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Abstract. The growing number of available data graphs in the form of RDF
Linked Data enables the development of semantic exploration applications in
many domains. Often, the users are not domain experts and are therefore una-
ware of the complex knowledge structures represented in the data graphs they
interact with. This hinders users’ experience and effectiveness. Our research
concerns intelligent support to facilitate the exploration of data graphs by users
who are not domain experts. We propose a new navigation support approach
underpinned by the subsumption theory of meaningful learning, which postu-
lates that new concepts are grasped by starting from familiar concepts which
serve as knowledge anchors from where links to new knowledge are made. Our
earlier work has developed several metrics and the corresponding algorithms for
identifying knowledge anchors in data graphs. In this paper, we assess the
performance of these algorithms by considering the user perspective and
application context. The paper address the challenge of aligning basic level
objects that represent familiar concepts in human cognitive structures with
automatically derived knowledge anchors in data graphs. We present a sys-
tematic approach that adapts experimental methods from Cognitive Science to
derive basic level objects underpinned by a data graph. This is used to evaluate
knowledge anchors in data graphs in two application domains - semantic
browsing (Music) and semantic search (Careers). The evaluation validates the
algorithms, which enables their adoption over different domains and application
contexts.

Keywords: Data graphs � Basic level objects � Knowledge anchors � Usable
semantic data exploration

1 Introduction

With the recent growth of linked data graphs, a plethora of interlinked domain entities
is available for users’ exploratory search tasks, such as learning and topic investigation
[1]. Gradually, data graphs are also being exposed to users in different Semantic Web
applications, taking advantage of the exploration of the rich knowledge encoded in the
graphs. Among the applications for supporting user exploration, the two closest to the
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context of this paper are semantic data browsers [2–4] and semantic search systems
[5, 6]. A broad range of users interact with such applications. Often, the users are not
domain experts and struggle to formulate queries that represent their needs. Further-
more, the users are usually exposed to an overwhelming amount of unfamiliar options
for exploration of the data graph, which can lead to confusion, high cognitive load,
frustration and a feeling of being lost. This hinders the users’ exploration experience
and effectiveness. A way to overcome these challenges is to suggest ‘good’ trajectories
through the graph which can bring some utility to the users (e.g. increase effectiveness,
improve motivation, or expand knowledge). Our work focuses on knowledge utility –

expanding one’s domain knowledge while exploring the graph.
Lay users, who are not experts in the corresponding domain, are unaware of the

underlying complex knowledge structures encoded in a data graph [1, 7]. In other
words, the users’ cognitive structures about the domain may not match the semantic
structure of the data graph. To address this challenge, we propose a novel approach to
support graph exploration that can expand a users’ domain knowledge. Our approach is
underpinned by the subsumption theory for meaningful learning [8]. It postulates that a
human cognitive structure is hierarchically organized in terms of highly inclusive
concepts which can be used as anchors to introduce new knowledge [8]. A core
algorithmic component for adopting subsumption theory for generating ‘good’ tra-
jectories is the automatic identification of knowledge anchors in a data graph (KADG),
i.e. entities that refer to anchoring concepts in human cognitive structures.

Our earlier research has developed several metrics and corresponding algorithms
for identifying KADG, which are presented in detail in [9]. To utilize the KADG metrics
in applications for data graph exploration, a systematic evaluation approach that
examines the performance of the metrics is needed. Such an approach is presented in
this paper. As the KADG should align with anchoring concepts in human cognitive
structures, we develop an original way to derive such familiar concepts in a domain that
corresponds to a data graph and considers the domain coverage of the graph. We adapt
Cognitive Science experimental approaches of free-naming tasks to identify basic level
objects (BLO) in human cognitive structures, i.e. domain concepts that are highly
familiar and inclusive, so that people are able to recognize them quickly [10].

The evaluation approach presented in this paper contributes to developing usable
semantic data graph exploration applications by providing:

• formal description of an algorithm for identifying basic level objects which cor-
respond to human cognitive structures over a data graph;

• implementation of the BLO algorithm and utilization to evaluate KADG metrics over
two application contexts for data graph exploration - semantic browsing (in musical
instrument domain) and semantic search (in Career domain); and

• analysis of the performance of KADG metrics, including hybridization heuristics,
using the benchmarking sets of BLO identified by humans.

The rest of the paper is structured as follows. Section 2 positions the work in the
relevant literature and points at the main contribution. Section 3 briefly outlines the
KADG metrics, summarizing [9]. An algorithm for identifying a benchmarking set of
BLO is presented in Sect. 4. Sections 5 and 6 describe experimental studies where we
apply the algorithm for identifying BLO using data graphs of two semantic exploration
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applications – music browser (MusicPinta) and career guidance (L4All). The BLO are
used to evaluate the derived KADG. Section 7 discusses the evaluation findings, points
at generality and applicability of the algorithms, and concludes the paper.

