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Abstract. With the constant increase in the number of interconnected
devices in today networks, more and more computations can be described
by spatial computing abstractions. In this context, distances can be esti-
mated in a fully-distributed way by the so-called gradient self-organisation
pattern: it is a basic building block also for large-scale system coordina-
tion, frequently used to broadcast information, forecast pointwise events,
as carrier for distributed sensing, and as combinator for higher-level spa-
tial structures. However, computing gradients is very problematic in a
mutable environment: existing algorithms fail in reaching adequate trade
offs between accuracy and reaction speed to environment changes.

In this paper we introduce a new gradient algorithm, BIS (Bounded
Information Speed) gradient, which uses time information to achieve a
smooth and predictable reaction speed, which is proved optimal for algo-
rithms following a single-path-communication strategy. Following a pro-
posed methodology for empirical evaluation of performance of spatial
computing algorithms, we evaluate BIS gradient and compare it with
other approaches. We show that BIS achieves the best accuracy while
keeping smoothness under control.

Keywords: Aggregate programming · Gradient · Information speed ·
Reliability · Spatial computing

1 Introduction

The increasing availability of computational devices of every sort, spread through-
out our living and working environments, is creating new challenges in the engi-
neering of complex software systems, especially in contexts like the Internet-of-
Things, Cyber-Physical Systems, Pervasive Computing, and so on. Spatial com-
puting abstractions have been proposed as a means to take full opportunity of
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such large-scale computational infrastructures, for their ability to provide perva-
sive and intelligent sensing, coordination, and actuation over the physical world
[5]: they provide models and mechanisms raising the abstraction layer, making it
possible to more easily capture the goal of a large-scale situated system.

In this context, “collective” programs can be seen as taking as input situ-
ated data changing over time, typically perceived by (virtual or physical) sen-
sors [9], and produce analogous data as outputs to feed (virtual or physical)
actuators, having an effect on other computational components, on the physical
world, or on humans in it. Such an input/output transformation is captured
by a computational process iteratively executing over space and time, involving
complex coordination patterns, and in need of satisfying multiple non-functional
requirements: scalability, resilience to unpredictable changes, and heterogeneity
and dynamism of the communication infrastructure. A key difficulty in engi-
neering collective applications of this kind, hence, is the lack of computational
frameworks and libraries of reusable algorithms with guaranteed resilience and
performance to match this level of complexity in application services. Even the
most basic “building block” algorithms one wants to rely upon, typically give
rise to inadequate behaviour when faced with such demanding requirements.

A prototypical example of this phenomenon is given by the shortest path (SP)
problem in a weighted network, which is fully solved in a traditional computation
setting by (among many) Dijkstra’s algorithm. In spatial computing, the SP
problem translates into the so-called gradient computation [4], which amounts
to computing shortest paths from all nodes to a given set of source nodes, through
a fully distributed process to be iteratively executed to promptly react to any
change in the environment. Gradients are known to be a basic building block
for self-organising coordination [3,15,20,30], being frequently used for a variety
of purposes: to broadcast information, forecast events, dynamically partition
networks, ground distributed sensing [6], anticipate future events [21], and to
combine into higher-level spatial structures [15]. However, the known algorithms
for gradient computation are not fully satisfactory, as they involve relevant trade-
offs between scalability, resiliency and precision.

In this paper we introduce a new gradient algorithm, the BIS (Bounded
Information Speed) gradient, which highly relies on time information to achieve
smooth reaction to changes with predictable speed. Given a rising speed v (i.e.,
increase in gradient estimate over time) as a parameter, it enforces an informa-
tion propagation speed (i.e., space travelled by information over time) equal to
v, so as to scale from the classic gradient (where essentially v = 0) to a reaction
speed that we prove to be optimal (among the single-path communication algo-
rithms) with v equal to the average information speed. If v is greater than such
an average, however, a metric distortion is induced that causes the algorithm to
systematically overestimate gradient values: it is thus crucial to tune correctly
the parameter in order to achieve the best accuracy.

