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Abstract. Window functions are extremely useful and have become
increasingly popular, allowing ranking, cumulative sums and other ana-
lytic aggregations to be computed over a highly flexible and configurable
sliding window. This powerful expressiveness comes naturally at the
expense of heavy computational requirements which, so far, have been
addressed through optimizations around centralized approaches by works
both from the industry and academia. Distribution and parallelization
has the potential to improve performance, but introduces several chal-
lenges associated with data distribution that may harm data locality. In
this paper, we show how data similarity can be employed across par-
titions during the distributed execution of these operators to improve
data co-locality between instances of a Distributed Query Engine and
the associated data storage nodes. Our contribution can attain network
gains in the average of 3 times and it is expected to scale as the number
of instances increase. In the scenario with 8 nodes, we were to able attain
bandwidth and time savings of 7.3 times and 2.61 times respectively.

1 Introduction

Nowadays, the scalability of database engines is paramount, specifically when
it is targeted at large scale analytical processing. Systems must be able to sup-
port several computing nodes, enabling component scalability to possibly reach
hundreds or thousands of nodes. However, reaching such scale introduces sev-
eral challenges associated with data and request distribution and balance. Cloud
computing infrastructures offer a nearly transparent environment where compu-
tation is available as virtually infinite computing nodes. However, commercial
relational database engines (RDBMS) do not conform to such paradigm, typi-
cally offering a monolithic structure. Legacy-type servers are usually considered
for running RDBMSs, limiting system scalability from the purchase moment or
until they become economically unacceptable.

Window Functions (WF) define a sub-set of analytical operations that enable
the formulation of analytical queries over a derived view of a given relation R.
They are also known as OLAP Analytical Functions and are part of the SQL:2003
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standard. All major database systems like Oracle [7], IBM DB2 [14], Microsoft
SQL Server [6], SAP Hana [21], Cloudera Impala [17] or Postgresql [20] have the
ability to execute a sub-set of the available WFs.

WF are widely used by analysts as they offer a highly configurable environ-
ment together with a straightforward syntax. In fact, SQL WF are used in at
least 10% of the queries in TPC-DS [22] benchmark, a benchmark suite aimed
to evaluate data warehouse systems. Despite their relevance, parallel implemen-
tations and optimizations considering this operator are almost non existing in
the literature. While [4,18,23] are notable exceptions, these works are targeted
at many-core CPU centralized architectures that are substantially different from
distributed architectures.

The nature of current centralized architectures do not typically take into
account data distribution. This eases their processing models, but prevents them
to scale beyond the limitations of the hardware that hosts them. The massively
parallel nature that distribution approaches enable requires, however, to care-
fully address data distribution. Having the right grasp on data placement allows
to improve data movement, but requires additional mechanisms to maximize
network efficiency.

In this paper we focus on WF, particularly exploring opportunities for their
distributed execution. We propose a technique that exploits similarity between
partitions as a metric that can be used to judiciously improve the affinity of
data and computing nodes, consequently minimizing the data movement between
computing nodes.

Contributions: First, we demonstrate that it is possible to improve data
forwarding by using partition similarity to chose the forwarding mechanism
between Distributed Query Engine (DQE) workers. Second we present an exper-
imental evaluation that confirms the merit of our approach. Roadmap: The
remainder of this paper is organized as follows: Sect. 2 introduces WF. Section 3
introduces Distributed WF, describing their query execution plans and cost mod-
els. Section 4 presents our similarity technique, improving affinity between data
and computing nodes. Section 5 evaluates our proposal. Section 6 presents related
work and Sect. 7 concludes our work.

2 Window Functions

WF started to be largely adopted by database vendors from the 2011 revision of
the SQL standard. These are powerful analytical operators that enable complex
calculations such as moving, cumulative or ranking aggregations to be computed
over data. WF are expressed in SQL semantics by the keyword OVER as shown
in Fig. 1. In the next Sections we will analyze each part of the query.