2 Related Work

Recent research on data exploration over the semantic Web examines different
approaches to reduce users’ cognitive load, especially when the users are exposed to
complex domains which they are not familiar with. This has brought together research
from Semantic Web, personalization, and HCI to shape user-oriented application for
data exploration [1, 3, 6]. Personalized exploration based on user interests has been
presented in [11]. A web-based graph visualization approach was used in [12] to help
domain experts with analysis tasks. A co-clustering approach that organizes semantic
links and entity classes was presented in [13] to support iterative navigation of entities
over RDF data. The notion of relevance based on the relative cardinality and the in/out
degree centrality of a graph node has been used to produce graph summaries [14]. Our
work brings a new dimension to this research effort by looking at the knowledge utility
of the exploration, i.e. providing ways to expand the user’s awareness of the domain.
This is crucial for the usability of semantic exploration applications, especially when
the users are not domain experts.

Our approach is based on identifying knowledge anchors in data graphs. Relevant
work on finding key concepts in a data graph was developed by research on ontology
summarization [15] and formal concept analysis [16]. Ontology summarization aims at
helping ontology engineers to make sense of an ontology in order to reuse and build
new ontologies [17]. The closest ontology summarization approach to this paper’s
context is [18], which highlighted the value of cognitive natural categories for iden-
tifying key concepts. The work in [19] has formalized the main psychological
approaches for identifying basic level concepts in formal concept analysis. In [9] we
have operationalized these approaches, allowing automatic identification of KADG.

According to [17], there are two main approaches for evaluating a user-driven
ontology summary: gold standard evaluation, where the quality of the summary is
expressed by its similarity to a manually built ontology by domain experts, or corpus
coverage evaluation, in which the quality of the ontology is represented by its appro-
priateness to cover the topic of a corpus. The evaluation approach used in [18] included
identifying a gold standard by asking ontology engineers to select a number of concepts
they considered the most representative for summarizing an ontology. To the best of our
knowledge, there are no approaches that consider key concepts in data graphs which
correspond to cognitive structures of lay users who are not domain experts. We identify
such concepts in data graphs including both an automatic method to derive KADG and an
experimental method to derive BLO that correspond to human cognitive structures. We
evaluate KADG against benchmarking sets of BLO over the data graphs of two semantic
exploration applications – browsing (Music) and search (Careers). By providing a
systematic evaluation approach, the paper facilitates the adoption of the KADG metrics,
and the corresponding hybridization methods, to enhance the usability of semantic web
applications that offer user exploration of data graphs.
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3 Identifying Knowledge Anchors in Data Graphs

A Data Graph DG describes entities (vertices) and attributes (edges), represented as
Resource Description Framework (RDF) statements. Each statement is a triple of the
form <Subject, Predicate, Object> [20]. Formally, a data graph is as a labeled directed
graph DG ¼ hV ;E; Ti, depicting a set of RDF triples where:

– V ¼ fv1; v2; . . .; vng is a finite set of entities;
– E ¼ fe1; e2; . . .; emg is a finite set of edge labels;
– T ¼ ft1; t2; . . .; tkg is a finite set of triples where each ti is a proposition in the form

of a triple vs; ei; voh i with vs; vo 2 V , where vs is the Subject (source entity) and vo is
the Object (target entity); and ei 2 E is the Predicate (relationship type).

The set of entities V is divided further by using the subsumption relationship
rdfs:subClassOf (denoted as �) and following its transitivity inference. This
includes category entities (C�V which is the set of all entities that have at least one
subclass, at least one superclass, and at least one instance) and leaf entities (L�V
which is the set of entities that have no subclasses).

The set of edge types E is divided further considering two relationship categories:
hierarchical relationships (H: is a set of subsumption relationships between the
Subject and Object entities in the corresponding triples) and domain-specific rela-
tionships (D: represent relevant links in the domain, other than hierarchical links, e.g.
in a Music domain, instruments used in the same performance are related).

Our work in [9] has formally adopted the Cognitive science notion of basic level
objects [10], to describe two groups of metrics and their corresponding algorithms for
identifying knowledge anchors in data graphs (KADG).

Distinctiveness metrics. These are adapted from the formal definition of cue validity,
to identify the most differentiated categories whose attributes are associated exclusively
with the category members but are not associated to the members of other categories.
For example, in Fig. 1, the AV value for entity v2 is the aggregation of the AV values of
entities (e3, e4, e5) linked to members of v2 (v21, v22, v23, v24) using the domain-specific
relationship D. The AV value for e3 equals the number triples between e3 (Source
vertex) and the members of v2 (Target
vertices v21, v22) via relationship D (2
triples), divided by the number of tri-
ples between e3 (Source vertex) and all
entities in the graph (Target vertices
v12, v21, v22) via relationship D (3
triples).

Distinctiveness metrics include:

• Attribute Validity (AV) – repre-
sents the proportion of relation-
ships involving the category’s
members.
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Fig. 1. A data graph showing entities and rela-
tionship types between entities.
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• Category Attribute Collocation (CAC) – uses frequency of an attribute within the
category’s members; gives preference to categories with many attributes shared by
members.

• Category Utility (CU) - considers whether a category has many attributes shared
by its members, and at the same time has attributes not related to many other
categories.