To address this problem, we compute mathematical estimates of the average
single-path communication speed, and use them for validating the performance
of BIS gradient with respect to the three most performant algorithms proposed
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Fig. 1. Gradient computed in a sample network with two source devices.

in the spatial computing context: classic (propagating triangle inequality [30]),
CRF [4] and FLEX [3]. We thus show that the BIS gradient achieves the best
accuracy while keeping smoothness under control. This comparison is carried out
through a general approach we propose, as an empirical evaluation methodology
for the performance of all spatial computing algorithms (and gradient algorithms
in particular). Finally, we present a realistic case study application of crowd
steering towards multiple points of interest (POI), some of which can suddenly
become unavailable—faster healing algorithms are here needed to reduce the
“average travelling time” for people towards an available POI.

The remainder of this paper is organised as follows. Section 2 provides the
background for this paper and discusses related works, introducing the relevant
gradient algorithms. Section 3 describes the proposed BIS gradient algorithm
together with the mathematical estimates of average single-path information
speed. Section 4 proposes the methodology for empirical evaluation of spatial
computing algorithms, compares the various gradient algorithms and tests them
in the selected case study. Section 5 concludes and outlines possible directions of
future research.

2 Background and Related Work

2.1 Gradient-Based Approaches

In this paper we are concerned with coordination strategies for situated networks,
where the objective can be represented in terms of a global, system-level “pat-
tern” to be achieved by local interactions between neighouring devices, showing
inherent resilience with respect to unpredicted changes—in network topology,
scale, inputs coming from sensors, and so on. This viewpoint is endorsed by
a number of works in a recent thread of research, in the context of coordina-
tion models and languages [20,28,32], multiagent systems [10,14,29] and spatial
computing [2,5,6,15,17]. In spite of various differences and peculiarities, they
all promote the idea of creating complex distributed algorithms as spatial com-
putations, where few basic communication and coordination mechanisms are
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provided to the programmer, who uses them by progressively stacking building
blocks into layers of increasing complexity.

In this context, gradient data structures, or gradients for short, are perva-
sively used as key building blocks [6,15]. They produce a map – also called a com-
putational field [12,13] – assigning to each device δ in a network N its estimated
distance from the closest source device (an input for the problem), computed by
the shortest-path through weighted links in the network (see Fig. 1).

Applications of gradients are countless. Other than to trivially estimate long-
range distances (possibly according to metrics computed during execution of the
algorithm), gradient computations enact an outward progressive propagation of
information along optimal paths. Thus, they are used as forward “carrier” for
broadcasting information, forecasting events, and dynamically partitioning net-
works [6]. Also, used backwards, one can make information flow back to the
source, to move or steer mobile agents or data towards the source, or to sum-
marise or average distributed information, i.e., to generally support distributed
sensing [6]. Other applications include: considering future events so as to provide
proactive “adaptation” [21]; managing semantic knowledge in situated environ-
ments [16], create high-level spatial structures [15], elect leaders on a spatial
basis [7], and so on.

Due to their usefulness, several works also study how to establish gradients
in contexts where local estimation of distances is not available [18,19,22], and
others take them as basic example to study self-stabilisation techniques [11,20].

2.2 Gradient-Based Implementations

According to the framework presented in [27], it is suggested to associate to
fundamental building blocks (including the gradient) a library of alternative
implementations, among which one has to pick the right implementation for
each specific use in the application at hand. It is therefore of interest to analyse
differnet trade-offs in the implementation of gradient algorithms, with the goal
of identifying approaches guaranteeing reactiveness and smoothness in the way
gradients (and the many applications on top) can respond to dynamic environ-
ments. In its most basic form, the gradient can be calculated through iterative
application of a triangle inequality constraint in each device δ, starting with ∞
everywhere:

G(δ) =

{
0 if source(δ)
min{G(δ′) + w(δ′, δ) : δ′ ∈ N linked with δ} otherwise

We call this procedure classic gradient. Repeated fair application1 of this cal-
culation in a fixed network will converge to the correct value at every point
[11].2 However, the performance of this algorithm in a mutable environment is
impaired by several limitations.
1 A sequence of updates is fair if every device updates his value infinitely often.
2 In finite time if every device can reach a source; at the limit otherwise (in this case,

distance estimates raise indefinitely towards the correct value ∞).
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Fig. 2. Evolution after loss of the right source. In each round all devices compute in
order, from the one holding the highest value to the one with the lowest. Each device
rises by 0.4 every two rounds, because of the short link at the middle of the graph.

– Speed Bias: if devices are continuously moving, the values produced by the
algorithm systematically underestimate3 the correct value of the gradient;
with an error which increases with the movement speed.

