
Investigating the Under-Usage of Code Decomposition
and Reuse Among High School Students: The Case

of Functions

Ahmad Omar1(✉), Irit Hadar1(✉), and Uri Leron2

1 Information Systems Department, University of Haifa, Haifa, Israel
ahmadomar3@gmail.com, hadari@is.haifa.ac.il

2 Faculty of Technology and Science Education, Technion, Haifa, Israel
urileron@gmail.com

Abstract. Functions can provide substantial benefits for programmers. They
offer ways that can be used to simplify a given programming task through decom‐
position, reusability and abstraction. As observed by the first author, a graduate
student and high school computer science (CS) teacher, students do not sponta‐
neously use functions when they are asked to solve a certain task; instead they
provide one procedural solution, even in situations where functions can clearly
be helpful. This research aims to investigate how and when students use functions,
as well as the reasons underlying their decisions whether to use them. This paper
presents our ongoing research including some results from a pilot study. For data
analysis we use the dual-process theory of human cognition and three related
concepts: comfort zone, principle of least effort and cognitive laziness. We
discuss how these can be useful in order to better understand the problem at hand.

Keywords: Programming · Functions · Reusability · Decomposition ·
Abstraction dual-process theory · Comfort zone · Principle of least effort ·
Cognitive laziness

1 Introduction

Decomposition in programming refers to the process of breaking down a higher-level
problem into sub-problems, allowing programmers to focus independently on each sub-
problem [22]. Functions, procedures and methods are form of abstractions, serving at
the same time as decomposition mechanism. They allow dividing a given problem into
several simpler tasks, then combining them together for the full solution [19].

Programmers have been observed to under-use different forms of abstractions, thus
not fulfilling their potential benefits [11, 12]. In this research, we approach the population
of high-school students in the early phases of learning programming, in order to inves‐
tigate what it is that leads programmers, from the very start of their familiarity and
experience with code development, to under-use functions, one of the most basic forms
of abstraction. More specifically, the objective of this ongoing research is to investigate
how and when students use functions, as well as the reasons underlying their decisions
whether to use them. Preliminary results obtained via a pilot study, demonstrate that

© Springer International Publishing AG 2017
A. Metzger and A. Persson (Eds.): CAiSE 2017 Workshops, LNBIP 286, pp. 92–98, 2017.
DOI: 10.1007/978-3-319-60048-2_9

students do not use functions unless they are explicitly instructed to do so, despite their
evident familiarity with functions and their proper use. In order to investigate the reasons
underlying this behavior, we borrowed a theory and related concepts from cognitive
psychology research: the dual-process theory, cognitive laziness, the principle of least
effort and, and comfort zone. In this paper we demonstrate how they can useful for
making sense of the data obtained.

2 Related Work

Not using functions is not a mistake per-se, but can be inefficient in many cases. It is
one of the basic mechanisms for code modularization, decomposition and reusability:
“Modularization allows one to decompose a system into functional units, to impose
hierarchical ordering on functional usage, to implement data abstractions, and to develop
independently useful subsystems” [13]. High modularity allows for separation of
concerns, namely dealing separately with each module’s details while ignoring other
modules’ detail, and later with all features of all modules and the relationships between
the modules, in order to combine them into a coherent system.

Code modularity facilitates code reuse, namely the ability to use parts of a computer
program written previously, aiming to increase productivity and quality in large-scale
software development projects [7].

Code modularity mechanisms, such as functions, are forms of abstraction. Abstrac‐
tion in computer science(CS) involves throwing away detail while keeping the essential
structure, and is a skill that is hard to master [1, 14]. Kramer [18] suggests that it is
abstraction that differentiates good from weaker students. Functions, in particular, are
widely accepted to be a difficult concept to learn [20].

Previous works studying programming skills of high school students have mainly
focused on investigating, exploring and reviewing programming mistakes [5, 23]. For
example, Brown [5] lists 18 of the most common student mistakes, which vary from
simple mistakes, as in the case of incorrect semicolon at the end of a method header, to
more complicated ones, such as not controlling the program flow properly. But program‐
ming mistakes are not only done by students; even experienced software developers
make mistakes, such as confusing inheritance direction or failing to identify objects or
classes [11, 12], demonstrating the resilience or such difficulties.