Homogeneity Metrics. These metrics aim to identify categories whose members share
many entities among each other. In this work, we have utilized three set-based simi-
larity metrics [9]: Common Neighbors (CN), Jaccard (Jac), and Cosine (Cos). For
example (see Fig. 1), consider the entity v2 and the hierarchical relationship rdf:-
type and the domain-specific relationship D. Entity v2 has three entities (e3, e4, e5)
linked to its members (v21, v22, v23, v24), with two entities (e3, e5) shared among the four
members through the hierarchical relationship rdf:type and relationship D, whereas
the entity v1 has no entities shared by similar relationship types with its members
(v11, v12). This indicates that entity v2 is more homogenous than v1.

4 Identifying Basic Level Objects Over Data Graphs

The notion of basic level objects was introduced in Cognitive Science research,
illustrating that domains of concrete objects include familiar categories that exist at a
highly inclusive level of abstraction in humans’ cognitive structures, more than cate-
gories at the superordinate level (i.e. above the basic level) or the subordinate level (i.e.
below the basic level) [10, 21]. An example from [10] of a BLO is Guitar - most
people are likely to recognize objects that belong to the category Guitar (basic level).
However, users who are not experts in the music domain are unlikely to be able to
recognize the category Folk Guitar (subordinate level) and name it with its exact
name; instead, users may consider such objects equivalent to Guitar (closest basic
level) rather than Musical Instrument (superordinate level).

4.1 Cognitive Science Experimental Approaches for Deriving BLO

While studying the notion of basic level objects, Rosch et al. [10] conducted several
experiments comprising free-naming tasks testing the hypothesis that object names at
the basic level should be the names by which objects are most generally designated by
adults. In a free-naming task, objects in a taxonomy are shown to a participant as a
series of images in fixed portions of times, and the participant is asked to identify the
names of the objects shown in the images as quickly as possible. Three types of packets
of images were shown to the participants: those in which one picture from each
superordinate category appeared; one in which one image from each basic level cat-
egory appeared; and one in which all images appeared. The participants overwhelm-
ingly used names at the basic level while naming objects in the images [10].

To identify BLO, accuracy and frequency were considered. Accuracy considers
whether a participant provides an accurate name for the object in the taxonomy, while
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frequency indicates how many times an object was named correctly by different par-
ticipants. In the example of Guitar, when participants were shown members of
Guitar (e.g. Folk Guitar, Classical Guitar) in a packet, they named them
with their parent Guitar at the basic level more frequently than with names at the
superordinate level (e.g. Musical instrument) or with their exact names (e.g.
Folk Guitar, Classical Guitar) at the subordinate level.

The selection of object names used in the free-naming tasks in [10] was based on
the population of categories of concrete nouns in common use in English. Every noun
with a word frequency of 10 or greater from a sample of written English [22] was
selected as a basic level object. A superordinate category was considered in common
use if at least four of its members met this criterion.

However, the Cognitive Science approach for selecting BLO cannot be applied
directly in the context of a data graph. The principal difference is that we need to
constrain the human cognitive structures upon the data graph, as opposed to using a bag
of words from popular dictionaries. This is because a data graph presents a lesser
number of concepts from a domain, which belong to the graph scope, and there can be
concepts that have been omitted. Moreover, the Cognitive Science studies included
concrete domains where images of the objects could be shown to participants. Many
semantic web applications utilize data graphs which include more abstract concepts for
which images cannot be reliably shown to users (e.g. medical illnesses, environmental
concepts, professions). Therefore, we adapt the Cognitive science experimental
approach for deriving BLO to take into account the domain coverage of a data graph,
which is applicable to any domain presented with a data graph.

4.2 Algorithm for Identifying BLO Over Data Graphs

Following Cognitive Science experimental studies outlined above, we present two
strategies with the corresponding algorithm for identifying BLO in a data graph.

Strategy 1. Takes into account whether a leaf entity v 2 L that has no subclasses is
presented to a user and named with its parents (i.e. superclasses).
Strategy 2. Takes into account whether a category entity v 2 C that has one or more
subclasses is presented and named with its exact name, or with the name of a parent
that is a superclass or a category member (i.e. subclass that is not a leaf entity).

Algorithm 1 describes the two strategies for identifying BLO using accuracy and
frequency. Accuracy refers to naming an entity correctly. It considers whether a user
names an entity with its exact name, or with a parent (superclass) or with a category
member (subclass) of the entity. Frequency indicates how many times a particular
category was accurately identified by different participants.

The algorithm takes a data graph as input and returns two sets of BLO. For any
class entity v�V , we identify the number of users to be asked to name the entity (line
2). For Strategy 1 (lines 3–7), we consider accurate naming of a category entity (a
parent) when a leaf entity v 2 L that is a member of this category is seen. For Strategy 2
(lines 8–14), we consider naming a category entity v 2 C with its exact name (lines 10,
11) or a name of its superclasses (parents) or subclasses (members) (lines 12–13).
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In each strategy, we use a representation function showðr; vÞ to create a representation
of an entity v to be shown to the user. The representation of a leaf entity v 2 L (in
Strategy 1) will consider the leaf itself (e.g. show a single label or a single image for the
leaf entity), while the representation of a category entity v 2 C (in Strategy 2) will
consider all (or some) of the category leaves (e.g. showing a random listing of a set of
labels of entity leaves or showing a group of images of leaves as a collage).

For an entity v, the following SPARQL query is used to get the set of entity leaves:

SELECT ?leaf ?leaf_label
WHERE {?leaf rdfs:subClassOf v.