– Rising Value: in response to quick changes in the network (e.g., a change in
the set of source devices), the algorithm can rapidly correct values that need
to drop, while it is very slow in correcting values that need to rise. In other
words, the algorithm can badly underestimate values for long periods of time
after such changes. Precisely, the rising speed of this algorithm is bounded
by the distance between the pair of closest devices: Fig. 2 shows an example
of this phenomenon on a part of the network in Fig. 1. This problem is also
known as count-to-infinity in the context of routing algorithms [25].

– Smoothness: in the presence of error in distance estimates, it might be prefer-
able not to strictly follow the triangle inequality, so as to reduce the resultant
flickering in the output values. Moreover, if the distance estimates are used for
an higher-order coordination mechanism (e.g., for moving values towards the
sources by “descending” the shortest-paths tree obtained from the gradient),
then each variation in the estimates might change the resulting connection
tree, effectively disrupting the outcome of the coordination for some time.

In order to overcome these limitations, several refined algorithms have been
proposed. To the best of our knowledge, those that better address those problems
are J. Beal’s CRF gradient (Constraint and Restoring Force) [4] and FLEX
gradient (Flexible) [3].

CRF Gradient. The CRF gradient [4] is designed to address the rising value prob-
lem by ignoring some Constraints (i.e., neighbours4), while assuming a Restoring
Force inducing a uniform rise in absence of constraints. The algorithm takes as

3 Sporadic overestimation is also possible, however the “minimising” nature of the
algorithm propagates lower estimates and disperses higher ones.

4 Recall that in the classic gradient, the value G(δ) is obtained by combining the
“triangle-inequality” constraints G(δ) ≤ G(δ′) + w(δ′, δ) for each neighbour δ′.
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parameter a fixed speed v0, and associates a “rising speed” v(δ) to each device so
that: if the value of the device is currently constrained (either by being a source
or by the value of some neighbour) then v(δ) = 0; otherwise if the value is not
constrained (i.e., all neighbours have been discarded) then v(δ) = v0. Before
applying the minimisation as in the classic gradient, the CRF gradient considers
a neighbour δ′ as “able to exert constraint” if and only if:

G(δ′) + w(δ′, δ) ≤ G(δ) − λ(δ′, δ) · v(δ)

where λ(δ′, δ) measures time lag, i.e., how old is the information in δ about δ′.
The above condition checks whether the constraint given by δ′ is able to bound
the currently (i.e., not yet updated) value of the gradient as shifted back to the
time when the constraint was calculated. If the current device is not yet rising,
the condition amounts to the constraint being able to reduce the current value;
otherwise it becomes more restrictive.

If some neighbour able to exert constraint exists, the value is calculated
similarly to the classic gradient. Otherwise, a fixed rising speed is enforced (thus
rising by v0Δt where Δt is the time interval between the last two rounds).

G(δ) =

⎧⎪⎨
⎪⎩

0 if source(δ)
min{G(δ′) + w(δ′, δ) : δ′ exerts constraint} if some δ′ exists
G(δ) + v0Δt otherwise

Through this algorithm the rising speed is then equal to v0, provided that v0 is
small enough, thus addressing the rising value problem.

FLEX Gradient. The FLEX gradient [3] is designed to improve smoothness
through application of a “filtering function” to the outcome of the minimisa-
tion, which reduces changes while granting an overall error of at most a given
parameter ε. Precisely, it first calculates the “maximum local slope”:

s(δ) = max
{

G(δ) − G(δ′)
w(δ′, δ)

: δ′ ∈ N linked with δ

}

This slope is then used to calculate the gradient estimation as:

G(δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if source(δ)
G(δ′) + (1 + ε)w(δ′, δ) if s(δ) > 1 + ε

G(δ′) + (1 − ε)w(δ′, δ) if s(δ) < 1 − ε

G(δ) otherwise

where δ′ is the device achieving maximum slope (according to the values avail-
able to the current device). The above formula, in other words, selects the closest
value to G(δ) in the interval from G(δ′)+(1−ε)w(δ′, δ) to G(δ′)+(1+ε)w(δ′, δ),
thus attempting to reduce local changes as much as possible while introducing
a metric distortion below ε. Two further optimisations are also introduced in
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FLEX gradient: first, the classical gradient formula is used instead of the above
one whenever the current value is over a factor 2 from the old value, or anyway
every once in a while (details can be found in [3])—this prevents a systematic
error of ε to persist indefinitely in a static environment after a network change;
second, a distorted metric w′(δ′, δ) = max(w(δ′, δ), k) is used, for a certain con-
stant k—this adds some further error in the output of the algorithm, but it also
ensures that the rising speed is at least k (since k becomes the shortest possible
“distorted” distance between devices).

