
A Denotational View of Replicated Data Types

Fabio Gadducci1, Hernán Melgratti2,3, and Christian Roldán2(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
2 Departamento de Computación, FCEyN,

Universidad de Buenos Aires, Buenos Aires, Argentina
croldan@dc.uba.ar

3 CONICET, Buenos Aires, Argentina

Abstract. “Weak consistency” refers to a family of properties concern-
ing the state of a distributed system. One of the key issues in their
description is the way in which systems are specified. In this regard, a
major advance is represented by the introduction of Replicated Data
Types (rdts), in which the meaning of operators is given in terms of
two relations, namely, visibility and arbitration. Concretely, a data type
operation is defined as a function that maps visibility and arbitration
into a return value. In this paper we recast such standard approaches
into a denotational framework in which a data type is seen as a func-
tion that maps visibility into admissible arbitrations. This characterisa-
tion provides a more abstract view of RDTs that (i) highlights some of
the implicit assumptions shared in operational approaches to specifica-
tion; (ii) accommodates underspecification and refinement; (iii) enables
a categorical presentation of RDT and the development of composition
operators for specifications.

1 Introduction

Distributed systems replicate their state over different nodes in order to satisfy
several non-functional requirements, such as performance, availability, and reli-
ability. It then becomes crucial to keep a consistent view of the replicated data.
However, this is a challenging task because consistency is in conflict with two
common requirements of distributed applications: availability (every request is
eventually executed) and tolerance to network partitions (the system operates
even in the presence of failures that prevent communication among components).
In fact, it is impossible for a system to simultaneously achieve strong Consistency,
Availability and Partition tolerance [6]. Since many domains cannot renounce to
availability and network partitions, developers need to cope with weaker notions

The first author has been partially supported by CONICET International Cooper-
ation Grant 995/15. Research partially supported by UBACyT project 2014–2017
20020130200092BA and CONICET project PIP 11220130100148CO.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 138–156, 2017.
DOI: 10.1007/978-3-319-59746-1 8

A Denotational View of Replicated Data Types 139

Fig. 1. A scenario for the replicated data type Register

of consistency by allowing, e.g., replicas to (temporarily) exhibit some discrep-
ancies, as long as they eventually converge to the same state.

This setting challenges the way in which data are specified: states, state
transitions and return values should account for the different views that a data
item may simultaneously have. Consider a data type Register corresponding
to a memory cell that is read and updated by using, respectively, operations
rd and wr. In a replicated scenario, the value obtained when reading a register
after two concurrent updates wr(0) and wr(1) (i.e., updates taking place over
different replicas) is affected by the way in which updates propagate among the
different replicas: it is perfectly possible that the result of the read is (i) unde-
fined (when the read is performed over a third replica that has not received
any of the updates), (ii) 0 or (iii) 1. Basically, the return value depends on
the updates that are seen by that read operation. Choosing the return value
is straightforward when a read sees just one update. This is less so if a read
is performed over a replica that knows both updates, for allowing all replicas
to (consistently) pick one of the available values. A common strategy for reg-
isters is that the last-write wins, i.e., the last update should be chosen when
several concurrent updates are observed. This strategy implicitly assumes that
all events in a system can be arranged in a total order. Several recent approaches
focus on the operational specification of replicated data types [2–5,7,8,12,14].
Usually, the specification describes the meaning of an operation in terms of two
different relations among events: visibility, which explains the causes for each
result, and arbitration, which totally orders events. Consider the visibility rela-
tion V in Fig. 1a and the arbitrations A1 and A2 in Fig. 1b and c, respectively.
The meaning of rd is defined such that rd(V,A1) = 1 and rd(V,A2) = 0. We
remark that operational approaches require specifications to be functional, i.e.,
for every operation, visibility and arbitration relation, there exists exactly one
return value. In this way operational specifications commit to concrete policies
for resolving conflicts.

This work aims at putting on firm grounds the operational approaches for
rdts by giving them a purely functional description and, eventually, a cate-
gorical one. In our view, rdts are functions that map visibility graphs (i.e.,
configurations) into sets of admissible arbitrations, i.e., all executions that gen-
erate a particular configuration. In this setting, a configuration mapped to an
empty set of admissible arbitrations stands for an unreachable configuration.
We rely on such an abstract view of rdts to highlight some of the implicit

140 F. Gadducci et al.

assumptions shared by most of the operational approaches. In particular, we
characterise operational approaches, such as [4,12], as those specifications that
satisfy three properties: besides the evident requirement of being functional (i.e.,
deterministic and total), they must be coherent (i.e., larger states are explained
as the composition of smaller ones), and saturated (e.g., an unobserved operation
can be arbitrated in any position, even before the events that it sees). We show
this inclusion to be strict and discuss some interesting cases that do not fall in
this class. Moreover, we show that functional characterisation elegantly accounts
for underspecification and refinement, which are standard notions in data type
specification.