?leaf rdfs:label ?leaf_label.         
FILTER NOT EXISTS 

{?member rdfs:subClassOf ?leaf.}}

The two strategies in Algorithm 1 for obtaining BLO are applied as follows:

Strategy 1, when a user is shown a representation of a leaf entity v 2 L (line 4), the
following steps are conducted:

– The function answerða; vÞ assigns a user’s answer a to the leaf entity v.

Evaluating Knowledge Anchors in Data Graphs Against Basic Level Objects 9



– The function parentðp; vÞ returns a set of labels (i.e. names) of the parent(s) p of the
leaf entity v via the following SPARQL query:

SELECT ?parent_label ?label

WHERE  {v rdfs:subClassOf ?parent.

?parent rdfs:label ?parent_label.}

– The algorithm in (line 5) checks if the user named the leaf entity v with one of its
parents. If an accurate name of a parent was provided, then the frequency of the
parent entity will be increased by one (line 6).

Strategy 2, when a user is shown a representation of a category entity v 2 C (line 9),
the following steps are conducted:

– The function answerða; vÞ assigns a user’s answer a to the category entity v.
– The function parentðp; vÞ returns a set of labels of parent(s) p of the category entity

v via SPARQL queries similar to Strategy 1 above.
– The function memberðm; vÞ returns a set of labels (i.e. names) of member(s)m of the

category entity v via the following SPARQL query:

SELECT ?member_label

WHERE  {?member rdfs:subClassOf v.

?member rdfs:label ?member_label.}

– The function labelðb; vÞ returns the label (i.e. name) of the category entity v via the
following SPARQL query:

SELECT ?label

WHERE {v rdfs:label ?label.}

– The algorithm in (lines 10, 12) checks if the user named the category entity v with
its exact name, or a name of its parents or its members. If there was accurate naming
of the category, a parent or a member, the frequency of the category name (line 11),
the parent name or the member name (line 13) will be increased by one.

4.3 Application Contexts Used for Experimental Evaluation

Linked Data graphs represented as a set of RDF triples can be ideal structures for
Semantic exploration applications [23]. One class of applications is semantic data
browsers which operate on semantically tagged content and present browsing trajec-
tories using relationships in the underpinning ontologies [1, 2], supporting uncertain or
complex information needs [3]. They enable the users to initiate a data exploration
session from a single entry point in the graph and move through entities by following
RDF links [2]. Another class of widely used semantic Web applications are semantic
data search engines [24]. Such applications allow the users to enter search queries
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though keyword-based search interfaces and provide the users with a list of search
results obtained by using semantic queries automatically generated by the system [6].

In this paper, we present experimental studies over two different application
domains for evaluating KADG metrics against BLO. The first study is in the context of a
semantic data browser in the Music domain, called MusicPinta [2]. MusicPinta
enables users to navigate through musical instruments extracted from DBpedia, and get
information about these instruments together with musical performances and artists
using these instruments. MusicPinta provides context for studying BLO in a concrete
domain, as users can see images of musical instruments (as in [10, 25]). The second
study is in the context of a semantic search engine in Career guidance, called L4All
[26]. L4All is a proprietary semantic search application which enables learners to
explore various career options to plan their career progression [26]. L4All provides
context for studying basic level objects in an abstract domain, where the users cannot
be shown concrete representations of the graph entities.

The data graphs of the two applications are used for the evaluation studies.

MusicPinta. The dataset includes several open sources. DBpedia1 for musical instru-
ments and artists - this dataset is extracted from dbpedia.org/sparql using CONSTRUCT
and made available as open source at the sourceforge2. DBTune3 for music-related
structured data - this dataset is made available by the DBTune.org in linked data fashion.
Among the datasets on DBTune.org we utilize: (i) Jamendo - a large repository of
Creative Commons licensed music; (ii) Megatune - an independent music label; and
(iii) MusicBrainz - a community-maintained open source encyclopaedia of music
information. All datasets are available as RDF datasets and the Music ontology4 is used
as a schema to interlink them. For the experimental study, we use the top level class
Music Instrument and all its entities (classes and instances).

L4All. The dataset is drawn from the “LifeLong Learning in London for All” (L4All)
project [26], bringing together experts from lifelong learning and careers guidance,
content providers, and groups of students and tutors. It provided lifelong learners with
access to information and resources that would support them in exploring learning and
career opportunities and in planning and reflecting on their learning. The L4All dataset
uses the ontology developed by the L4All project, and users’ data collected during the
project (anonymised for privacy). Among five class hierarchies in the L4All ontology,
the Occupation and Subject class hierarchies have the richest class representation and
depth (see Table 1).

1 http://dbpedia.org/About.
2 http://sourceforge.net/p/pinta/code/38/tree/.
3 http://dbtune.org/.
4 http://musicontology.com/.
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5 MusicPinta: Evaluating KADG Against BLO

As a use case in a representative domain for evaluating knowledge anchors over a data
graph, we used a typical semantic data browser, MusicPinta, which was developed in
our earlier research [2]. Knowledge anchors would lead to extending MusicPinta to
suggest exploration paths that can improve the user’s domain knowledge.