Other directions of research focused on the processes involved in teaching or in
learning to program, and on how to improve these processes for better results. Such
proposed improvements include, for example, having teachers present real-life examples
[3]; letting the students write pseudo-code solutions in order to focus more on the struc‐
ture and not be held back by syntax [8]; allocating more time in class for exercises, with
the teacher as guider [2]; and, letting students learn from their mistakes [10]. No such
improvement technique was examined in the specific context of functions.

Investigating the Under-Usage of Code Decomposition 93

3 Theoretical Background

The dual-process theory deals with the question of why people make mistakes that could
have been avoided given their own knowledge [16]. The theory suggests that two sepa‐
rate cognitive systems operate in our mind: intuitive and analytical thinking. The first
system (S1) deals with immediate, automatic thinking processes, based on heuristics.
The second system (S2) is responsible for analytical processing. S1 results in fast and
automatic solutions, while S2 in slower, consciously analyzed ones [16].

Cognitive laziness refers to the situation in which people may be content with a “good
enough” solution, despite their awareness that a better solution can be achieved if they
invest more effort [9]. Although there may be a better solution, people tend to choose
the solution that is enough for their immediate goals. Intuitive judgment and common
sense are examples of mechanism used due to cognitive laziness [21].

The principle of least effort explains that people (or even animals or smart machines)
will naturally choose the path of least effort, with the least resistance, having the desire
to reach things quickly and easily [25]. Accordingly, a person facing a certain situation,
tends to choose the solution with the least effort from all possible solutions rising in the
horizon (as perceived by that specific person) [6].

Comfort zone is a situation in which a person behaves in an anxiety neutral condition,
and acts limitedly, in order to sustain a steady, risk-free state of tasks’ performance [24].
The term comfort zone refers to a psychological state in which a person feels comfort‐
able, at ease and in control [24], and suggests that individuals may choose the less
stressful and challenging solution, in order to be in the more comfortable and less
adventurous state, from their point of view [4].

4 Pilot Study – Method and Settings

The objectives of this research are to empirically explore our initial observation that
students do not use functions when they deal with programming tasks, unless they are
explicitly asked to do so, and to understand the reasons underlying this behavior.

The population of pilot study included 10 students of the 12th grade, who majored
in CS in the school in which the first author teaches. These students had already learned
and exercised the use of functions and were trained in programming tasks.

During the study, the students had free access to their books and notebooks. Each
student was handed three worksheets which included programming tasks. The work‐
sheets were given one at a time; the next sheet given only after the participants completed
the previous one, in order to prevent them from checking questions in the next worksheet
thus possibly affecting the way they solve the questions in the current one.

The first worksheet included three tasks, with a shared functionality to all, but with
no further information. It instructed to add a number to all items in a given array, with
the tasks differing only in the value of the added number. The second worksheet included
three tasks of the same level with a shared functionality and an instruction, at the bottom,
asking participants to pay attention to what is common in the tasks. The third worksheet

94 A. Omar et al.

also included three tasks of the same level, with an instruction to write a function for
the common functionality and to use it to solve the three tasks.

Data collection was based mainly on: (1) Written solutions collected from the partic‐
ipants after each task; and (2) group interviews [17] about their solutions. We used a
semi-structured approach with no rigorous set of questions, so to allow diversion [15].

In analyzing the worksheets’ answers, we looked for general solutions, rather than
fully correct ones; we did not consider syntax or any other compilation errors but rather
considered the intention behind the students’ answers. We classified the answers to those
using functions and those that do not. During the data analysis, we looked for explana‐
tions for the obtained results. Specifically, in analyzing the qualitative data from the
transcribed group interview, we mapped students’ quotes to a corresponding cognitive
concept based on an initial set of guidelines we developed:

Table 1. Preliminary guidelines for mapping explanations and cognitive concepts

Explanation type (self-report) Mapped to
A student did not use functions because s/he did not feel
comfortable enough with it, despite being aware to this
possibility

Comfort Zone

A student considered different alternatives including
functions, and settled, consciously for a “good enough”
solutiona

Cognitive laziness

A student considered different alternatives, including
functions, and chose, consciously, the possibility that was
perceived to save effort (cognitive effort, time, writing, etc.)