Then, we develop a categorical presentation for specifications. We focus
on coherent specifications and show that there is a one-to-one correspondence
between coherent specifications and a particular class of functors from the cat-
egory I (L) of labelled directed acyclic graphs and injective past-reflecting mor-
phism (which are the dual notion of tp-morphisms [9]) to the category P (L) of
sets of paths and path-set morphisms preserving the initial object. As it is stan-
dard from classical results on algebraic specification theory, pullbacks and (a
weak form of) pushouts in I (L) provide basic operators for composing specifica-
tions, and thus our functorial presentation is the first step towards a denotational
semantics of rdts (see e.g. [1] and the references therein).

The paper has the following structure. Section 2 introduces the basic defin-
itions concerning labelled directed acyclic graphs. Section 3 discusses our func-
tional mechanism for the presentation of Replicated Data Types. Section 4 com-
pares our proposal with the classical operational one [2]. Section 5 illustrates a
categorical characterisation for our proposal. Finally, in the closing section we
draw some conclusions and highlight further developments.

2 Labelled Directed Acyclic Graphs

In this section we recall the basics of labelled directed acyclic graphs, which are
used for our description of replicated data types. We rely on countable sets E of
events e, e′, . . . , e1, . . . and L of labels �, �′, . . . , �1, . . .

Definition 1 (Labelled Directed Acyclic Graph). A Labelled Directed
Acyclic Graph (ldag) over a set of labels L is a triple G = 〈EG,≺G, λG〉 such
that EG is a set of events, ≺G ⊆ EG × EG is a binary relation whose transitive
closure is a strict partial order, and λG : EG → L is a labeling function. An ldag
G is a path if ≺G is a strict total order.

We write G(L) and P(L) to respectively denote the sets of all ldags and paths
over L. We use G to range over G(L) and P to range over P(L). Moreover, we write
<P instead of ≺P to make evident that paths are total orders. We say that P is a
path over E if EP = E and write P(E , λ) for {P | P is a path over E and λP = λ}.
We usually omit the subscript G (or P) when referring to the elements of G (of
P, respectively) when no confusion arises. We write ε for the empty ldag, i.e.,
such that Eε = ∅.

A Denotational View of Replicated Data Types 141

Definition 2 (Morphism). An ldag morphism f from G to G′, written f : G →
G′, is a mapping f : EG → EG′ such that λG = f;λG′ and e ≺G e′ implies f(e) ≺G′

f(e′).

Hereafter we implicitly consider ldags up-to isomorphism, i.e., related by a
bijective function that preserves and reflects the underlying relation.

Example 1. Consider the set L = {〈rd, 0〉, 〈rd, 1〉, 〈wr(0), ok〉, 〈wr(1), ok〉} of
labels describing the operations of a 1-bit register. Each label is a tuple 〈op, rv〉
where op denotes an operation and rv its return value. For homogeneity, we
associate the return value ok to every write operation. Now, take the ldag over
L defined as G1 = 〈{e1, e2, e3},≺, λ〉 where ≺= {(e1, e3), (e2, e3)} and λ is such
that λ(e1) = 〈wr(0), ok〉, λ(e2) = 〈wr(1), ok〉, λ(e3) = 〈rd, 0〉. A graphical repre-
sentation of G1 is in Fig. 2a. Since we consider ldags up-to isomorphism, we do
not depict events and write instead the corresponding labels when no confusion
arises. G2 is an ldag where ≺G2 is empty. Neither G1 nor G2 is a path, because
they are not total orders. P1 in Fig. 2c is an ldag that is also a path. Hereinafter
we use undirected arrows when depicting paths and avoid drawing transitions
that are obtained by transitivity, as shown in Fig. 2d. All ldags in Fig. 2 belong
to G(L), but only P1 is in P(L).

〈wr(0),ok〉 〈wr(1),ok〉

〈rd,0〉
(a) G1

〈wr(0),ok〉 〈wr(1),ok〉

(b) G2

〈wr(0),ok〉

〈rd,0〉

〈wr(1),ok〉
(c) P1

〈wr(0),ok〉

〈rd,0〉

〈wr(1),ok〉
(d) P1

Fig. 2. Two simple ldags and two paths.

2.1 ldag Operations

We now present a few operations on ldags, which will be used in the following
sections. We start by introducing some notation for binary relations. We write
Id for the identity relation over events and � for ≺ ∪ Id. We write − ≺ e (and
similarly − � e) for the preimage of e, i.e., − ≺ e = {e′| e′ ≺ e}. We use ≺|E for
the restriction of ≺ to elements in E , i.e. ≺|E = ≺ ∩(E×E). Analogously, λ|E is
the domain restriction of λ to the elements in E . We write E� for the extension
of the set E with a fresh element, i.e., E� = E ∪ {
} such that
 �∈ E .

Definition 3 (Restriction and Extension). Let G = 〈E ,≺, λ〉 and E ′ ⊆ E.
We define

– G|E′ = 〈E ′, ≺|E′ , λ|E′〉 as the restriction of G to E ′;
– G�

E′ = 〈E�,≺ ∪ (E ′ × {
}), λ[
 → �]〉 as the extension of G over E ′ with �.

142 F. Gadducci et al.

Restriction obviously lifts to sets X of ldags, i.e., X |E = {G|E | G ∈ X}. We
omit the subscript E ′ in G�

E′ when E ′ = E .