5.1 Obtaining BLO

To enable impartial comparison of the outputs of the KADG algorithms and BLO, we
conducted a user study in the Musical Instrument domain following Algorithm 1.

Participants. 40 participants, university students and professionals, age 18–55,
recruited on a voluntary basis. None of them had expertise in Music.

Method. The participants were asked to freely name objects that were shown in image
stimuli, under limited response time (10 s). Overall, 364 taxonomical musical instru-
ments were extracted from the MusicPinta dataset by running SPARQL queries over
the MusicPinta triple store to get all musical instrument concepts linked via the
rdfs:subClassOf relationship. The entities included: leaf entities (total 256) and
category entities (total 108). Applying the two strategies in Algorithm 1, for each leaf
entity, a representative image was collected from the Musical Instrument Museums
Online (MIMO)5 to ensure that pictures of high quality were shown6. For a category
entity, all leaves from that category entity were shown as a group in a single image
(similarly to a packet of images in [10]). Ten online surveys7 were run: (i) leaf entities:
eight surveys presented 256 leaf entities, each showed 32 leaves; (ii) category entities:
two surveys presented 108 category entities, each showed 54 categories.

Free-naming task. Each image was shown for 10 s on the participant’s screen. She
was asked to type the name of the given object (for leaf entities) or the category of
objects (for category entities). The image allocation in the surveys was random. Every
survey had four respondents from the study participants (corresponds to line 2 in
Algorithm 1). Each participant was allocated only to one survey (either leaf entities or

Table 1. Main characteristics of the MusicPinta and L4All data sets

Dataset Hierarchy root class Depth No. of classes No. of instances/leaves

MusicPinta Instrument 7 364 256
L4All Occupation 4 464 3737

Subject 2 160 2194

5 http://www.mimo-international.com/MIMO/.
6 MIMO provided pictures for most musical instruments. In the rare occasions when an image did not
exist in MIMO, Wikipedia images were used instead.

7 The study was conducted with Qualtrics (www.qualtrics.com). Examples from the surveys are
available at: https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA.
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category entities). Figures 2, 3 and 4 show example instrument images and participant
answers (Fig. 2 from Strategy 1, and Figs. 3, 4 from Strategy 2).

Applying Algorithm 1 over the MusicPinta dataset, two sets of BLO were identi-
fied. Set1 (Strategy 1) was derived from presenting leaf entities. We consider accurate
naming of a category entity (parent) when a leaf entity that belongs to this category is
seen. For example (see Fig. 2), a participant was shown the image of Piccolo
trumpet, a leaf entity in the data graph, and named it with its parent category
Trumpet. This will be counted as an accurate naming and will increase the count for
Trumpet. The overall count for Trumpet will include all cases when participants
named Trumpet while seeing any of its leaf members. Set2 (Strategy 2) was derived
from presenting category entities. We consider naming a category entity with its exact
name or a name of its parent or subclass member. For example (see Fig. 3), a par-
ticipant was shown the image of category Trumpet and named it with its exact name.
This will increase the count for Trumpet. In Fig. 4, a participant saw the category
Brass and named it as its member category Trumpet.

In each of the two sets, entities with frequency equal or above two (i.e. named by at
least two different users) were identified as potential BLO. The union of Set1 and Set2
gives BLO. It includes musical instruments such as: Bouzouki, Guitar and
Saxophone. The BLO obtained from MusicPinta are available here8.

5.2 Evaluating KADG Against BLO

Quantitative Analysis. We used the BLO identified to examine the performance of
the KADG metrics. For each metric, we aggregated (using union) the KADG entities
identified using the hierarchical relationships (H). We noticed that the three homo-
geneity metrics have the same values; therefore, we choose one metric when reporting
the results, namely Jaccard similarity9. A cut-off threshold point for the result lists with

Fig. 2. An image of Pic-
colo trumpet (a leaf in the
data graph) was shown to a
user, who named it as
“Trumpet”

Fig. 3. An image of Trumpet
(a Category concept in the data
graph with two subclasses) was
shown to a user, who named it as
“Trumpet”.

Fig. 4. An image of Brass
(Category concept in the data
graph) shown to a user, who
named it as “Trumpet”.

8 https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA.
9 The Jaccard similarity metric is widely used, and was used in identifying basic formal concepts in the
context of formal concept analysis [28].
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potential KADG entities was identified by normalizing the output values from each
metric and taking the mean value for the 60th percentile of the normalized lists. The
KADG metrics evaluated included the three distinctiveness metrics plus the Jaccard
homogeneity metric; each metric was applied over both families of relationships –

hierarchical (H) and domain-specific (D). As in ontology summarization approaches
[18], a name simplicity strategy was applied to reduce noise when calculating key
concepts (usually, basic level objects have relatively simple labels, such as chair or
dog). The name simplicity approach we use is solely based on the data graph. We
identify the weighted median for the length of the labels of all data graph entities v�V
and filter out all entities whose name length is higher than the median. For the
MusicPinta data graph, the weighted median is 1.2, and hence we only included entities
which consist of one word. Table 2 illustrates precision and recall values comparing
BLO and KADG derived using hierarchical and domain specific relationships.

Hybridization. Further analysis of the False Positive (FP) and False Negative
(FN) entities indicated that the algorithms had different performance on the different
taxonomical levels in the data graph. This led to the following heuristics for
hybridization.