Principle of least effort

A student wrote the first things that came up to mind, without
considering other possibilities

General – dual-process theory

aThe “good enough” solution is not necessarily the one that requires the least effort; in fact, using functions requires the least
effort overall (writing less code). When cognitive laziness takes over, it leads to a “good enough” solution considering the
least effort in the short term (merely for solving the first task).

5 Results

In worksheet1, all students used a for loop, for each task, while changing the value of
the added number each time. Not even a single student wrote a function for the common
functionality for reusing it in the different tasks. When the students were later whether
they had noticed a common functionality between the tasks, one student raised his hand.
When asked why he did nothing about it, he answered: “I didn’t know what to do with
this common functionality; I just solved the question as required.”

In worksheet2, all students used for loops, the same way as in worksheet1, even
though they were asked here to pay attention to what is common between the tasks.
When asked about their solutions, all students stated that they had noticed the comment
about the commonality. When asked why they did not use a function instead of repeating
the same code with a change of value, they gave the following explanations:

1. “I wrote the first thing that crossed my mind.”

Investigating the Under-Usage of Code Decomposition 95

2. “I answered without thinking too much; it was almost automatic.”
3. “I answered in the easiest way.”
4. “It is more comfortable for me to solve it this way.”
5. “The number of questions is small, why the effort?”
6. “I answered in the simplest way, straightforward, without complication.”
7. “I answered in the way with the least possibility to make mistakes.”
8. “The tasks did not require us to write a function. Had that been a requirement in the

assignment, I would have no problem doing that.”
9. “There were only few questions and the questions themselves were easy.”

In worksheet3, the students were asked explicitly to write a specific function and to
use it in solving the set of tasks given in this worksheet. All the students, with no excep‐
tion, wrote the function properly and used it in solving the three questions.

When they were asked if they had faced any difficulty writing the function or using
it, they all answered with a no. When we further asked them why, unlike in the previous
two worksheets, in this one they had wrote and used a function for the common func‐
tionality, they explained that it was because they were asked to do so.

Trying to make sense of the observation that students do not take advantage of func‐
tions and reuse, despite their proven knowledge and capability to do so, we mapped their
explanation quotes to the four cognitive psychological concepts according to the guide‐
lines presented in Table 1. The mapping is presented in Table 2.

Table 2. Theory and related quotes

Cognitive theory/concept Related quotes
Comfort zone 4, 7
Cognitive laziness 6, 8
Principle of least effort 3, 5, 9
Dual processing theory 1, 2

This demonstration of mapping students’ explanations to the cognitive concepts
presents some promise toward an understanding of the different sources leading to the
avoidance of using functions. The next step of the research will involve a higher-volume
data collection to allow for a more quantitative investigation and generalization of the
results. In addition, since students’ explanations do not necessarily accurately reflect
their actual thinking processes, we plan to use the think-aloud protocol as a comple‐
mentary method in the research in order to mitigate this threat.

6 Discussion and Future Work

The pilot study included a small number of participants, all belonging to the same school.
The full study will include 12th grade students from four high schools, with the partici‐
pation of about 30 students from each school. The schools will be of different levels,
different teaching languages, and different populations: two private schools and two

96 A. Omar et al.

public ones, with Arabic or Hebrew as teaching languages. These settings are designed
so to improve the external validity of the findings.

As a result of this research we hope to expend our understanding on the underlying
cognitive processes that lead to the under-usage of functions. Such understanding may
lay the foundations for developing means for promoting functions’ use, by overcome
the identified barriers for using functions. We will also provide a set of guidelines for
mapping given behavior to cognitive states possibly triggering this behavior. These
guidelines could be used in the context of function usage in programming specifically,
or generally when investigating any under-used tool or information that cannot be
explained by the investigated individuals’ lack of knowledge.