3 BIS Gradient

3.1 Information Speed

In most spatial computing abstractions, a network of devices typically perform
an interaction through short-range message passing between neighbour devices.
The speed achieved by information in this process constitutes an upper bound
for responsiveness to environment and input changes, in a similar way to the
speed of light, which is an upper bound for causal relationship between events.
Depending on the pattern followed by information exchanges, we can distinguish
between two main achievable speeds: single-path and multi-path.

Definition 1 (Information Speed). The single-path information speed is the
space travelled over time by messages through a spanning tree in the network.
The multi-path information speed is the same quantity assuming messages are
exchanged through all possible links in the network.

Clearly, the upper bound for causal relationship in a network is given by the
multi-path information speed. This communication pattern requires multiple
informations to be aggregated in each node, in order to avoid a program state
explosion; and is thus typical of “aggregation” algorithms (such as broadcasting
and collecting). Conversely, communication in existing gradient algorithms (and
in particular in the BIS gradient we shall introduce in the next subsection) is
usually structured on an implicit (shortest-paths) spanning tree: messages from
all neighbours are received, but only one of them is selected and passed over for
subsequent computations. For this reason, in the remainder of this section we
shall focus on single-path information speed and estimate its average vavg in a
random network. This estimate would be crucial to determine the value to be
passed to BIS gradient for its parameter v.

Consider a network of computing devices, each of them running an algorithm
with a certain time period P on data available from neighbour devices within
a certain radius R. Let D be a random variable for the distance and T for the
time interval between the event of a device sending a message and the event of
another device using that message for computation. Then the average speed S
achieved by information can be expressed as:5

5 Following standard statistic notation, we use E(X) for the mean and V (X) for the
variance of a random variable X.
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E(S) = E

(
D

T

)
=

E(D)
E(T )

(
1 +

V (T )
E(T )2

)

truncating the bivariate Taylor expansion of the ratio function to the second
order (see [26] for a complete proof of this fact).

The average distance crossed by a message can be calculated as the average
radius of communication R times the average distance of a uniformly chosen
random point in an n-dimensional unit ball, giving a total E(D) = n

n+1R. If
devices are moving at a certain average speed v, this estimate should be adapted
to take into account that messages with a certain lag T could come from a further
distance up to vT . An exact calculation of the expected distance in this setting
is complex and depends on many factors. However, if we assume the movement
to be sufficiently uniform and restrict ourselves to algorithms with a preference
for shortest-paths (as for gradients), we can just add up v

2T to the numerator
obtaining a roughly acceptable estimate E(S) = E

(
D
T

)
+ v

2 .
The average time interval between events depends heavily on the underlying

specific implementation of network communication. In many spatial computing
models, like field calculus [31] and Proto [2], a reasonable model of time delay
would be T = P · (I + IF ), where: P represents the period of a random device,
I represents the imprecision of a single device, F represents a random phase
between devices, as a uniform distribution of values in [0, 1]. In this model,
E(T ) = 3

2E(P )E(I) = 3
2Q (where Q is the average computation period) and:

1 +
V (T )
E(T )2

=
E(T 2)
E(T )2

=
E(P 2)
E(P )2

· E
(
(I + IF )2

)
E(I + IF )2

=
E(P 2)
E(P )2

·
(

1 +
V (I + IF )
E(I + IF )2

)

=
E(P 2)
E(P )2

·
(

1 +
V (I) + V (I)

3 + E(I)2

12
9
4E(I)2

)
=

(
1 +

V (P )
E(P )2

)
·
(

28
27

+
16
27

V (I)
E(I)2

)
.