Fig. 1. Example of SQL query with WF.
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Like other analytical operators, WF are required to reflect several concepts,
namely: the processing order, the partitioning of results or the notion of the cur-
rent row being computed. These design constraints are clearly translated from
the syntax as seen in the previous example, and configure two main consider-
ations as foundation for the WF environment. Firstly, WF are computed after
most of the remaining clauses in the query (e.g., such as JOIN, WHERE, GROUP
BY or HAVING), but immediately before any required final ordering (e.g., ORDER
BY). Secondly, the analytical operator to be computed with the WF environment
will create an output attribute that reflects, but does not modify or filter the
input data present in the source relation. Therefore, the result-set will present
the same cardinality of rows as in the source relation, but will have an additional
attribute mapping the result.

2.1 Partitioning, Ordering and Framing

The WF environment can be decomposed into three stages, as depicted in Fig. 2,
defining the processing order: the partitioning (1), ordering (2) and framing
(3) stages. Each stage is defined by specific clauses namely: the PARTITION BY
and the ORDER BY that respectively create logical partitions of distinct data
elements and afterwards develop an intra-partition sorting. The logical partitions
are regulated by the mandatory argument of the PARTITION BY clause, defining
the column attribute or expression that controls the partitioning. The partition
clause resembles the behavior of the GROUP BY clause, but does not collapse all
group members into a single row.

Fig. 2. Stages of the Window operator: partitioning (1), ordering (2) and framing (3).

The intra-partition ordering follows the partitioning stage and is also regu-
lated by the mandatory column attribute or expression considered as argument
for the ORDER BY clause. The ordering stage is very important for a set of non-
cumulative analytical functions, that are the focus of our contribution, but also
as it is the costliest operation in the environment [4].

Finally, the framing stage builds on the provided ordering, taking into
account the current row being considered to introduce the concept of window or
frame. The frame is built from a group of adjacent rows surrounding the current
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row and changes as the current row moves towards the end of the partition.
The framing is set by either the ROWS BETWEEN or the RANGE BETWEEN clauses.
The former considers n rows before and after the current row, while the latter
restricts the window by creating a range of admissible values and, the current
row is considered if the stored values fit in the provided range1.

The WF environment allows to combine different clauses, enabling the inclu-
sion or exclusion of each clause type. For instance, it is possible to declare a WF
with just a partitioning or ordering clause. If no partitioning clause is declared,
the entire relation is considered as a single partition. If no ordering clause is
declared, then the natural ordering of the relations key, or partitioning clause
(if present) is considered. Moreover, each available analytical function may or
not change the computation logic. Due to space constraints we do not character-
ize all the possible configurations of the WF environment. The interested reader
should consult the 2003 and 2011 revisions of the ANSI SQL standard for further
information [1].

2.2 Cumulative and Ranking Analytical Functions

The analytical set of functions currently available in most Query Engines
(QE) can be classified into Cumulative or Ranking. Cumulative analytical
functions or aggregates, are a group of functions that are not order-bound.
That is, when they are computed within a WF, an ORDER BY clause is not
required. The sum(x), avg(x) or count() are just some examples of this cat-
egory of functions. Figure 3(a) depicts the result of computing a WF struc-
tured as “select analytical function() OVER (PARTITION BY A ORDER BY
D) FROM table”, but immediately before applying the requiring analytical func-
tion to a given relation. Figure 3(b) depicts the result of computing the previous
WF with the sum(D) function. The result of a cumulative function is the same
for all the members belonging in the same partition.

Fig. 3. WF query as: select analytical function() OVER (PARTITION BY A ORDER

BY D) FROM table. (a) WF where the partition by clause generated 1 partitions. (b)
Cumulative (sum) analytical function over WF in (a). (c) Ranking (rank) analytical
function over WF in (a)

1 Typically, the use of this clause is restricted to numeric types.
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Ranking analytical functions, on the other hand, are order-bound. That is,
the function requires the data to be ordered according to some criteria in order
to output a deterministic result, and thus, the ordering clause is always required.
The rank(), dense rank() or ntile() are just some examples of this category of
functions. Figure 3(c) outputs the result of computing the previous WF with the
rank() function, outputting a different result for each row in the partition.

