialization: The embedding of each entity (Subject/Object) is initialized
uniformly and randomly between −6√

k
and 6√

k
where k is the dimensionality

of the embeddings. At this point only the relations are normalized, they will
not be normalized again during the optimization. Entities will be normalized
at the beginning of each iteration.

2. Training (loop):
(a) Entity embeddings normalization: In each iteration, first current

embeddings of the entities are normalized. This is important because it
prevents the optimization to minimize the error by artificially increasing
the length i.e., norm, of the embeddings.

(b) Creation of mini-batches: Triples to be used as training examples for
each iteration of the GD are selected. First, a random sample of set of
triples from the input data set is chosen, and then, for each triple in the
sample, a corrupted triple is created.

– Corrupted triples: A corrupted triple is the same as the original
but with either its Subject or Object replaced by another randomly
selected entity from the data set, always just one, not both at the
same time, as show in Fig. 4:

(c) Embeddings update: Once the training set of examples, i.e., real triples
∪ corrupted triples is set, it proceeds with the actual optimization process:

– For each one of the dimensions of each one of the embeddings in the
data set, we calculate the derivative of the overall error with respect
to this parameter. This derivative gives the direction on which the
overall error is growing with respect to this parameter. Then, to know
how to update this parameter so that the overall error decreases, it
changes the direction to the opposite of the derivative, and moves one
unit of the learning rate (which is also an input hyper-parameter).
This process iterates until a maximum number of iterations is reached.

When the optimization reaches the termination condition, e.g., the maximum
number of iterations in TransE, the embeddings of the entities have been already
learned. Having the embeddings of all the entities in the input KG, including
e1 and e2, MateTee can now proceed to the Similarity Measure Compu-
tation of both entities. Any distance metric for vector spaces can be used to
calculate this value, e.g., any Minkowski distance, Euclidean for MateTee. It is
important to notice that MateTee calculates the similarity and not the distance.
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Fig. 4. Corrupted triples. An original RDF triple t and two corrupted versions of t
are presented on the left and right hand of the figure, respectively. Corrupted triples
have either the Subject or the Object replaced by another randomly selected entity
from the set of entities from the input KG

Therefore, using the Euclidean distance MateTee finds a similarity value between
0 and 1, using the following formula:

similarity(A,B) =
1

1 + EuclideanDistance(A,B)

5 Empirical Evaluation

We empirically study the effectiveness of MateTee on solving the problem of mea-
suring the semantic similarity between entities in a KG. We assess the following
research questions: (RQ1) Does the translations embeddings method used in
MateTee improve the accuracy of determining relatedness between entities in a
KG? (RQ2) Is MateTee able to perform as good as the state-of-the-art similar-
ity measures? (RQ3) Does MateTee perform well in Knowledge Graphs from
different domains? To answer our research questions, we evaluate MateTee in
two different scenarios. In the first evaluation, we compare Proteins annotated
with the Gene Ontology3. In the second evaluation, we compare people extracted
from DBpedia, we prepare a dataset named DBpedia People [5].

Implementation. MateTee is implemented in Python 2.7.10. The experiments
were executed on a Ubuntu 14.04 (64 bits) machine with CPU: Intel(R) Xeon(R)
E5-2660 2.60GHz (20 physical cores) with 132 GB RAM, and GPU card GeForce
GTX TITAN X. Source code and a Docker set up are available in Git4.

5.1 Similarity Among Proteins Annotated with the GO Ontology

Datasets. This experiment is conducted on the collections of proteins published
at the Collaborative Evaluation of GO-based Semantic Similarity Measures [16]
(CESSM) websites 20085 and 20146. The CESSM 2008 collection is composed
of 13,430 pairs of proteins from UniProt with 1,039 distinct proteins, while