Notice that V (X)
E(X)2 is the square of the relative standard error σ̂2(X). Thus the

average single-path information speed vavg can be estimated as:

vavg = E(S) =
2
3

n

n + 1
R

Q

(
1 + σ̂2(P )

) (
28
27

+
16
27

σ̂2(I)
)

+
v

2
(1)

where v is the movement speed of devices. This equation tells us that: the speed
is mainly proportional to the ratio of communication radius over computation
period; the speed increases with the dimensionality of the space, i.e., is lower for
devices aligned in a row and higher for devices in 3-dimensional space;6 the speed
increases with the relative error of computation periods, both among different
devices and inside a single device. Equation 1 will be used later to estimate the
v parameter of the BIS gradient algorithm. We remark that the average above

6 Gradient algorithms have preference for shortest-path links, so that information
tends to propagate linearly regardless of the dimensionality of the space. This fact
does not contradict the above estimate, which assumes that transmission links are
chosen randomly (assumption viable also for gradient algorithms in sparse networks).
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is computed for a single hop of communication. Over multiple hops, the relative
standard error decreases while the average does not change significantly. In case
the network parameters (average radius of communication, computation period,
etc.) cannot be assumed to be constant, a simple algorithm can still estimate
vavg continuously according to the formula above (by averaging the relevant
quantities through low-pass filters).

3.2 Computing Gradient Through Information Speed

As exemplified in Fig. 2, in presence of a rising value problem, distance increase
per round is bounded by the shortest link in the network �. We accordingly
obtain an average information speed proportional to 2�

3Q instead of 2nR
3(n+1)Q ,

which can be arbitrarily slower as � approaches zero. This fact suggests us to
prevent the rising value problem by lower bounding the information speed to
make this “slow” rise impossible.

The Bounded Information Speed (BIS) gradient improves over the classical
gradient by enforcing a minimum information speed v requested by the user. As
long as v does not surpass the average single-path communication speed, the
algorithm is able to compute correct estimates of the gradient with increased
responsiveness. Greater values of v induce instead a metric distortion, causing
the algorithm to systematically overestimate values. In the remainder of this
paper, we shall thus express v as a fraction of vavg (the average single-path
communication speed, which we estimate through Eq. 1).

For each device in the network, we compute both the usual gradient estimate
G(δ) and a lag estimate L(δ), representing the time elapsed since the message
started from a source. Lags are estimated through local time differences, so
that no overall clock synchronisation is required. When considering a candidate
neighbour δ′ of a device δ, the time lag relative to this neighbour is:

L(δ, δ′) = L(δ′) + λ(δ′, δ)

where λ(δ′, δ) is the lag of the message from δ′ to δ. We then take into account
this value when calculating the gradient estimate relative to this neighbour:

G(δ, δ′) = max {G(δ′) + w(δ′, δ), vL(δ, δ′) − r}
where w is the distance between devices and r is the communication radius.
This formula accounts to assuming that messages propagate at least at speed v,
so that the gradient estimate is lower bounded by vL(δ, δ′) (with the additive
constant −r to ensure that some error is taken into account).

The overall estimates of G(δ) and L(δ) are then obtained by minimising
G(δ, δ′) over neighbours (we assume that pairs are ordered lexicographically):

[G(δ), L(δ)] =

{
[0, 0] if source(δ)
min{[G(δ, δ′), L(δ, δ′)] : δ′ ∈ N linked with δ} otherwise

This algorithm generalises the classic gradient algorithm, as shown in the
following.
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Theorem 1 (Degenerate BIS). The BIS gradient with v = 0 is equivalent to
the classic gradient.

Proof. If v = 0, G(δ, δ′) = max {G(δ′) + w(δ′, δ), 0 · L(δ, δ′) − r} is equal to
G(δ′) + w(δ′, δ) so that L(δ) is implicitly discarded.

In particular, the same result would hold for devices with no lag estimator
so that λ(δ, δ′) is always 0. For devices with an internal timer (so that a lag
estimator can be defined), tweaking the parameter v close to the average single-
path information speed provides a guaranteed reactivity, which is optimal among
algorithms with a single-path information flow.

Theorem 2 (Performance Bound). Information speed in BIS gradient, cal-
culated w.r.t. the gradient estimates, is at least v. Furthermore, values con-
strained by obsolete information increase at least at speed v.

Proof. Since G(δ, δ′) ≥ vL(δ, δ′)−r for all δ′, also G(δ) ≥ vL(δ)−r concluding the
first part. For the second part, consider an information that started propagating
from a certain source at time t0 and is now obsolete (e.g., the source has been
disconnected), and fix a device δ computing in times t1, . . . , tn constrained by
such obsolete information. Since L(δ) = ti − t0 in each computing round i ≤ n,
G(δ) ≥ vL(δ) − r = v(ti − t0) − r concluding the second part.