The ordering requirement for the latter category of functions implies data
co-locality in order to minimize the number of sorting steps needed to achieve
intra-partition ordering [4]. In the remainder of this paper, we consider a WF
computing a ranking analytical function with a single partition and ordering
clause and no framing clause, since the rank function implicitly defines framing
constraints.

3 Distributed Window Functions

RDBMS are built from several components, namely the QE and the Query Opti-
mizer (QO). The former translates SQL syntax into a set of single operators. The
latter considers several statistical techniques to improve the query execution
plan of a query. In a nutshell, QEs split the execution of a query in two separate
stages: the query planning and the query execution. During the first stage, the
QE decides how the query is executed during the second stage, and which oper-
ators are used in such a query plan. This builds a complex multi-optimization
problem that has to be executed in polynomial time.

The QO uses hints about data in the form of statistical approximations,
allowing the query engine to optimize query execution based on the approxima-
tion cost of each individual operator in a given data set. When scaling from a
single QE to a DQE, data partitioning techniques are necessary in order to dis-
tribute data among instances. The number of available computing nodes config-
ures the installed Degree of Parallelism (DOP). However, non-cumulative ana-
lytical algorithms are order-bound, thus requiring that logical data partitions
are co-located (i.e., they should live in the same storage node). If elements of a
given logical partition are spread in a group of nodes it becomes impossible to
sort each logical partition in just one step. The sorting in each data partition
would induce a partial sorting that is not deterministic and that would prevent
inter-partition parallelism. The QOs therefore need to adapt their cost models
to reflect the data movement required in order to ensure co-locality of partitions
during execution time of the operator.

3.1 Distributed Query Engines

The DQE takes advantage of data distribution in order to scale query execu-
tion. The present architecture is provided by a Highly Scalable Transactional
PaaS [16]. Each node in the system is split in two layers, the DQE itself and
the storage layer, holding the data partitions to be manipulated by a given
DQE instance. Particularly, the considered DQE is based on the Apache derby
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Fig. 4. Distributed Query Plan for Ranking WF. Round boxes represent individual
stages of the WF environment. Arrows represent data flow in a process or over the
network. PB and OB respectively represent Partition By and Order By attributes. H
describes a statistical histogram. Numbers represent process execution order.

project [2] and the storage layer is provided by Apache HBase [11], working over
the Hadoop Distributed File Systems (HDFS) [13].

The DQE instances are able to accept client query requests through a JDBC
connection and generate the distributed query plan. This plan is then shared
with all participating DQE instances. The data distribution in each Storage
Node is typically accomplished by means of an Hash function, considering a
single or a collection of attributes as key. The distribution of keys lies within the
inner characteristics of the considered hash function, usually producing uniform
distributions that evenly place tuples across all available storage nodes. Poorly
chosen hash functions may result in data skew and should be tailored to each
specific workload providing adjusted table splitting [8].

Figure 4 presents the simplified distributed query plan for a ranking analyt-
ical function. The following stage numbers resemble the ones depicted in Fig. 4.
With data partitioned in several nodes, each one will scan (1) its local partition.
The partial results found in each node derive from the data partitioning required
to distributed data. Data movement is then required in order to ensure that each
logical partition created by the partitioning clause will reside in a single node for
computation. This is achieved by the shuffle mechanism (2). Afterwards, data
is sorted according to the partitioning and ordering clauses (3), and results are
submitted to the rank function (4). At this stage, each computing node holds
partial results from each logical partition. The results from each logical partition
are then reunited in a single location (5) before being delivered to the client (6).
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Ranking aggregation algorithms are dependent on having full disclosure of the
entire logical partitions. If the first shuffling stage (2) is not performed, the par-
tial results in each partition will produce incorrect results. That is, if members of
a logical partition are processed in the same node where they are stored (there-
fore in distinct DQE instances), the partial aggregation results produced will not
be able to sort the entire logical partition. Thus, when the partial results of log-
ical partitions are merged in the final result-set (6), they will need to be entirely
recomputed. By considering the first shuffle stage (2), the results produced by
stage (3) in each logical partition are globally correct since, independence from
logical partitions ensures inter-partition parallelism, allowing computation to be
distributed through several computing locations. The partition strategy consid-
ered depends on the mandatory argument of the partitioning clause. It is thus
impractical to adjust the table splitting of the workload to a specific partitioning
clause, since the ideal configuration may change with each query. Moreover, the
environment allows the use of expressions as the arguments of the inner clauses,
posing an extra hurdle to this abstraction.