3
http://geneontology.org/

4
https://github.com/RDF-Molecules/MateTee

5
http://xldb.di.fc.ul.pt/tools/cessm/

6
http://xldb.di.fc.ul.pt/biotools/cessm2014/

http://geneontology.org/
https://github.com/RDF-Molecules/MateTee
http://xldb.di.fc.ul.pt/tools/cessm/
http://xldb.di.fc.ul.pt/biotools/cessm2014/
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the CESSM 2014 dataset includes 22,302 pairs of proteins also from UniProt
with 1,559 distinct proteins. The sets of annotations of CESSM 2008 and 2014
comprise 1,908 and 3,909 distinct GO terms, respectively. The original CESSM
collections are presented in a multi-file fashion, one file per protein. Technical
details in Table 1 refer to the unified (single file) dataset, after data transforma-
tions are applied. CESSM computes the Pearson’s correlation coefficients with
respect to three similarity measures from the genomic domain7: ECC similar-
ity [7], Pfam [16], and the Sequence Similarity (SeqSim) [19]. Furthermore, the
CESSM evaluation framework makes the results of eleven semantic similarity
measures available. These state-of-the-art semantic similarity measures are spe-
cific for the genomic domain and exploit the knowledge encoded in the Gene
Ontology (GO) to determining relatedness among proteins in the CESSM col-
lections. These semantic similarity measures are extensions of well-known simi-
larity measures to consider GO annotations, Information Content (IC) of these
annotations, and pair-wise combinations of common ancestors in GO hierar-
chy. The extended similarity measures are the following: Resnik (R) [17]; Lin
(L) [11]; and Jiang and Conrath (J) [13]. Additionally, the CESSM evaluation
framework considers the average of the ICs of pairs of common ancestors during
the computation of these measures; this measure is denoted with the label A.
Following the approach reported by Sevilla et al. [18], the maximum value of IC
of pairs of common ancestors is computed; combined measures are distinguished
with the label M. As proposed by Couto et al. [6], the best-match average of the
ICs of pairs of disjunctive common ancestors (DCA) is also computed; measures
labelled with B or G correspond to combinations with the best-match average of
the ICs. Finally, the Jaccard index is applied to sets of annotations together with
domain-specific information in the similarity measures simUI (UI) and simGIC
(GI) [15].

Table 1. CESSM 2008 and 2014 - Dataset description. Shows dataset size in
Megabytes, overall number of triples, number of left entities (Subjects), right entities
(Objects), and shared entities (appearing as Subject and as Object), and number of
relations, to present a comparison of size between datasets from 2008 and 2014

CESSM 2008 CESSM 2014

Size (MBs) 1 1

Triples 8,359 20,153

Entities Left 1,039 1,559

Shared 0 0

Right 1,908 3,909

Relations 1 1

7 The area in molecular biology and genetics that studies the genetic material of an
organism.
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Fig. 5. Results from the CESSM evaluation framework for the CESSM 2008
collection. Results include: average values for MateTee with respect to SeqSim. The
black diagonal line represents the values of SeqSim for the different pairs of proteins in
the collection. The similarity measures are: simUI (UI), simGIC (GI), Resnik’s Average
(RA), Resnik’s Maximum (RM), Resnik’s Best-Match Average (RB/RG), Lin’s Aver-
age (LA), Lin’s Maximum (LM), Lin’s Best-Match Average (LB), Jiang & Conrath’s
Average (JA), Jiang & Conrath’s Maximum (JM), J. & C.’s Best-Match Average (JB).
MateTee outperforms eleven measures and reaches a value of Pearson’s correlation of
0.787

Results. Figures 5 and 6 report on the comparison of MateTee and the rest
of the eleven similarity measures with SeqSim; both plots were generated by
the CESSM evaluation framework. The black diagonal lines represent the values
assigned by SeqSim. The majority of the studied similarity measures assign high
values of similarity to pairs of proteins that SeqSim considers as similar proteins,
i.e., in pairs of proteins with high values of SeqSim, the majority of the curves
of the similarity measures are close to the black line. Nevertheless, the same
behavior is not observed for the pairs of proteins that are not similar according
to SeqSim, i.e., the corresponding curves are far from the black line. Contrary
to state-of-the-art similarity measures, MateTee is able to compute values of
similarity that are more correlated to SeqSim, i.e., the curve of MateTee is close
to the black line in both collections. MateTee is able to reach values of the
Pearson’s correlation of 0.787 and 0.817 in CESSM 2008 and 2014, respectively.



MateTee: A Semantic Similarity Metric Based on Translation Embeddings 257

Fig. 6. Results from CESSM evaluation framework for the CESSM 2014
collection. Results include: average values for MateTee with respect to SeqSim. The
black diagonal line represents the values of SeqSim for the different pairs of proteins in
the collection. The similarity measures are: simUI (UI), simGIC (GI), Resnik’s Average
(RA), Resnik’s Maximum (RM), Resnik’s Best-Match Average (RB/RG), Lin’s Aver-
age (LA), Lin’s Maximum (LM), Lin’s Best-Match Average (LB), Jiang & Conrath’s
Average (JA), Jiang & Conrath’s Maximum (JM), J. & C.’s Best-Match Average (JB).
MateTee outperforms eleven measures and reaches a value of Pearson’s correlation of
0.817

Additionally, we present the results of the comparison of MateTee and eleven
similarity measures with respect to the gold standard similarity measures: ECC,
Pfam, and SeqSim; Table 2 presents these results. Moreover, additional similarity
measures are included in the study: dtax [1], dps [14], OnSim [22], IC-OnSim [21],
and GADES [20]. As before, values of the Pearson’s correlation represent the
quality of a measurement of similarity, the higher the correlation with the gold
standards, the better the measurement. The top 5 similarity measures (before
introducing MateTee) with higher quality are highlighted in gray, and the highest
is highlighted in bold.