Theorem 3 (Optimality). The BIS gradient with v equal to the average
single-path information speed vavg attains optimal reactivity among algorithms
with a single-path information flow.

Proof. As a prototypical example, consider an already stabilised network with
a selected source device and its corresponding influence region, i.e., the set of
devices whose distances are calculated w.r.t. the selected source (red). Suppose
that the selected source device is suddenly disconnected at time t = 0. In any
algorithm with a single-path information flow, the information about this dis-
connection flows through the influence region at average speed v. For example,
device δ in Fig. 3 is reached by this information at time d0

v , and it cannot change
its value from d0 before that time.

In the best case scenario, after the information about the disconnection
reaches the border a new wave of information can bounce back towards the
inside of the region, bringing values calculated from other sources (green). Since
the shortest path from the disconnected source to the border and then back to
device δ has length d1 + d2 (black arrow) and information flows at speed v, the
earliest time when δ can reach the correct value is d1+d2

v . Notice that this value
is d1 + d2 since the distance from the border to the two sources is the same.

Then δ holds value d0 at time d0
v and value d1 + d2 at time d1+d2

v , effectively
rising at speed (d1+d2−d0)/(d1+d2

v − d0
v ) = v. Since this is the best-case scenario,

a faster rising speed is not possible thus proving optimality of BIS gradient.
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d1d1

d2δ

Fig. 3. Information flow upon disconnection of a source device. (Color figure online)

3.3 Reducing Volatility and Communication Cost

An improved reactivity to changes naturally translates into an increase in volatil-
ity of values, thus reducing the degree of smoothness. This holds true also for
the BIS gradient: in a mutable environment, even calculating the exact gradient
all the times would perform poorly on smoothness, since it would rapidly adapt
all the values as noise and small movements take place.

In order to improve smoothness of rapidly self-healing algorithms, it is then
necessary to insert a damping component. Also the FLEX gradient, designed for
improved smoothness, can be seen as the embedding of the following damping
function into the classical gradient computation:

damp(old, new) =

⎧⎪⎨
⎪⎩
new + εw(δ′, δ) if old > new + εw(δ′, δ)
new − εw(δ′, δ) if old < new − εw(δ′, δ)
old otherwise

In future works, it is therefore natural to investigate whether the insertion of
this damping function (or others) into algorithms other than the classic gradient
would achieve the same effect. In the next section, we shall show that this is true
to some extent, allowing the BIS gradient for an improved smoothness.

4 Analysis and Verification

4.1 Performance Indicators

In order to empirically evaluate the performance of an approximated localised
algorithm,7 several aspects need to be taken into account. We divide them into
environment characteristics, input properties, and output requirements.

Environment. A spatio-temporal computing environment is characterised by
its degree of steadiness, which both in time and in space can be further
specified through measures of noise and variability. We classify as noise the

7 With approximated localised algorithm we denote any spatially-distributed iterative
process which aim to approximate a target global input/output transformation (tak-
ing into account environmental data, as described in Sect. 1). For example, this is
the case for gradient algorithms which approximate shortest-path distances (output)
given a source set and an environmental configuration (input).
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small high-frequency variations which are not intended to alter the expected
output of the algorithm: in space, it corresponds to short-range brownian
movements; in time, it corresponds to random error in the frequency of events
(in each device). We classify as variability the larger low-frequency variations
which are intended to alter the expected output: in space, it corresponds to
long-range directional movements; in time, it corresponds to systematic error
in the frequency of events (changing between devices or through time).

Input. To assess the performance of an algorithm, we need to split tests into
two further possible situations: constant input, to isolate and measure the
responses to environment variations; discontinuous input, where a sudden
change happens at a certain point in time, to measure the healing speed of
the algorithm.

Output. Given a test environment and input, we need to measure two different
qualities of the output generated by the algorithm: precision and smoothness.
Precision is the deviation from the ideal outcome: with a constant input, it
measures systematic error (e.g., speed bias for gradient algorithms); with a
discontinuous input, it measures healing speed (e.g., rising value for gradient
algorithms). Smoothness is the volatility of the output values, usually mea-
sured as the integral of absolute differences between consecutive values (first
derivative of the output), and aims for gradual and unidirectional changes in
the output values, absorbing noise. It needs to be measured both on constant
and discontinuous input.