Heuristic 1: Use Jaccard metric with hierarchical relationships for the most specific
categories in the graph (i.e. the categories at the bottom quartile of the taxonomical
level). There were FP entities (e.g. Shawm and Oboe) returned by distinctiveness
metrics using the domain-specific relationship MusicOntology:Performance
because these entities are highly associated with musical performances (e.g. Shawm is
linked to 99 performances and Oboe is linked to 27 performance). Such entities may
not be good knowledge anchors for exploration, as their hierarchical structure is flat.
The best performing metric at the specific level was Jaccard for hierarchical attributes -
it excluded entities which had no (or a very small number of) hierarchical attributes.

Heuristic 2: Take the majority voting for all other taxonomical levels. Most of the
entities at the middle and top taxonomical level will be well represented in the graph
hierarchy and may include domain-specific relationships. Hence, combining the values
of all algorithms is sensible. Each algorithm represents a voter and provides two lists of
votes, each list corresponding to hierarchical or domain-specific associated attributes
(H, D). At least half of the voters should vote for an entity for it to be identified in
KADG. Examples from the list of KADG identified by applying the above hybridization

Table 2. MusicPinta: performance of the KADG algorithms compared to BLO.

Relationship types Precision Recall
AV CAC CU Jac AV CAC CU Jac

Hierarchical 0.58 0.55 0.59 0.6 0.64 0.73 0.73 0.55
Domain-specific 0.62 0.58 0.59 0.62 0.36 0.5 0.59 0.36
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heuristics included Accordion, Guitar and Xylophone. The full KADG list is
available here10. Hybridization improved Precision to 0.65 and Recall to 0.63.

6 L4All: Evaluating KADG Against BLO

The Career domain is a suitable domain for studying basic level objects due to the
richness of its ontological structures and the fact that the identification of knowledge
anchors can facilitate users’ exploration of such structures, as discussed in [27]. We
followed Algorithm 1, conducting a study with human participants to identify BLO.

6.1 Obtaining BLO

Participants. 28 participants, university students and professionals, age 25–64,
recruited on a voluntary basis. Most of them were experienced mainly in Computing.

Method. The experimental study for evaluating knowledge anchors in the L4All
dataset included categories from the Occupation and Subject class hierarchies, for the
reasons discussed above. Categories were represented to participants (corresponding to
the showðr; vÞ function in Algorithm 1) using names (i.e. labels) of the category’s
leaves. Overall, 624 class entities were extracted from the two class hierarchies (464 for
Occupation and 160 for Subject) by running SPARQL queries to get all class entities
linked via the rdfs:subClassOf relationship. The entities included: leaves (349 for
Occupation and 141 for Subject) and categories (115 for Occupation and 19 for
Subject). Seven online surveys7 were developed (six surveys presented the 114 cate-
gory entities of the Occupation class hierarchy, with each survey showing 19 cate-
gories; and one survey presented the 19 categories of the Subject class hierarchy). The
category allocation in each survey was random. Every survey had four respondents
from the study participants. Each participant was allocated only to one survey.

Category identification task. A representation of each category was shown on the
participant’s screen and he/she was asked to identify the category name. The repre-
sentation included a list of leaves’ names of that category (at most four leaf names were
shown on the participant’s screen). The participant was provided with four different
categories as candidate answers (including the category which the leaves belong to) and
the participant was asked to select one category that he/she thinks the leaf entities
belong to. The three additional candidate categories covered three levels of abstraction,
namely: a parent from the superordinate level, a member from the subordinate level,
and a sibling at the same category level. In cases where no parents or members could be
added to the candidate answers, siblings were used instead.

Applying Strategy 2 in Algorithm 1 over the Occupation and Subject class hierarchies
in the L4All dataset, we considered naming a category entity with its exact name or a

10 https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA.
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name of its parents or its non-leaf subclass members shown to the participants.
Figures 5 and 6 show examples of the category identification task from the Occupation
and Subject class hierarchies respectively. For instance, the participant in Fig. 5 saw
two leaves (the category has two leaves only) of the category Housekeeping
Occupation and the participant identified the category’s parent Personal Ser-
vice Occupation, which he/she thinks that the leaves belong to. This will increase
the frequency for the category Personal Service Occupation. In Fig. 6, a
participant was shown the leaf names of the category Biological Sciences (four
random leaves where selected among 9) and selected its exact name. This will increase
the count for the category Biological Sciences.

Category entities in the Occupation and Subject class hierarchies with frequency
equal or above two (i.e. categories named by at least two different users) were identified
as potential BLO. Examples of BLO from Occupation were Administrative, IT
Service Delivery, Functional Managers and from Subject were Bio-
logical Sciences, Law, Medicine and Dentistry. The full KADG and
BLO lists obtained from the L4All data set are available here11.