Discussion: From the results, the following insights can be concluded; MateTee
already outperforms the quality of GADES for both collections 2008 and 2014,
which is the best-performing measurement before our method, for the Sequence
Similarity. In the 2008 collection, MateTee stands at the 5th position against
the other two gold standards, only at 0.015 points to the GADES for ECC, and
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Table 2. GO - CESSM 2008 and 2014 - Results. Quality in terms of Pearson’s
correlation coefficient between three gold standards, i.e., SeqSim (Sequence) similar-
ity, Pfam (Protein Families) similarity and EC (Enzyme Commission) similarity, and
thirteen in-house similarity measures of CESSM, plus OnSim, IC-OnSim and GADES.
With gray background the best 6 correlations and the best in bold

0.043 for Pfam. While in the 2014 collection, MateTee stands at the 3th position
against the Pfam gold standard, only at 0.029 points to the GADES (the best
before MateTee), and at the 5th position against the ECC gold standard, only
at 0.014 points to the GADES (the best before MateTee).

It can be observed that GADES [20] is the greatest competitor for MateTee.
It performs better comparing with the ECC and Pfam gold standards, but it is
outperformed against SeqSim. As the results of GADES and MateTee are rather
close. For the three gold standards, the advantage of MateTee against GADES is
that the former requires domain expertise to define its final similarity measure
(GADES defines multiple measures based on: Class hierarchy, Neighborhood,
Relation Hierarchy, Attributes, and mixtures of them). While the latter learns
the embeddings in an automatic way (through an optimization process called
Stochastic Gradient Descent), and then uses any common vector similarity mea-
sure, e.g., Euclidean or Cosine, to calculate their similarity.

5.2 Similarity Among People from DBpedia

Dataset: Table 3 shows technical details of the datasets used in the DBpedia
People experiment. The Gold Standard (GS): the collection was extracted
from the live version of DBpedia (July 2016); it contains 20,000 subjects of type
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Table 3. Description of the data set DBpedia People. Shows the datasets size in
Megabytes, overall number of triples, overall number of persons, number of left entities
(Subjects), right entities (Objects), and shared entities (appearing as Subject and as
Object), and number of relations, to present a comparison of size between three dumps

Data set 1 Data set 2 Data set 3

Size (MBs) 80 80 80

Triples 552,355 553,232 552,527

Subjects (Persons) 20,000 20,000 20,000

Entities Left 60,000

Shared 0

Right 247,465

Relations 1,981

Person8, i.e., 20,000 subjects with all available properties and their values. The
overall number of RDF triples is 829,184. The Gold Standard is used to com-
pute Precision and Recall during the evaluation. The Test Datasets (TS): are
created from the Gold Standard with their properties and values were randomly
split among three test datasets. Each triple is randomly assigned to one or sev-
eral test datasets. The selection process takes two steps: (1) a number of test
datasets to copy a triple to is chosen randomly under a uniform distribution;
(2) the chosen number is used as a sample size to randomly select particular
test datasets to write a triple. URIs are generated specifically for each test data
set. Eventually, each test dump contains a subset of the properties in the gold
standard. Each subset of properties of each person is composed randomly using
a uniform distribution.

Metrics: We measure the behavior of MateTee in terms of the following metrics:
(a) Precision From all matched pairs (pairs with similarity greater than the
threshold), percentage of correct matches.

Precision =
Number of correctly matched pairs

Total number of matched pairs

(b) Recall From all expected matches (all, including below and above the
threshold), percentage of correct matches.

Recall =
Number of correctly matched pairs
Total number of expected matches

Results: We tested the quality of MateTee by comparing its results with two
other similarity measurements: Jaccard [5] and GADES [20]. For each one we
calculate the Precision and Recall, considering different values of Threshold.
The Threshold is the minimum similarity value so that the pair of people is
considered in the matched-pairs set. Table 4 show the results obtained using
Jaccard, GADES, and MateTee similarity approaches.
8 <http://dbpedia.org/ontology/Person>.

http://dbpedia.org/ontology/Person
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Table 4. DBpedia People Test Datasets. Results comparison of precision and recall
using Jaccard, GADES and MateTee similarity measurements, obtained with different
threshold values: 0.6, 0.7, 0.8 and 0.9. In bold the best value for each threshold