3.2 Data Shuffling

Data movement during the execution of a WF query is required, ensuring that all
the elements of each logical partition are in the same location. In order to judi-
ciously forward data while minimizing at the same time the transfer cost, in [5]
we introduced a mechanism that works together with the data transfer mecha-
nism, a shuffler, promoting co-location of logical partitions. This is achieved by
considering an histogram, characterizing the universe of elements present in each
partition. Briefly, the histogram should hold the cardinality of each different ele-
ment in each different column qualifier. The histograms referring to each node
are then combined into a global histogram. The introduction of this mechanism
along with the shuffler, allowed to forward data to the specific node that should
process a given partition.

Consider Fig. 5 where a table similar to the table in Fig. 3(a) was split
in two partitions on the storage layer. This initial partitioning is defined
by hashing the value of the nodes ol w qualifier and performing the arith-
metic modulo between the hash result and the number of computing instances
(Hash(value in ol w) % #Nodes). Guided by the query in Fig. 1, the results
were then ordered according to the qualifier ol d (the partitioning clause). Both
nodes of the storage layer hold elements from the available three partitions in
ol d (p1, p2, p3). According to the previously introduced, ol d partitions (p2)
and (p3) in instance DQE w1 will be relocated to instance DQE w2 and, ol d
partition (p1) will be relocated from instance DQE w2 to instance DQE w1.

On the one hand, hash forwarding a single row at a time prevents batching
several rows in a single request. On the other hand, due to the asynchronous
nature of DQEs, latency is usually not the bottleneck and thus, data movement
can be delayed until network usage can be maximized [12]. This enables the
use of batching in order to improve network usage. A batch payload is formed
by grouping rows that need to be forwarded to a common destination and it is



10 F. Coelho et al.

Fig. 5. Shuffling instances partitioned by ol w. In WF context, they were partitioned
by ol d and Ordered by ol num. The DQE instances will use the network to combine
partitions during execution time. Instance w1 will hold partitions ol d = 1, instance
w2 will hold partitions ol d = 2 and ol d = 3, respectively.

regulated by a buffer within the shuffling mechanism, whose size and delivery
timeout are configurable. Nevertheless, the use of this mechanism can prove to be
a misfit in cases where workloads do not benefit from grouping data (i.e., logical
partitions with reduced number of rows). Therefore, not having to delay data
transmission reduces execution time. To understand up to what level a given
logical partition may or not benefit from batching, we considered a correlation
mechanism to guide such decision, identifying the logical partitions that are good
candidates for forwarding data in batch.

4 Similarity

QOs found in modern QEs use several statistical mechanisms to explore data
features in order to improve query execution performance. Without them, inde-
pendence assumptions between attributes are preserved, which commonly leads
to under or over provisioned query plans, which is particularly undesirable in
DQEs. As in real-world data, correlations between relation attributes are the
rule and not the exception, the array of correlation or other algebraic extraction
mechanisms in the literature is vast, namely [3,9,19]. Correlations can also be
used in DQEs to improve how data distribution is handled. When logical data
partitions need to be relocated in order to improve co-locality, the correlation
between qualifiers in different locations of the storage layer can be explored to
minimize the required data movement.