Performance assessment of approximated localised algorithms thus requires
extensive testing over several different environments, combining diverse degrees
of noise and variability (both in space and in time). Among the different possi-
bilities, we recommend to include: zero-noise zero-variability (in both space and
time), in which the basic self-stabilisation property8 is measured [11]; high-noise
high-variability (in both space and time), in which a bottom line of guaran-
teed performance is measured in an extreme case; further intermediate cases,
which can help differentiate how performance is affected by the different types
of mutability (in space or time, as noise or variability), depending on the spe-
cific application. In each of those scenarios, performance is measured through
precision and smoothness; on an input which is first constant for a long enough
period of time to reach stable results, and then change discontinuously and keeps
the new value constant until stable results are reached again.

4.2 Comparison Between Gradient Algorithms

In order to compare the performance of the different gradient algorithms pre-
sented in this paper, we chose an environment able to trigger the issues presented
in Sect. 2:

– speed bias, by considering environments with increasing variability in space;
8 An algorithm is self-stabilising if given a constant environment, it eventually reaches

a correct output for any possible initial state.
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– rising value, through arranging devices densely into a long corridor with a
source at one end, so that the ratio between the longest and shortest distance
between devices is high;

– smoothness, by measuring it in each test scenario.

Following the guidelines introduced in Sect. 4.1, we thus tested the following
scenarios.

– Environment: we put 1000 devices with communication radius 10 m and aver-
age fire rate 1 s randomly into a 500 m × 20 m corridor, producing a network
50 hops wide. We tested this environment with increasing variability in space
(long range movements) from 0 (none), to 1 (moderated) and 3 (high). Several
conducted tests revealed that noise (both in space and in time) and variability
in time did not affect significantly the behaviour of any of the considered algo-
rithms, witnessing their intrinsic robustness. We thus only report graphs with
high noise and time variability (brownian motion and 50% relative standard
error in fire rate between different devices plus another 50% in each device). We
modelled randomly distributed events according to a Weibull distribution [33].

– Input: we provided the algorithms with a single source, steadily located on
the left end of the corridor until time 300, and then abruptly moved to the
opposite right end. In this way, reaction to discontinuous input is measured
(in the middle of the graphs) as well as behaviour under constant input (at
the sides of the graphs).

– Output: for each scenario we measured precision as absolute error w.r.t.
Euclidean distance and smoothness as absolute difference between values in
consecutive rounds (both averaged).

Figure 4 summarises the evaluation results, which were obtained (similarly
also to the experiments in next subsection) with Protelis [24] (an incarnation of
the Field Calculus [13]) as programming language to code the model, Alchemist
as simulator [23] and the Supercomputer OCCAM [1] to run the experiments.
We tested classic, CRF, FLEX, BIS with v = 0.5 vavg, BIS with v = 0.5 vavg
and FLEX damping, BIS with v = 0.9 vavg, BIS with v = 0.9 vavg and FLEX
damping. In all cases, the tolerance of the FLEX damping was set to 10%. We
run 10 instances of each scenario with different random seeds and averaged the
results.

The rising value problem corresponds to the spikes in the middle of the
graphs, which are considerably shorter (faster healing) for BIS gradient, even
when v = 0.5 vavg. Speed bias is visible from the increase in error baseline under
increasing space variability, and is more contained for BIS gradient (in particular
when v is high). The only setting where BIS does not achieve the best precision
is under constant input and zero space variability, where the error value is still
small and in fact determined by the small variations reported in smoothness.

As expected, the increase in precision corresponds to a decreased smooth-
ness, so that BIS gradient has the highest value volatility (increasing with v).
Embedding the FLEX damping into BIS proves to be effective in reducing fluc-
tuations for all values of v, so that BIS with v = 0.5 vavg and FLEX damping
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Fig. 4. Precision (left) and smoothness (right) of gradient algorithms under increasing
space variability (from top to bottom) and high noise and time variability.

score better than CRF gradient and comparably similar to FLEX and classic
gradients, while still achieving a much higher precision.