T0.6 T0.7 T0.8 T0.9

Precision Recall Precision Recall Precision Recall Precision Recall

Jaccard 0.36 0.01 0.30 0.01 0.30 0.01 0.30 0.01

GADES 0.87 0.73 0.83 0.43 0.80 0.16 0.63 0.05

MateTee 0.93 0.79 0.99 0.59 1.00 0.10 0.00 0.00

Discussions: From the results we extract the following insights. Regarding
Precision, MateTee similarity measurement has the best quality among all the
three measurements, and for all the considered thresholds. Regarding Recall,
our method is the best up until a threshold of 0.7. For higher thresholds, e.g.,
0.8, the recall rapidly goes down to 0.1, and to absolute 0 for 0.9. The explana-
tion for this is that MateTee, being an optimization-based method, will always
have an error as small as possible, so even if the neighborhoods of two entities
are exactly the same, it is very unlikely to have similarities higher than 0.9 or
1.0, they will for sure be higher than between people which neighborhoods are
absolutely different, but very unlikely be equal to 1.0. Then, using a threshold
equal to 0.9, very few pairs of people will be considered, and with 1.0, absolutely
no pairs are considered to count in the numerator of the Recall formula.

6 Related Work

Griver et al. [9] present Node2Vec, the latest method of the everything-2-vec
saga. Node2Vec tackles the problem of giving a vector representation to nodes
in graphs. Node2Vec focuses mainly on two common prediction tasks: Multi-label
classification of nodes, where the objective is to classify new unknown nodes into
one of the known classes, and Link prediction with the objective of predicting if
a link i.e., relation, should be established (or re-established in case of incomplete
datasets) between a pair of given nodes. Further, node2vec identifies the type of
link. The main contribution and uniqueness of node2vec, compared with similar
techniques, is the flexible notion it gives to the meaning of neighbourhood. It is
based on the idea that nodes, and their connectivity patterns in the network,
can be described based on two factors: First, on the communities to which they
belong, i.e., homophily or essentially the set of their 1-hop neighbors, and second,
on the role the nodes play in the network, i.e., structural equivalence or the
type of node they are, e.g., border node, internal node, etc. Therefore, a node
could have multiple neighbourhoods, and it can only be considered k of these
neighbourhoods, the problem turns into how to sample them.

Based on Breadth-first Sampling (BFS) and Depth-first Sampling (DFS),
node2vec proposes a new sampling approach called Random Walks. It consists on
explore the connectivity patterns based on both BFS and DFS manners, interpo-
lating between both approaches based on a bias term. This idea comes from the
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fact that the connectivity patterns in real life graphs, e.g., Social Networks, are
not exclusively based on structural equivalence and homophily, but commonly
in a mixtures of both. The bias term aims to accommodate the random walks
to the actual structure of the sub-graph being analyzed.

Another publication also aiming on finding vector representations of entities
in KGs, and that in fact was the predecessor of TransE, is the Structured
Embeddings (SE), presented in [4] also by Bordes et al. SE is a method on
which the vector representation of the entities is established by a neural network
acting like a bridge between the entities in the original data and their feature
representation. The fundamental characteristics of their approach includes Flex-
ibility and domain independence, meaning that it should work and be easily
adaptable for most of available KBs, and Compactness in the sense that each
entity is assign one low-dimensional vector in the feature space, and only one
matrix to each relation. As for TransE, SE considers relations between the enti-
ties, i.e., subjects and objects, as operators. If certain operation is performed
in the feature space between the subject vector and the relation matrix, the
resulting vector must be the object vector (or a nearest in its neighbor). The
main difference between SE and further approaches from the same authors, e.g.,
TransE [3], is that SE models relations as pair of matrices. For TransE the rela-
tions are normal embeddings with the special characteristic that they are not
normalized after each iteration, as for Subjects and Objects.

7 Conclusions and Future Work

In this paper we presented MateTee, a method to compare entities in knowl-
edge graphs, based on the vectorization of the nodes, and specially without any
domain expertise. To test the accuracy of MateTee, we compared its results
with the state-of-the-art methods like GADES or OnSim, as well as state-of-the-
art similarity measures available in the CESSM evaluation framework. Mate-
Tee exhibited high accuracy and competitive results, even outperforming the
results of GADES, one of the best-performing similarity metric. This behav-
ior was observed in the collections of proteins for UniProt, and the collection
of persons from DBpedia. Therefore, observed results suggest that representing
knowledge encoded in KGs in the embedding space and using vector based sim-
ilarity metrics to compare the embeddings of KG entities, provides an accurate
method for determining relatedness among entities in the KG.

In the future work, we plan to extend MateTee, to consider the implicit
knowledge encoded in the ontologies used to describe a KG. Furthermore, Mate-
Tee will be modified to be able to produce values of similarity on-demand, i.e.,
MateTee workflow will start to work on a pre-training of the original data set.
Thus, the optimization process will converge more rapidly whenever any new
entity are added to the KG because all other embeddings are positioned in the
vector space in a way that the error is already minimized.
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