In this paper, we introduce a similarity measure to quantify to what level
the partitions of a given attribute held by different storage nodes are alike.
Data partitions with high similarity are good candidates to be shuffled within
a batch payload. This is so as a high similarity implies a high common number
of partitions. On the other hand, data partitions with low similarity are better
candidates to be immediately shuffled for their destination. This is so as they
share a low number of common partitions. This is efficiently achieved through
Algorithm 1. The similarity measure quantifies in a universe between 0 (not
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Algorithm 1. Similarity Aware Shuffling Mechanism
1: P (r) =< r0, r1, r2, rn >← partition
2: ri ← current row
3: pbk ← partition by key
4: w id ← worker id
5: H ← histogram
6: t ← similarity threshold
7: procedure Similarity(attr A, attr B)

8: Sim ← unique(attr A∩attr B)
unique(attr A∪attr B)

9: procedure BatchShuffling(P (r), dest)
10: send P (r) to dest

11: procedure HashShuffling(ri, dest)
12: send ri to dest

13: function Shuffler
14: dest ← H(ri.pbk)
15: if w id �= dest then
16: Sim ← similarity(w id pbk,dest pbk)
17: if Sim > t then
18: BatchShuffling(P (r), dest)
19: else
20: HashShuffling(ri, dest)

similar) and 1 (similar) how similar two attributes are, by considering the number
of unique values in each attribute to compute the metric. The data required to
compute this metric is already provided by the histogram introduced in previous
work [5], bypassing the need to collect additional statistical data. This structure
is characterized by a small memory footprint (few KB) and the update period
dictated by the DQE administrator. This algorithm will be considered during
the first shuffling stage (stage (2) of Fig. 5). It will consider each logical partition
(P (r)), the previously introduced Histogram (H) and a configurable similarity
threshold. Three auxiliary procedures are considered. The SIMILARITY procedure
computes the similarity measure from the set of unique values in the qualifiers
considered as arguments. The BATCHSHUFFLING procedure marshals all the rows
of partition P (r) and sends it to the destination worker dest. The HASHSHUFFLING
procedure marshals a single row ri and sends it to destination dest.

When the shuffler action is required, it consults the Histogram H to verify
what is the optimal destination (DQE instance) from row ri. When the des-
tination is a remote instance (line 15), the shuffling mechanism computes the
similarity measure between the local (attrA) and destination (attrB) qualifiers
(line 16). The partition P (r) is marshaled to the appointed destination when
the observed similarity is above threshold t (line 18) (BATCHSHUFFLING), or each
row ri is otherwise sent to destination (line 20) (HASHSHUFFLING). The parame-
ter t sets a threshold above which rows are forwarded in batch to the destination
instance. This parameter defaults to 0.5 meaning that if not modified, rows are
batch forwarded if the origin contains at least half the number of unique partition
values of the destination.
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5 Evaluation

We validated that by batch shuffling tuples between DQE instances we would
save bandwidth, improving execution time of the shuffling stage. We considered
a synthetic data set and shuffled rows between distinct DQE instances. The data
set used was extracted from the TPC-DS [22], a benchmark suite tailored for
data analytics. We extracted a single relation (web sales) which is composed
of 35 distinct attributes, configuring TPC-DS with a scale factor of 50 GB. This
resulted in a relation with 9.4 GB corresponding to 36 million rows.

The outcome of the mechanism we propose is directly related with the data
distribution considered. In order to bound the outcome of our contribution in
terms of the lower and upper performance bounds, we statistically analyzed the
considered relation. The lower bound is set by not using the similarity mecha-
nism. The upper bound is set by considering the relation attributes that would
favor data distribution. This was achieved by identifying the placement key
attribute, but also a candidate attribute to be the partitioning clause or shuf-
fling key (PBK) of the WF. The placement key attribute will define the data
distribution in each DQE Storage Node through the use of an Hash function,
and the PBK will define the runtime partitioning within the WF environment.