6.2 Evaluating KADG Against BLO

Quantitative Analysis. The KADG metrics developed in [9] were run over the
Occupation and Subject class hierarchies and the metrics outputs of KADG were tested
against the BLO identified. For each KADG metric, we aggregated (using union) the
entities identified using the hierarchical relationships (rdfs:subClassOf and
rdf:type). One domain-specific relationship was used by the metrics (Job for
Occupation and Qualification for Subject). We normalized the metrics output
values and took the 60th percentile of the normalized lists as a cut-off threshold point.
Name simplification was applied using the weighted medians for the length of the

Fig. 5. A representation of Housekeeping
Occupation (a Category concept in the Occu-
pation hierarchy with two subclasses) was
shown to a user, who identified it as “Personal
Service Occupation”.

Fig. 6. A representation of Biological
Sciences (a Category concept in the Subject
hierarchy with four random subclasses) was
shown to a user, who identified it as
“Biological Sciences”.

11 https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA.

16 M. Al-Tawil et al.

https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA


labels of class entities in the Occupation and Subject class hierarchies (for Occupa-
tion = 3.2 and for Subject = 2.8) to filter out entities whose name length is higher than
the median. Entities with name length greater than 3 were excluded (the names of the
two class hierarchies - Occupation and Subject - and conjunctions, e.g. “and”, were not
taken into account in counting the name length of entities).

Precision and Recall values for the metrics were identified (see Table 3). The three
homogeneity metrics from [9] had the same values; therefore, we choose the Jaccard
similarity metric in reporting the results (similarly to the MusicPinta analysis). Using
the hierarchical relationships (rdfs:subClassOf and rdf:type), precision and
recall values were good for Occupation (precision ranging from 0.72 to 0.79 and recall
from 0.44 to 0.88) and very mixed for Subject (precision ranging from 0 to 1 and recall
from 0 to 0.53). For the domain-specific relationships, the precision and recall were
mixed for Occupation (precision ranging from 0 to 0.75 and recall from 0 to 0.76) and
Subject (precision ranging from 0 to 1 and recall from 0 to 0.31).

By inspecting what caused the zero precision and recall values for the Category
Utility (CU) distinctiveness metric and Jaccard (Jac) similarity metric, we noticed that
none of these two metrics picked False Negative (FN) entities (i.e. potential KADG)
using the domain-specific relationships (for Occupation and Subject) and using the
hierarchical relationships (for Subject). The CU metric did not pick any FN entities
since it multiplies the ratio [number of instances of a category divided by number of all
entities, classes and instances in Occupation] with the total CU values for members of a
category. Hence, the CU value will be decreased especially when there are 1000s of
entities (i.e. classes and instances) in the graph. For instance, in the Occupation class
hierarchy, the CU ratio for the FN category Sales Related Occupation is: 87
instances divided by 4201 (464 classes + 3737 instances in the Occupation hierarchy),
reducing the CU value for Sales Related Occupation to become less than the
60th percentile cut-off point (0.01). The Jaccard similarity metric did not pick FN
entities since each entity has instances linked with one instance only via a
domain-specific relationship (e.g. Job). Hence, the categories will have no intersections
among their instances, producing zero values in the Jaccard metric.

Hybridization. Analysis of the False Positive (FP) and False Negative (FN) entities
indicated that the algorithms had different performance on the different taxonomical
levels in the L4All data graph, which is formulated in the two heuristics below.

Table 3. KADG metrics performance using the two varieties of attribute types for the
Occupation and Subject hierarchies in the L4All dataset

Class hierarchy Relationship type Precision Recall
AV CAC CU Jac AV CAC CU Jac

Occupation Hierarchical 0.72 0.76 0.79 0.79 0.52 0.88 0.44 0.44
Domain-specific 0.73 0.75 0 0 0.76 0.36 0 0

Subject Hierarchical 1 1 0 0 0.53 0.53 0 0
Domain-specific 1 1 0 0 0.31 0.08 0 0
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Heuristic 1: Use the AV and CAC distinctiveness metrics with hierarchical relation-
ships for the categories at the bottom quartile of the class taxonomy. There were FN
entities (e.g. Sales Related and Science and Engineering Technicians)
returned by the AV and CAC homogeneity metrics using the domain-specific rela-
tionship Job, because these entities have a low number of instances (e.g. Sales
Related has 87 instances and Science and Engineering Technicians has
50 instances; the median of instances per category is 144).

Heuristic 2: Take the majority voting for all other taxonomical levels. Most of the
entities at middle and top taxonomical level are well represented in the graph hierarchy.
Each metric represents a voter and provides two lists of votes, each list corresponding
to hierarchical or domain-specific relationships. At least half of the voters should vote
for an entity for it to be identified as KADG.

Examples of KADG identified by applying the above hybridization heuristics for
Occupation and Subject class hierarchies are: for Occupation (Engineering
Professionals, Process Operatives, Science and Engineering
Technicians), and for Subject (Business and Administrative Stud-
ies, Education). The full lists of KADG identified are available here12.

Hybridization increased performance, as follows: for Occupation, Precision = 0.77
and Recall = 0.92; for Subject, Precision = 1 and Recall = 0.53.

7 Discussion

This paper presents a systematic evaluation approach to validate KADG metrics against
basic level objects derived by humans.