Example 2. Consider the ldags G1 and G2 depicted in Fig. 2a and b, respectively.
Then, G2 = G1|−≺e3

and G1 = G2〈rd,0〉.

The following operator allows for the combination of several paths and plays
a central rol in our characterisation of replicated data types.

Definition 4 (Product). Let X = {〈Ei, <i, λi〉}i be a set of paths. The product
of X is ⊗

X = {Q | Q is a path over
⋃

i

Ei and Q |Ei
∈ X }

Intuitively, the product of paths is analogous to the synchronous product of
transition systems, in which common elements are identified and the remaining
ones can be freely interleaved, as long as the original orders are respected.

Example 3. Consider the paths P1 and P2 in Fig. 3, and assume that they share
the event labelled 〈wr(2), ok〉. Their product has two paths P3 and P4, each of
them contains the elements of P1 and P2 and preserves the relative order of the
elements in the original paths. We remark that the product is empty when the
paths have incompatible orders. For instance, P3 ⊗ P4 = ∅.

Fig. 3. Product between two paths.

It is straightforward to show that ⊗ is associative and commutative. Hence,
we freely use ⊗ over sets of sets of paths.

3 Specifications

We introduce our notion of specification and applies it to some well-known data
types.

Definition 5 (Specification). A specification S is a function S : G(L) → 2P(L)

such that S(ε) = {ε} and ∀G. S(G) ⊆ 2P(EG,λG).

A Denotational View of Replicated Data Types 143

A specification S maps an ldag (i.e., a visibility relation) to a set of paths
(i.e., its admissible arbitrations). Note that P ∈ S(G) is a path over EG, and
hence a total order of the events in G. However, we do not require P to be a topo-
logical ordering of G, i.e., ≺G⊆<P may not hold. Although some specification
approaches consider only arbitrations that include visibility [5,7], our definition
accommodates also presentations, such as [2,4], in which arbitrations may not
preserve visibility. We focus later on in a few subclasses, such as coherent spec-
ifications, in order to establish a precise correspondence with replicated data
types. We also remark that it could be the case that S(G) = ∅, which means that
S forbids the configuration G (more details in Example 4 below). For technical
convenience, we impose S(ε) = {ε} and disallow S(ε) = ∅: S cannot forbid the
empty configuration, which denotes the initial state of a data type.

We now illustrate the specification of some well-known replicated data types.

Example 4 (Counter). The data type Counter provides operations for incre-
menting and reading an integer register with initial value 0. A read operation
returns the number of increments seen by that read. An increment is always
successful and returns the value ok. Formally, we consider the set of labels
L = {〈inc, ok〉} ∪ ({rd} × N). Then, a Counter is specified by SCtr defined
such that

P ∈ SCtr (G) if ∀e ∈ EG.λ(e) = 〈rd, k〉 implies k = #{e′ | e′ ≺G e and λ(e′)
= 〈inc, ok〉}

A visibility graph G has admissible arbitrations (i.e., SCtr (G) �= ∅) only when
each event e in G labelled by rd has a return value k that matches the number
of increments anteceding e in G. We illustrate two cases for the definition of SCtr

in Fig. 4. While the configuration in Fig. 4a has admissible arbitrations, the one
in Fig. 4b has not, because the unique event labelled by rd returns 0 when it
is actually preceded by an observed increment. In other words, an execution is
not allowed to generate such a visibility graph. We remark that SCtr does not
impose any constraint on the ordering <P.

In fact, a path P ∈ SCtr (G) does not need to be a topological ordering of G
as, for instance, the rightmost path in the set of Fig. 4a.

Fig. 4. Counter specification.

144 F. Gadducci et al.

Example 5 (Last-write-wins Register). A Register stores a value that can be
read and updated. We assume that the initial value of a register is undefined.
We take L = {〈wr(k), ok〉 | k ∈ N} ∪ ({rd} × N ∪ {⊥}) as the set of labels. The
specification SlwwR gives the semantics of a register that adopts the last-write-
wins strategy.

P ∈ SlwwR(G) if ∀e ∈ EG.

⎧
⎪⎨

⎪⎩

λ(e) = 〈rd, ⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) �= 〈wr(k), ok〉
λ(e) = 〈rd, k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k), ok〉 and

∀e′′ ≺G e. e
′ <P e

′′ implies ∀k′.λ(e′′) �= 〈wr(k′), ok〉

An ldag G has admissible arbitrations only when each event associated with
a read operation returns a previously written value. As per the first condition
above, a read operation returns the undefined value ⊥ when it does not see any
write. By the second condition, a read e returns a natural number k when it sees
an operation e′ that writes that value k. In such case, any admissible arbitration
P must order e′ as the greatest (accordingly to <P) of all write operations seen
by e.

Example 6 (Generic Register). We now define a Generic Register that does
no commit to a particular strategy for resolving conflicts. We specify this type
as follows

P ∈ SgR(G) if ∀e ∈ EG.