Overall, these results prove that BIS gradient achieves a much higher healing
speed and accuracy (especially when v is high), while still keeping smoothness
under control (especially when FLEX dumping is also used). This properties are
readily appreciable in practical applications where inputs cannot be assumed to
be constant: as we shall show in the next subsection, in these settings BIS gradi-
ent remains effective whereas other gradient algorithms fail to produce sensible
results, disrupting the higher-order coordination mechanisms relying on them.
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4.3 Case Study: Crowd Steering to Busy Resources

We now compare different gradient algorithms when used to implement a more
complex service in a realistic scenario: classic gradient, CRF gradient, FLEX
gradient and BIS gradient with v = 0.9 vavg. We considered a crowd steering
application run on people’s smartphones and local device-to-device interaction.
This service gives directions towards points-of-interest which can be invalidated:
e.g., an application steering pedestrians in a large exhibition center with sev-
eral food stands (restaurants), where it may happen that a restaurant suddenly
becomes full. We considered a 200 m × 300 m fair ambient, containing a 7 ×
2 grid of 20 m × 40 m obstacles (pavilions). On the four corners of the fair,
we located restaurants of random capacity (up to 1000 people). The simulation
encompassed 3000 rounds where 3000 individuals wandered randomly with a
connection range of 10 m. We assumed that people get hungry (thus starting to
look for a restaurant) at a random round between 50 and 1000; and that after
reaching a free restaurant, they stay there for up to 1000 rounds (eating) before
restarting wandering again. A 20% relative standard error in fire rate was taken
into account, both between different devices and among subsequent rounds on
the same device. We considered a relatively low average fire rate (5 s), in order
to emphasise the differences in performance of the different gradient algorithms.
We run 10 instances of each scenario with different random seeds and averaged
the results. A screen shot of this scenario is presented in Fig. 5.9

Fig. 5. A screen shot of the application scenario. The restaurant at the bottom left
corner is full and the application is steering hungry (blue) people towards the other ones
(as reflected by the colour hue, which is determined by the corresponding gradient).
(Color figure online)

9 For the sake of reproducibility, all the experiments made in this paper are available
at https://bitbucket.org/gaudrito/experiment-fast-gradient.

https://bitbucket.org/gaudrito/experiment-fast-gradient
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Fig. 6. Percentage of people who found a restaurant over time (left), average and
maximum waiting time in minutes (right) for different gradient algorithms.

In this scenario, reactivity of the underlying gradient implementation to
input changes (restaurants getting full) was proven to be crucial. Slow reac-
tivity resulted in people reaching busy restaurants, and then waiting there until
some place was let free (effectively defeating the purpose of the crowd steering
application). Fast reactivity allowed people to direct themselves directly towards
restaurants with free places, reducing significantly the waiting time. This behav-
iour is clearly pictured in Fig. 6, both by the ratio of people reaching a restaurant
over time and by the maximum waiting time. The average waiting time, instead,
seems to suggest a smaller difference among the performance of the different
algorithms. This is due to the fact that only people with a determined wait-
ing time are considered, i.e., which have already reached a restaurant. Thus the
average waiting time is expected to keep rising until all the people have already
reached a restaurant (which is far from happening for CRF and classic gradient).

Overall, these results prove that using an inefficient gradient algorithm (as
e.g., classic gradient) can result in a final real-world application being unusable
(as e.g., only 13% of the people were able to eat after 250 min in this case).
Conversely, using BIS gradient for the underlying gradient routines represents
the best choice, outperforming all the other ones by a large amount.

5 Conclusions and Future Works

We have introduced BIS gradient, a new gradient algorithm of optimal self-
healing speed among algorithms with a single-path communication scheme.
Mathematical estimations to guide the selection of the parameter v are pro-
vided. Thorough validation is carried out, both in a realistic case study and in
isolation w.r.t. classic, CRF and FLEX gradients, showing the effectiveness of
the new algorithm in a variety of contexts. We also use and suggest an empirical
evaluation methodology for spatial computing algorithms, seemingly applicable
to all eventually consistent algorithms [8] and particularly, gradients. In the
future, we plan to test the present algorithm on a larger-scale case study with
real data.
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We believe, however, that there is still some margin for further improvements.
For instance, some form of broadcast could be used to surpass the theoretical
limit given by single-path communication speed. Smoothness could be further
improved by fine-tuning other damping functions other than the one given by
the FLEX gradient. The speed bias could be addressed directly by introducing a
metric distortion dependent on the movement speed of devices (in a similar way
as it is done in [19]), and several mobility models could be considered to fine-tune
both the information speed estimate and the metric distortion. Additionally, it is
possible that specific variants of the proposed algorithm can provide additional
benefits in specific applications of the gradient pattern; in particular, we are
interested in the cases where gradients are used to support distributed sensing
of information in highly heterogeneous and dense environments, specifically for
crowd engineering applications.
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