References

1. Aharoni, D., Leron, U.: Abstraction is hard in computer-science too. In: Pehkonen, E. (ed.)
Proceedings of the 21st Conference of the International Group for the Psychology of
Mathematics Education. University of Helsinki, Lahti, Finland (1997)

2. Black, T.R.: Helping novice programming students succeed. J. Comput. Sci. Coll. 22(2), 109–
114 (2006)

3. Börstler, J., Hall, M.S., Nordström, M., Paterson, J.H., Sanders, K., Schulte, C., Thomas, L.:
An evaluation of object oriented example programs in introductory programming
textbooks. In: ACM SIGCSE Bulletin, vol. 41(4), pp. 126–143 (2010)

4. Brown, M.: Comfort zone: model or metaphor? J. Outdoor Environ. Educ. 12(1), 3 (2008)
5. Brown, N. C., Altadmri, A.: Investigating novice programming mistakes: educator beliefs vs.

student data. In: Proceedings of the 10th Annual Conference on International Computing
Education Research, pp. 43–50. ACM (2014)

6. Collan, M.: Lazy user behavior, MPRA Paper No. 4330 (2007). http://mpra.ub.uni-
muenchen.de/4330/

7. da Silva, M.F., Werner, C.L.: Packaging reusable components using patterns and hypermedia.
In: Proceedings of 4th International Conference Software Reuse, pp. 146–155. IEEE (1996)

8. Fidge, C., Teague, D.: Losing their marbles: syntax-free programming for assessing problem-
solving skills. In: Proceedings of the 11th Australasian Conference on Computing Education,
vol. 95, pp. 75–82. Australian Computer Society, Inc. (2009)

9. Fiske, S.T.: Thinking is for doing: portraits of social cognition from daguerreotype to
laserphoto. J. Pers. Soc. Psychol. 63(6), 877 (1992)

10. Ginat, D.: The greedy trap and learning from mistakes. In: ACM SIGCSE Bulletin, vol. 35(1),
pp. 11–15 (2003). ACM

11. Hadar, I.: When intuition and logic clash: the case of the object-oriented paradigm. Sci.
Comput. Program. 78(9), 1407–1426 (2013)

12. Hadar, I., Leron, U.: How intuitive is object-oriented design? Commun. ACM 51(5), 41–46
(2008)

13. Hashim, K., Key, E.: A software maintainability attributes model. Malays. J. Comput. Sci.
9(2), 92–97 (1996)

14. Hazzan, O., Kramer, J.: Assessing abstraction skills. Commun. ACM 59(12), 43–45 (2016)
15. Hove, S.E., Anda, B.: Experiences from conducting semi-structured interviews in empirical

software engineering research. In: 11th IEEE International Symposium on Software Metrics
(2005)

16. Kahneman, D.: Maps of bounded rationality: a perspective on intuitive judgment and choice.
Nobel Prize Lecture 8, 351–401 (2002)

Investigating the Under-Usage of Code Decomposition 97

http://mpra.ub.uni-muenchen.de/4330/
http://mpra.ub.uni-muenchen.de/4330/

17. Kontio, J., Lehtola, L., Bragge, J.: Using the focus group method in software engineering:
obtaining practitioner and user experiences. In: Proceedings of the International Symposium
Empirical Software Engineering ISESE 2004, pp. 271–280. IEEE (2004)

18. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42 (2007)
19. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, New York (1988)
20. Paz, T., Leron, U.: The slippery road from actions on objects to functions and variables. J.

Res. Math. Educ. 40, 18–39 (2009)
21. Pearl, J.: Heuristics: intelligent search strategies for computer problem solving (1984)
22. Rosson, M.B., Alpert, S.R.: The cognitive consequences of object-oriented design. Hum.

Comput. Interac. 5(4), 345–379 (1990)
23. Sirkiä, T., Sorva, J.: Exploring programming misconceptions: an analysis of student mistakes

in visual program simulation exercises. In: Proceedings of the 12th Koli Calling International
Conference on Computing Education Research, pp. 19–28. ACM (2012)

24. White, A.: From comfort zone to performance management. White & MacLean Publishing
(2009)

25. Zipf, G.K.: Human behavior and the principle of least effort: An introduction to human
ecology. Ravenio Books (2016)

98 A. Omar et al.

	Investigating the Under-Usage of Code Decomposition and Reuse Among High School Students: The Case ...
	Abstract
	1 Introduction
	2 Related Work
	3 Theoretical Background
	4 Pilot Study – Method and Settings
	5 Results
	6 Discussion and Future Work
	References