⎧
⎪⎨

⎪⎩

λ(e) = 〈rd, ⊥〉 implies ∀e′ ≺G e.∀k.λ(e′) �= 〈wr(k), ok〉
λ(e) = 〈rd, k〉 implies ∃e′ ≺G e.λ(e′) = 〈wr(k), ok〉 and

∀e′′.λ(e′′) = 〈rd, k′′〉 and − ≺G e = − ≺G e
′′ implies k = k′′

As in Example 5, the return value of a read corresponds to a written value
seen by that read, but the specification does not determine which value should
be chosen. We require instead that all read operations with the same causes (i.e.,
− ≺G e = − ≺G e

′) have the same result. Since this condition is satisfied by any
admissible configuration G, it ensures convergence. The fact that convergence is
explicitly required contrasts with approaches like [2,4], where on the contrary
convergence is ensured automatically by considering only deterministic specifi-
cations. We remark that for the deterministic cases, e.g., Examples 4 and 5, we
do not need to explicitly require convergence.

3.1 Refinement

Refinement is a standard approach in data type specification, which allows for a
hierarchical organisation that goes from abstract descriptions to concrete imple-
mentations. The main benefit of refinement relies on the fact that applications
can be developed and reasoned about in terms of abstract types, which hide
implementation details and leave some freedom for the implementation. Con-
sider the specification SgR of the Generic Register introduced in Example 6,

A Denotational View of Replicated Data Types 145

which only requires a policy for conflict resolution that ensures convergence. On
the contrary, the specification SlwwR in Example 5 explicitly states that con-
current updates must be resolved by adopting the last-write-wins policy. Since
the latter policy ensures convergence, we would like to think about SlwwR as a
refinement of SgR. We characterise refinement in our setting as follows.

Definition 6 (Refinement). Let S1, S2 be specifications. We say that S1 refines
S2 and we write S1 � S2 if ∀G. S1(G) ⊆ S2(G).

Example 7. It can be easily checked that P ∈ SlwwR(G) implies P ∈ SgR(G) for
any G. Consequently, SlwwR is a refinement of SgR.

Example 8. Consider the data type Set, which provides (among others) the oper-
ations add, rem and lookup for respectively adding, removing and examining the
elements within the set. Different alternatives have been proposed in the litera-
ture for resolving conflicts in the presence of concurrent additions and removals
of elements (see [13] for a detailed discussion). We illustrate two possible alter-
natives by considering the execution scenario depicted in Fig. 5. A reasonable
semantics for lookup over G and P would fix the result V as either ∅ or {1}. In
fact, under the last-write-wins policy, the specification prescribes that lookup
returns {1} in this scenario. Differently, the strategy of 2P-Sets1 establishes that
the result is ∅.

The following definition provides a specification for an abstract data type
Set that allows (among others) any of the above policies.

P ∈ SSet(G) if ∀e ∈ EG.λ(e) = 〈lookup, V〉 implies Be ⊆ V ⊆ Ae and Conve,V

where

Ae = {k | e′ ≺G e and λ(e′) = 〈add(k), ok〉}
Be = Ae \ {k | e′ ≺G e and λ(e′) = 〈rem(k), ok〉}
Conve,V = ∀e′.λ(e′) = 〈lookup, V′〉 and − ≺G e = − ≺G e

′ implies V = V′

The set Ae contains the elements added to (and possibly removed from) the set
seen by e while Be contains those elements for which e sees no removal. Thus,
the condition Be ⊆ V ⊆ Ae states that lookup returns a set that contains at least
all the elements added but not removed (i.e., in Be). However, the return value
V may contain elements that have been added and removed (the choice is left
unspecified). Condition Conv ensures convergence, similarly to the specification
of SgR in Example 6.

Then, a concrete resolution policy such as 2P-Sets can be specified as follows

P ∈ S2P-Sets(G) if ∀e ∈ EG.λ(e) = 〈lookup, V〉 implies V = Be

Clearly, S2P-Sets is a refinement of SSets . Other policies can be specified anal-
ogously.

1 In 2P-Sets, additions of elements that have been previously removed have no effect.

146 F. Gadducci et al.

Fig. 5. A scenario for the replicated data type Set

3.2 Classes of Specifications

We now discuss two properties of specifications. Firstly, we look at specifications
for which the behaviour of larger computations matches that of their shorter
prefixes.

Definition 7 (Past-Coherent Specification). Let S be a specification. We
say that S is past-coherent (briefly, coherent) if

∀G. S(G) =
⊗

e∈EG

S(G|−�e)

Note that coherence implies that S(G)|−≺e ⊆ S(G|−≺e). Intuitively, sub-paths
are obtained from the interleaving of the paths belonging to the associated sub-
specifications.

Example 9. The specifications in Examples 4, 5 and 6 are all coherent, because
their definitions are in terms of restrictions of the ldags. Now consider the
specification S defined such that the equalities in Fig. 6 hold. S is not coherent

Fig. 6. A non-coherent specification.

A Denotational View of Replicated Data Types 147

because the arbitrations for the ldag in Fig. 6b should contain all the interleav-
ings for the paths associated with its sub-configurations, as depicted in Fig. 6a.
Instead, note that the arbitration of 〈o2, v2〉 before 〈o1, v1〉 in the leftmost path
on Fig. 6c would not hinder coherence by itself, even if it is not allowed by the
sub-configuration in Fig. 6b.