Algorithm for identifying BLO. The BLO algorithm presented in Sect. 4 is generic
and can be applied over different application domains represented as data graphs. In
this paper, the algorithm is applied in two application domains for data exploration,
Music and Careers, using the data graphs from two semantic exploration applications.
Applying the BLO algorithm over two domains allows us to illustrate two ways of
instantiating the algorithm for obtaining BLO. MusicPinta describes concrete objects -
musical instruments - that can have digital representations (e.g. image, audio, video).
An image stimulus was used to represent musical instruments, and free-naming tasks
included showing image representations of graph entities and asking the users to
quickly name the entities they see. In contrast, L4All comprises of abstract career
categories, such as Occupation and Subject, which have text representations (i.e. labels
of entities) but no clearly distinguishable images. In this case, a category verification
task was used to obtain BLO by showing text representations of graph entities and
asking the user to identify the matching entity given some answers.

An important component for applying the BLO is to identify appropriate stimuli to
be used for representing graph entities and showing them to humans in either a
free-naming task or in a category verification task. One of the main factors that affects

12 https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA.
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choosing appropriate stimuli is how well the stimuli cover the entities in the data graph.
In other words, the chosen stimuli should have representations for all entities in the
graph hierarchies. For instance, the stimuli for MusicPinta were images - taken from an
established source (MIMO5). The chosen stimuli have to be close enough to users’
cognitive structures, so the users can understand the representation of entities.

The BLO algorithm over shallow graph hierarchies has some limitations. For
instance, most categories (15 categories out of 19) in the Subject class hierarchy of the
L4All ontology were identified as BLO. In a category verification task over a shallow
hierarchy, finding candidate answers to be presented to users is challenging, especially
when the shallow hierarchy does not contain the three levels of abstraction (basic,
subordinate and superordinate). Furthermore, the identified BLO in data graphs can
have confusing category labelling which reflect insufficiently articulated scope; for
instance, vague names (e.g. ‘European Language, Literature and related
subject’) or combining two categories in one (e.g. ‘Mathematical and Com-
puter Sciences’). Hence, the BLO algorithm is sensitive to the quality of the
ontology. This points at another possible application of BLO – peculiarities in the
output can indicate deficiencies of the ontology which can provide insights for
re-engineering the ontology. An area of future work is to improve the L4All ontology
by modifying the class labels and better articulating their scope.

Performance of KADG metrics. The identified BLO were used to examine the per-
formance of the KADG metrics. Our analysis found that hybridization of the metrics
notably improved performance. The hybridization heuristics for the upper level of the
graph hierarchies tend to be the same – combine the KADB metrics using majority
voting. However, the hybridization heuristics for the bottom level of the hierarchy
differed depending on how instances at the bottom of the graph were associated
through domain-specific relationships. The performance is sensitive to the appropri-
ateness of the domain-specific relationships captured in the data graph. Examining the
FP and FN entities for the hybridization algorithms for KADG led to the following
observations:

Missing basic level entities due to unpopulated areas in the data graph. We noticed
that none of the metrics picked FN entities belonging to the bottom quartile of the
taxonomies and having a small number of members (such as Cello in MusicPinta and
Construction Operatives in the Occupation class hierarchy in L4All - Cello
has only one subclass and Construction Operatives has 10 instances – mean
number of instances in Occupation is 184). While these entities belong to the cognitive
structures of humans and were therefore added to the BLO sets, one could question
whether such entities would be useful knowledge anchors because of their relatively
small number of members. These entities could lead the user to ‘dead ends’ within
unpopulated areas of the data graph which may be confusing. We therefore see such
FN cases as ‘good misses’ by the KADG metrics.

Selecting entities that are superordinates of entities in BLO. The FP included entities
(such as Reeds in MusicPinta and Secretarial and Related Occupation in
the Occupation class hierarchy in L4All) which are well represented in the graph
(Reeds has 36 subclasses linked to 60 DBpedia categories; Secretarial and
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Related Occupation has 8 subclasses and 800 instances). Although these entities
are not close to human cognitive structures, they provide direct links to entities in BLO
(Reeds links to Accordion; Secretarial and Related Occupation links
to Administrative and Secretarial Occupation). We therefore see such
FP as ‘good picks’, as they provide bridges to BLO entities.

8 Conclusion and Future Work

Data graph exploration underpins semantic Web applications, such as browsing and
search. Lay users who are not domain experts can face high cognitive load and
usability challenges when exploring an unfamiliar domain because the users are una-
ware of the knowledge structure of the graphs. This brings forth the challenge of
building systematic approaches for supporting users’ exploration taking into account
the knowledge utility of the exploration paths. To address this challenge, we adopt the
subsumption theory for meaningful learning [8] where new knowledge is subsumed
under familiar and highly inclusive entities. A core algorithmic component for adopting
this theory is the automatic identification of knowledge anchors in a data graph.

The work in this paper adapts Cognitive Science experimental approaches for
deriving the BLO, and presents an algorithm to capture the BLO that correspond to
human cognitive structures over a data graph. Our work contributes to improving the
usability of data graph exploration by presenting a methodology for aligning BLO in
human cognitive structures and the corresponding knowledge anchors in a data graph.
The obtained sets of BLO and KADG can have two broad implications: (i) to improve
users’ exploration of large data graphs; and (ii) to reengineer the ontology to better
align with human cognitive structures. We are focusing on the former, and are devising
navigation strategies to expand users’ knowledge while exploring a data graph.
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