The results are depicted in Fig. 6. The top plot presents the number of par-
titions in each single attribute in the considered relation. That is, the number
of unique values in each attribute. The bottom plot depicts the average cardi-
nality of each partition. That is, the average number of elements in each group
of unique values in each attribute. The ideal candidate attribute to become the
relation placement key is the attribute that displays the highest partition num-
ber and at the same time holds the smallest cardinality, ensuring an even data
distribution and reduced data skew. Observing both plots leads us to consider
attribute with index 17 (ws order number), displaying the highest number of

Fig. 6. Number of partitions per attribute (top) and the average number of elements
per partition/attribute (bottom). The horizontal axis represents the attribute index.
The vertical axis quantifies each measure in logarithmic scale. The attribute considered
for placement key (PK) is shown in black and the candidates for WF Partition By key
(PBK) are shown in dark gray.
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Fig. 7. Similarity between attributes in two data nodes. Horizontal axis represents the
attribute index. Vertical axis represents the Similarity measure in logarithmic scale.

partitions, each one with a single element. On the other hand, the candidate
attributes to be selected as WF PBK are the attributes that would hold at the
same time a high number of partitions and high partition cardinality. These are
good PBK candidates since they will induce a number of logical partitions that
is above the configured DOP. The observation of the plots leads to identify as
candidates the attribute indexes depicted in dark gray, from which we select
attribute 0 (ws sold date sk) as PBK.

After the election for the PK and PBK keys, we conducted a second experi-
ment to verify the computed similarity measure. Figure 7 depicts the results of
applying the metric in two scenarios. In both cases, we consider our scenario to
be built from several DQE instances and corresponding Storage Nodes. On all
experiments, we considered only the communication layer of the DQE where our
contribution is, thus avoiding the SQL parsing and optimization stages. Each
data partition was computed by applying an Hash function with the elected PK
dividing the data into as many partitions as configured DQE instances. We first
considered the configuration with 2 instances A and B. In the experiment in the
top plot we computed the similarity measure between the PBK of location A and
each distinct attribute in location B. It is possible to observe that attribute 0 in
location B presents the highest similarity, followed by attribute two. These are
also the only attributes that are above the set up threshold of 0.5 denoted by
the horizontal line. The remaining attributes have a residual similarity measure.
The bottom plot depicts a different configuration where attribute 15 was ran-
domly chosen among all non candidate attributes. The similarity measure in this
attribute is lower than our threshold, even though it seems to be equal given
the logarithmic scale required to observe the remainder attributes. Therefore,
the results achieved during the first configuration would induce the shuffler to
use batching mechanisms to forward partitions among DQE instances, instead
of hash forwarding. The latter would culminate in sending a single row at a time.

In order to verify the impact of our contribution regarding network usage, we
conducted an experiment to assess the magnitude of the network savings pro-
moted. Namely, we considered configurations with 2, 4 and 8 DQE and Storage
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instances. The computing nodes were only set up with the communication layer
responsible for the shuffling in the WF environment. Each node is comprised of
commodity hardware, with an Intel i3-2100-3.1 GHz 64 bit CPU with 2 physi-
cal cores (4 virtual), 8 GB of RAM memory and one SATA II (3.0 Gbit/s) hard
drive, running Ubuntu 12.04 LTS as the operating system and interconnected by
a switched Gigabit Ethernet network. During execution, each computing node
acts as a DQE instance shuffler, forwarding data to the remainder instances.
In a distributed deployment, the DQE instance will be co-located with other
services (e.g., storage node) which will typically restrict the available memory
to the DQE instance.

We evaluated two configurations where the first represents a baseline compar-
ison, forwarding all data by hash shuffling, and a second where data is forwarded
according to our similarity mechanism.

Fig. 8. Bandwidth (outbound) registered during shuffling between instances.

The results depicted in Fig. 8 are twofold. The similarity measure registered
both a decrease in bandwidth and it also promoted a shorter execution period
for the shuffling technique. This is the result of pairing the batch shuffling mech-
anism together with the proposed similarity measure. The savings induced come
at a residual cost, since the statistical information is not collected for the single
purpose of this improvement, nor it has to be updated in each query execution.
The similarity measure technique only proved effective from the configuration
with 4 instances onward, since it is only from that configuration that both band-
width and execution time are lower than the baseline. For the configuration with
only two nodes, the baseline technique proved to be better by both shortening
the shuffling time and registered bandwidth. However, in the configurations with
4 and 8 nodes, the similarity measure was able to reduce the bandwidth and
execution time when compared with the baseline approach. As the number of
partitions in the system increase, each single partition becomes responsible for
a shorter set of data, promoting bandwidth savings up to 7.30 times for the 8
node configuration.