A second class of specifications is concerned with saturation. Intuitively, a
saturated specification allows every top element on the visibility to be arbitrated
in any position. We first introduce the notion of saturation for a path.

Definition 8 (Path Saturation). Let P be a path and � a label. We write
sat(P, �) for the set of paths obtained by saturating P with respect to �, defined
as follows

sat(P, �) = {Q | Q ∈ P(EP� , λP�) and Q|EP
= P}

A path P saturated with a label � generates the set of all paths obtained
by placing a new event labelled by � in any position within P. A saturated
specification thus extends a computation by adding a new operation that can be
arbitrated in any position.

Definition 9 (Saturated Specification). Let S be a specification. We say
that S is saturated if

∀〈G, P〉, �. P ∈ S(G�)
∣∣
EG

implies sat(P, �) ⊆ S(G�)

Example 10. The specifications in Examples 4, 5 and 6 are all saturated because
a new event e can be arbitrated in any position. In fact, the specifications in
Examples 4 and 6 do not use any information about arbitration, while the spec-
ification in Example 5 constrains arbitrations only for events that are not max-
imal. Figure 7 shows a specification that is not saturated because it does not
allow to arbitrate the top event (the one labelled 〈rd, 1〉) as the first operation
in the path. In a saturated specification, the equality in Fig. 4a should hold. We
remark that the specification is coherent although it is not saturated.

Fig. 7. A non-saturated specification

148 F. Gadducci et al.

4 Replicated Data Type

In this section we show that our proposal can be considered as (and it is actually
more general than) a model for the operational description of rdts as given
in [2,4]. We start by recasting the original definition of rdt (as given in [2,
Definition 4.5]) in terms of ldags. As hinted in the introduction, the meaning
of each operation of an rdt is specified in terms of a context, written C, which
is a pair 〈G, P〉 such that P ∈ P(EG, λG). We write C(L) for the set of contexts
over L, and fix a set O of operations and a set V of values. Then, the operational
description of rdts in [2,4] can be formulated as follows.

Definition 10 (Replicated Data Type). A Replicated Data Type (rdt) is
a function F : O × C(O) → V .

In words, for any visibility graph G and arbitration P, the specification F indi-
cates the result of executing the operation op over G and P, which is F (op, 〈G, P〉).
Example 11. The data type Counter introduced in Example 4 is formally spec-
ified in [2,4] as follows

Fctr (inc, 〈G, P〉) = ok
Fctr (rd, 〈G, P〉) = #{e | e ∈ G and λ(e) = inc}

Given a context 〈G, P〉 in C(O×V), we may check whether the value associated
with each operation matches the definition of a particular rdt. This notion is
known as return value consistency [2, Definition 4.8]. In order to relate contexts
with and without return values, we use the following notation: given G ∈ G(O ×
V), by G ∈ G(O) we denote the ldag obtained by projecting the labels of G in
the obvious way.

Definition 11 (Return Value Consistent). Let F be an rdt and
〈G, P〉 ∈ C(O × V) a context. We say that F is Return Value Consis-
tent (rval) over G and P and we write rval(F , G, P) if ∀e ∈ EG.λ(e) =
〈op, v〉 implies F (op, G

∣∣
−≺e

, P
∣∣
−≺e

) = v. Moreover, we define

prval(F , G) = {P | rval(F , G, P)}
Example 12. Consider the rdt Fctr introduced in Example 11. The context in
Fig. 8a is rval consistent while the one in Fig. 8b is not because Fctr requires
rd to return the number of inc operations seen by that read, which in this case
should be 2.

The following result states that return value consistent paths are all coherent,
in the sense that they match the behaviour allowed for any shorter configuration.

Lemma 1. Let F be an rdt and G an ldag. Then

prval(F , G) =
⊗

e∈EG

prval(F , G|−�e).

As for coherent specifications, the property prval(F , G)|−≺e ⊆ prval(F , G|−≺e)

also holds for return value consistent paths.

A Denotational View of Replicated Data Types 149

Fig. 8. rval consistency for Fctr .

4.1 Deterministic Specifications

We now focus on the relation between our notion of specification, as introduced
in Definition 5, and the operational description of rdts, as introduced in [2,4]
and formalised in Definition 10 in terms of ldags. Specifically, we characterise
a proper subclass of specifications that precisely correspond to rdts.

For this section we restrict our attention to specifications over the set of
labels O × V , i.e., S : G(O × V) → 2P(O×V).

Definition 12 (Total Specification). Let S be a specification. We say that
S is total if

∀〈G, P〉, op. ∃G1, v. G = G1 ∧ P ∈ S(G1〈op,v〉)
∣∣∣
EG1

Intuitively, a specification is total when every projection over O of a con-
text in C(O × V), as represented by 〈G, P〉 ∈ C(O), can be extended with the
execution of any operation of the data type. This is formalised by stating that
for any operation op and any admissible arbitration (sequence of operations) P
of a configuration G (once more, labelled only with operations), then P can be
extended into an admissible arbitration of the configuration G1〈op,v〉, where G1 is
just one of the possible configurations (the one labelled with the correct return
values) whose projection corresponds to G.

We remark that a total specification does not prevent the definition of an
operation that admits more than one return value in certain configurations, i.e.,
v in Definition 12 does not need to be unique. For instance, consider the Generic
Register in Example 6, in which operation rd may return any of the causally-
independent, previously written values. Albeit being total, the specification for
rd is not deterministic. On the contrary, a specification is deterministic if an
operation executed over a configuration admits at most one return value, as
formally stated below.

Definition 13 (Deterministic Specification). Let S be a specification. We
say that S is deterministic if

∀G, op, v, v′. v �= v′ implies S(G〈op,v〉)
∣∣∣
EG

∩ S(G〈op,v′〉)
∣∣∣
EG

= ∅

150 F. Gadducci et al.

A weaker notion for determinism could allow the result for an added operation
to depend also on the given admissible path. We say that a specification S is
value-deterministic if

∀G, op, v, v′. v �= v′ ∧ G �= ε implies S(G〈op,v〉)
∣∣∣
EG

∩ S(G〈op,v′〉)
∣∣∣
EG

= ∅

Finally, we say that a specification is functional if it is both deterministic
and total.

Example 13. Figure 9 shows a value-deterministic specification. Although a read
operation that follows an increment may return two different values, such dif-
ference is explained by the previous computation: in one case the increment
succeeds while in the other fails. The specification is however not deterministic
because it admits a sequence of operations to be decorated with different return
values.

Fig. 9. A value-deterministic and coherent specification.

Example 14. It is straightforward to check that the specifications in Exam-
ples 4 and 5 are deterministic. On the contrary, the specification of the Generic
Register in Example 6 is not even value-deterministic. It suffices to consider a
configuration in which a read operation sees two different written values. Simi-
larly, Set in Example 8 is not deterministic.

The lemma below states a simple criterion for determinism.

Lemma 2. Let S be a coherent and deterministic specification. Then

∀G1, G2. G1 = G2 implies G1 = G2 ∨ S(G1) ∩ S(G2) = ∅

So, if two configurations are annotated with the same operations yet with dif-
ferent values, then their admissible paths are already all different if we disregard
return values.

4.2 Correspondence Between rdts and Specifications

This section establishes the connection between rdts and specifications. We first
introduce a mapping from rdts to specifications.

A Denotational View of Replicated Data Types 151

Definition 14. Let F be an rdt. We write S(F) for the specification associated
with F , defined as follows

S(F)(G) = prval(F , G)

Next result shows that rdts correspond to specifications that are coherent,
functional and saturated.

Lemma 3. For every rdt F , S(F) is coherent, functional, and saturated.

The inverse mapping from specifications to rdts is defined below.

Definition 15. Let S be a specification. We write F(S) for the rdt associated
with S , defined as follows

F(S)(op, G, P) = v if ∃G1. G = G1 ∧ P ∈ S(G1〈op,v〉)
∣∣∣
EG1

Note that F(S) may not be well-defined for some S , e.g. when S is not deter-
ministic. The following lemma states the conditions under which F(S) is well-
defined.

Lemma 4. For every coherent and functional specification S , F(S) is well-
defined.

The following two results show that rdts are a particular class of specifica-
tions, and hence, provide a fully abstract characterisation of operational rdts.

Theorem 1. For every coherent, functional, and saturated specification S , S =
S(F(S)).

Theorem 2. For every rdt F , F = F(S(F)).

The above characterisation implies that there are data types that cannot
be specified as operational rdts. Consider e.g. Generic Register and Set, as
introduced respectively in Examples 6 and 8. As noted in Example 14, they
are not deterministic. Hence, they cannot be translated as rdts. We remark
that a non-deterministic specification does not imply a non-deterministic conflict
resolution, but it allows for underspecification.

5 A Categorical Account of Specifications

In the previous sections we provided a functional characterisation of RDTs.
We now proceed on to a denotational account of our formalism by providing a
categorical foundation which is amenable to the building of a family of operators
on specifications.

152 F. Gadducci et al.

5.1 Composing ldags

We start by considering a sub-class of morphisms between ldags, which account
for the evolution of visibility relation by reflecting the information about
observed events.

Definition 16 (Past-Reflecting Morphism). Let G1 and G2 be ldags and
f : G1 → G2 an ldag morphism. We say that f is past-reflecting if

∀e ∈ EG1 . f(− ≺ e) =
⋃

e′∈−≺f(e)

e′.

We can concisely write f(− ≺ e) = − ≺ f(e) and spell out the definition as

∀e ∈ EG1 . ∀e2 ∈ G2|−≺f(e) . ∃e1 ∈ G1|−≺e . f(e1) = e2

It is noteworthy that this requirement boils down to (the dual of) what are called
tp-morphisms in the literature on algebraic specification theory, which are an
instance of open maps [9]. As we will see, this property is going to be fundamental
in obtaining a categorical characterisation of coherent specifications.

Now, let G(L) be the category whose objects are ldags and arrows are
past-reflecting morphisms, and I (L) the sub-category whose arrows are injective
morphisms.

Proposition 1 (ldag Pullbacks/Pushouts). The category G(L) of ldags
and past-reflecting morphisms has (strict) initial object, pullbacks and pushouts
along monos.