The previous experiment evaluated the shuffling mechanism by considering
an attribute with ideal similarity measure and partitioning on the storage layer.
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Table 1. Total Bandwidth (sent) and execution time registered for each configuration.

2 nodes 4 nodes 8 nodes

Baseline (MB) 1,132.45 4,172.59 7,237.56

Similarity (MB) 2,365.34 1,695.24 991.72

Bandwidth Gain (x) −0.48 2.46 7.30

Shuffle time

Baseline (sec) 149 172 170

Similarity (sec) 226 114 65

Speed up (x) −0.48 1.55 2.61

In order to demonstrate the impact of selecting an attribute that do not favor
an uniform distribution of data among data partitions, we conducted a second
experiment that considered an attribute with poor partitioning properties (i.e.,
reduced number of partitions). The results consider the same component config-
uration, but selected attribute 15 (ws warehouse sk) for the partitioning. When
selecting an attribute that lacks the desirable distribution, the logical partitions
will present an imbalance, thus promoting a low similarity measure. Therefore,
the shuffling mechanism will not be able to maximize network usage and will
end up having to consider the HASHSHUFFLING mechanism to forward data. The
results are not thoroughly presented due to space constraints. However, we point
out that they are in line with the considered baseline results presented in Table 1,
registering a bandwidth variance of ±4%. Moreover, even though we do not con-
sider it, the use of compression techniques may further increase the observed
savings.

6 Related Work

Window Functions were introduced in the 2003 SQL standard. Despite its rele-
vance, parallel implementations and optimizations considering this operator are
almost non existing. Works such as [4] or [23] fit in the first category, respectively
tackling optimization challenges related with having multiple window functions
in the same query, and showing that it is possible to use them as a way to avoid
sub-queries and lowering quadratic complexity. However, such approaches do
not offer parallel implementations of this operator. A vast array of correlation
mechanisms have been so far deeply studied in the literature. Nonetheless, most
of the conducted studies focus on efficient ways to discover and exploit soft and
hard correlations [15], allowing to find different types of functional dependen-
cies. Works like [18] introduced mechanisms to improve the performance of the
WF environment when many-core architectures are used. Distinct approaches
and algorithm improvements are introduced, enabling to parallelize the distinct
stages of the operator.

When addressing WFs, a common misconception generally brings a compar-
ison between SQL WF (in which our contribution focuses) and CEP windowing.
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Differences are both semantical and syntactical. On the one hand, the CEP
environment is characterized by an incoming and infinite stream of events. From
there, a configurable, but constant sample (e.g., window) builds a sketch [10]
where aggregations are derived. On the other hand, SQL WF are computed over
finite sets built from SQL relations. While the former windows are fixed and the
data moves through, in the latter, the data is fixed and the window performs
the movement. Moreover each approach considers distinct SQL keywords (e.g.,
OVER, RETAIN) and subsequent syntax.

7 Conclusion

WF with ranking analytical functions are required to have full disclosure of a
given logical partition. Data partitioning is required to enable systems to scale,
but harms data locality, which poses added difficulties when trying to parallelize
these functions.

In this paper we motivate and validate how similarity between partitions can
be used to promote efficient data forwarding among instances of a DQE. We
introduced an algorithm to choose whether to batch or to hash forward rows
between such instances by understanding how the similarity measure between
distinct partitions of a DQE can be used towards the effectiveness of the WF
environment.

The WF environment changes how analytical functions are computed, requir-
ing specific implementation details for each functions. We therefore plan to lever-
age such parallelization opportunities to other analytical functions.
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