Note that pushout squares along monos are also pullback ones. As often the
case, the property concerning pushouts does not hold in I (L), even if a weak
form does, since monos are stable under pushouts in G(L). For the time being,
we just remark that these properties guarantee a degree of modularity for our
formalism.

We need a last definition before giving a categorical presentation.

Definition 17 (Downward closure). Let G = 〈E ,≺, λ〉 be an ldag and E ′ ⊆
E. We say that E ′ is downward closed if

∀e ∈ E ′.− ≺ e ⊆ E ′.

It is easy to show that for any past-reflecting morphism f : G1 → G2 the
image of EG1 along f is downward closed. Should f be injective, we strengthen
the relationship.

Lemma 5. An injective morphism f : G1 → G2 is past-reflecting if and only if

1. f(e1) ≺G2 f(e2) implies e1 ≺G1 e2;
2.

⋃
e∈EG1

f(e) is downward closed.

A Denotational View of Replicated Data Types 153

This result tells us that past-reflecting injective morphisms f : G1 → G2 are
uniquely characterised as such by the properties of the image of E1 with respect
to G2.

Now, while the initial object of both G(L) and I (L) is the empty graph ε,
the pullback in the latter has an easy characterisation, thanks to the previous
lemma. Indeed, let fi : Gi → G be past-preserving injective morphisms, assuming
the functions on elements to be identities for the sake of simplicity, and let E =
EG1 ∩EG2 . Then, G1|E = G2|E and they correspond (with the obvious morphisms)
to the pullback of f1 and f2.

5.2 The Model Category

We now move to define the model category.

Definition 18 (Morphism Saturation). Let P(E1, λ1) and P(E2, λ2) be sets
of paths and f : E1 → E2 an injective function such that λ1 = f;λ2. The satura-
tion function sat(−, f) is defined as follows

sat(P, f) = {Q | Q ∈ P(E2, λ2) and P = Q|f(E1)
}

That is, each Q is the image of P via a morphism with underlying function
f. We can exploit saturation in order to get a simple definition of our model
category.

Definition 19 (Path-Set Morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2)
be sets of paths. A path-set morphism f : X1 → X2 is an injective function
f : E1 → E2 such that λ1 = f ;λ2 and

X2 ⊆
⋃

P∈X1

sat(P, f)

The property can be stated as

∀P2 ∈ X2. ∃P1 ∈ X1. P2 ∈ sat(P1, f)

thus each path in P2 is related to a (unique) path in P1 via a morphism induced
by f. Let P (L) be the category whose objects are sets of paths over the same
elements and labelling (i.e., subsets of P(E , λ) for some E and λ), and arrows
are path-set morphisms.

Proposition 2 (Path Pullbacks/Pushouts). The category P (L) of sets of
paths and path-set morphisms has (strict) initial object and pullbacks.

As for I (L), also P (L) admits a weak form of pushouts along monos.

Remark 1. The initial object is the set in 2P(∅,λ∅) including only the empty
path ε. As for pullbacks, let fi : Xi → X be path-set morphisms, assuming
the functions on elements to be identities for the sake of simplicity, and let E =
E1∩E2. Then, the pullback is the set X1|E ∪ X2|E in 2P(E,λ) with λ = λ1|E = λ2|E .
As for pushouts, let f : X → Xi be injective path-set morphisms, assuming the
functions on elements to be identities for the sake of simplicity, and E = E1 ∪E2.
Then, the “weak” pushout is the set X1 ⊗ X2 in 2P(E,λ) with λ the extension of
λ1 and λ2.

154 F. Gadducci et al.

5.3 A Categorical Correspondence

It is now time to move towards our categorical characterisation of specifications.
First, let us restrict our attention to functors F : I (L) → P (L) that preserve

the underlying set of objects, i.e., such that the underlying function on objects
ObF maps an ldag G into a subset of 2P(EG,λG) (and preserves the underling
function on path-set morphisms). We also say that F is coherent if F (G) =⊗

e∈EG
F (G|−�e) for all ldags G. Thus, any such functor F that preserves the

initial object (i.e., F (ε) = {ε}) gives raise to a specification: it just suffices to
consider the object function ObF : ObI(L) → ObP(L).

Proposition 3. Let F : I (L) → P (L) be a (coherent) functor preserving the
initial object. Then ObF is a (coherent) specification.

For the inverse we need an additional lemma.

Lemma 6. Let S be a coherent specification and E ⊆ EG downward closed. Then
S(G)|E ⊆ S(G|E).

The lemma above immediately implies the following result.

Proposition 4. A coherent specification S induces a coherent functor M(S) :
I (L) → P (L) preserving the initial object such that ObM(S) = S .

By using Propositions 3 and 4 we can state the main result of this section.

Theorem 3. There is a bijection between coherent specifications and coherent
functors I (L) → P (L) preserving the initial object.

6 Conclusions and Future Works

Our contribution proposes a denotational view of replicated data types. While
most of the traditional approaches are operational in flavour [4,7,8], we strived
for a formalism for specifications which could exploit the classical tools of alge-
braic specification theory. More precisely, we associate to each configuration
(i.e., visibility) a set of admissible arbitrations. Differently from those previous
approaches, our presentation naturally accommodates non-deterministic specifi-
cations and enables abstract definitions allowing for different strategies in conflict
resolution. Our formulation brings into light some properties held by mainstream
specification formalisms: beside the obvious property of functionality, they also
satisfy coherence and saturation. A coherent specification can neither prescribe
an arbitration order between events that are unrelated by visibility nor allow
for additional arbitrations over past events when a configuration is extended
(i.e., a new top element is added to visibility). Instead, a saturated specifica-
tion cannot impose any constraint to the arbitration of top elements. Note that
saturation does not hold when requiring that admissible arbitrations should be
also topological orderings of visibility. Hence, the approaches in [2,4] generate

A Denotational View of Replicated Data Types 155

specifications that are not saturated. We remark that this relation between vis-
ibility and arbitration translates in a quite different property in our setting,
and this suggests that consistency models defined as relations between visibility
and arbitration (e.g., monotonic and causal consistency) could have alternative
characterisations. We plan to explore these connections in future works.

Another question concerns coherence, which prevents a specification from
choosing an arbitration order on events that are unrelated by visibility and
forbids, e.g., the definition of strategies that arbitrate first the events coming
from a particular replica. Consequently, it becomes natural to look for those rdts
and consistency models that are the counterpart of non-coherent specifications,
still preserving some suitable notion of causality between events. We do believe
that the weaker property S(G)|−≺e ⊆ S(G|−≺e) (that is, no additional arbitration
over past events when a configuration is extended) is a worthwhile alternative,
accommodating for many examples that impose less restrictions on the set of
admissible paths (hence, that may allow more freedom to the arbitration).

These issues might be further clarified by our categorical presentation. Our
proposal is inspired by current work on the semantics of nominal calculi [11],
and it shares similarities with [10], since our category G is the sub-category
of their FinSet⇒ with past-reflecting morphisms. The results on Sect. 5 focus
on a functorial characterisation of specifications. We chose an easy way out
for establishing the bijection between functors and specifications by restricting
the possible object functions and by defining coherence “on the nose”, (i.e., by
considering functors F such that F (G) ⊆ 2P(EG,λG) and F (G) =

⊗
e∈EG

F (G|−�e)),
since requiring the specification to be coherent is needed in order to obtain
the functor in Proposition 4. A proper characterisation should depend on the
properties of F over the arrows of G (such as pullback/pushout preservation),
instead of the properties of the objects in its image on P .

The same categorical presentation may shed light on suitable operators on
specifications. Indeed, this is the usual situation when providing a functorial
semantics for a language (see e.g. [1], and the references therein, among many
others), and intuitively we have already a freshness operator F �(G) = F (G�),
along the lines of edge allocation in [10]. We plan to extend these remarks into
a full-fledged algebra for specifications.

References

1. Bonchi, F., Buscemi, M.G., Ciancia, V., Gadducci, F.: A presheaf environment for
the explicit fusion calculus. J. Autom. Reasoning 49(2), 161–183 (2012)

2. Burckhardt, S.: Principles of eventual consistency. Found. Trends Program. Lang.
1(1–2), 1–150 (2014)

3. Burckhardt, S., Gotsman, A., Yang, H.: Understanding eventual consistency. Tech-
nical Report MSR-TR-2013-39, Microsoft Research (2013)

4. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: speci-
fication, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014,
pp. 271–284. ACM (2014)

156 F. Gadducci et al.

5. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: Aceto, L., de Frutos-Escrig, D. (eds.) CONCUR
2015. LIPIcs, vol. 42. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

6. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

7. Gotsman, A., Yang, H.: Composite replicated data types. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 585–609. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46669-8 24

8. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ‘Cause i’m
strong enough: reasoning about consistency choices in distributed systems. In:
Bod́ık, R., Majumdar, R. (eds.) POPL 2016, pp. 371–384. ACM (2016)

9. Joyal, A., Nielson, M., Winskel, G.: Bisimulation and open maps. In: LICS 1993,
pp. 418–427. IEEE (1993)

10. Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coalge-
braic semantics. Theor. Comput. Sci. 546, 188–224 (2014)

11. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, Cambridge (2013)

12. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 29

13. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Technical Report RR-7506,
Inria-Centre Paris-Rocquencourt (2011)

14. Sivaramakrishnan, K.C., Kaki, G., Jagannathan, S.: Declarative programming over
eventually consistent data stores. In: Grove, D., Blackburn, S. (eds.) PLDI 2015,
pp. 413–424. ACM (2015)

http://dx.doi.org/10.1007/978-3-662-46669-8_24
http://dx.doi.org/10.1007/978-3-662-46669-8_24
http://dx.doi.org/10.1007/978-3-642-24550-3_29

	A Denotational View of Replicated Data Types
	1 Introduction
	2 Labelled Directed Acyclic Graphs
	2.1 ldag Operations

	3 Specifications
	3.1 Refinement
	3.2 Classes of Specifications

	4 Replicated Data Type
	4.1 Deterministic Specifications
	4.2 Correspondence Between rdts and Specifications

	5 A Categorical Account of Specifications
	5.1 Composing ldags
	5.2 The Model Category
	5.3 A Categorical Correspondence

	6 Conclusions and Future Works
	References

