Chapter 2
Introduction to Fuzzy Systems

Robert Czabanski, Michal Jezewski and Jacek Leski

Abstract The following chapter describes the basic concepts of fuzzy systems and
approximate reasoning. The study focuses mainly on fuzzy models based on Zadeh’s
compositional rule of inference. The presentation begins with an introduction of fun-
damental ideas of fuzzy conditional (if-then) rules. A collection of fuzzy if-then rules
formulates the so-called knowledge base, which formally represents the knowledge to
be processed during approximate reasoning. The subsequent sections present formal
definitions related to the compositional rule of inference and approximate reasoning
using a knowledge base. Theoretical considerations are supplemented with practical
examples of fuzzy systems as the foundation of many modern structures. The descrip-
tion includes fuzzy systems proposed by Mamdani and Assilan, Takagi, Sugeno and
Kang, and Tsukamoto.

2.1 Introduction

The main inspiration behind the introduction of fuzzy sets theory was the necessity
for modeling real-world phenomena, which are inherently vague and ambiguous.
Human knowledge about complex problems can be successfully represented using
the imprecise terms of natural language. The theories of fuzzy sets and fuzzy logic
provide formal tools for mathematical representation and efficient processing of such
information.

The term “system” is usually understood as a set of interacting components with
well-defined structure and organized as an intricate whole that can be distinguished
from the “external” environment. A system communicates with the environment
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through so-called inputs and outputs. Fuzzy systems are structures based on fuzzy
techniques oriented towards information processing, where the usage of classical
sets theory and binary logic is impossible or difficult. In the literature, terms such as
fuzzy system, fuzzy model, system based on fuzzy rules, fuzzy controller, or fuzzy
associative memory are used interchangeably depending on the application type [16].
Their main characteristic involves symbolic knowledge representation in a form of
fuzzy conditional (if-then) rules.

The typical structure of a fuzzy system (Fig. 2.1) consists of four functional blocks:
the fuzzifier, the fuzzy inference engine, the knowledge base, and the defuzzifier. Both
linguistic values (defined by fuzzy sets) and crisp (numerical) data can be used as
inputs for a fuzzy system. If crisp data are applied, then the inference process is pre-
ceded by fuzzification, which assigns the appropriate fuzzy set to the nonfuzzy input.
The values of input variables are mapped into linguistic values of the output variable
by means of the appropriate method of approximate reasoning (inference engine)
using expert knowledge, which is represented as a collection of fuzzy conditional
rules (knowledge base). In addition to the linguistic values, the numerical data may
be required as the fuzzy system output. In such cases defuzzification methods are
used, which assign the representative crisp data to the resultant output fuzzy set.

Practical applications of fuzzy systems include problems for which the complete
mathematical description is unavailable, or where the usage of the precise (non-
fuzzy) model is uneconomical or highly inconvenient. The ability to process inac-
curate information makes a fuzzy system an excellent tool, for example, for control
processes [12, 19], system identification [11, 20], decision support [24, 33], and
signal and image processing [4, 23].

In the following sections only static fuzzy systems (i.e., systems where the outputs
are determined only on the basis of the current input values) are considered. Included
are concepts of knowledge representation in the form of fuzzy conditional rules,
the idea of approximate reasoning, and the description of basic structures of fuzzy
systems.
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2.2 Fuzzy Conditional Rules

One of the fundamental concepts of fuzzy sets theory is a linguistic variable [34]. Its
values are the statements of natural language (terms), which are the labels (descrip-
tions) of fuzzy sets defined on a given universe (space) of discourse. Formally, a
linguistic variable is defined as a quintuple [35]:

X=,206),XG,S), (2.1

where 4" is a name of the linguistic variable, . (G) denotes the family of values
of the linguistic variable being a collection of labels of the fuzzy sets defined on the
universe X, G is the set of syntactic rules defined by a grammar determining all terms
in .Z(G), and S represents the semantics of the variable X, that defines the meaning
of all labels.

As an example we can use a linguistic variable describing the fetal heart rate
(FHR). The name of the variable can be defined as .4 = “mean FHR”. According
to FIGO guidelines [21], the set of possible linguistic values is a collection of three
labels describing the fetal state as: . = {“normal,” “suspicious,” “pathological”}.
To each of the labels we can assign a fuzzy set A; :i =1,2,...,5, defined on
X = [0, 250] bpm, which represents the range of possible number of heart beats per
min [3]. The examples of membership functions w4, (x) of the fuzzy sets A; are
shown in Fig.2.2.

An elementary statement for the linguistic variable X is the fuzzy expression:

Xis Ly, (2.2)

where L, is a label from the collection Z(G), defined by a fuzzy set A on the
universe X. The logical value of the expression is determined on the basis of mem-
bership function 4 (x) of the fuzzy set A. In the preceding example, an elementary
statement is:

Halx)
Pathological Suspicious Mormal Suspicious Pathological
1.0 A, A Ay Al A
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Fig. 2.2 Examples of membership functions of fuzzy sets defining the values of the linguistic
variable X = “mean FHR”
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“mean FHR” is “normal”,

which value for the measurement 110 bpm is equal to 4, (x) = 0.5 (see Fig.2.2).
A more complex fuzzy expression can be obtained by combining two or more
elementary expressions. It can be presented in the conjunctive:

(X] is LAl)and (XziS LAZ)’ (23)

or the disjunctive form:
(X11is Ly, or (Xpis Ly,), 2.4)

where X, X are linguistic variables with labels L 4,, L 4, defined by the fuzzy sets
A; and A, respectively, on the universes X; and Xj.

The value of a complex fuzzy expression for x; € X, and x; € X is determined
on the basis of the membership functions of fuzzy sets A; and A, [16]:

ma, (X1) *1 a, (x2), (2.5)

for the conjunctive form, and

A, (X1) *s pa, (x2), (2.6)

for the disjunctive form, where x denotes a 7-norm, and xg an s-norm.
An elementary fuzzy statement can also be expressed in the form of an implication
forming a fuzzy if-then rule (fuzzy conditional statement):

if (XisL,), then (YisLp), 2.7

defining a relationship between linguistic variables. The statement “X is L,” is
called the antecedent (premise), and the statement “Y is L " is called the consequent
(conclusion).

A generalized form of the fuzzy conditional statement can be defined as an impli-
cation of complex fuzzy expressions. For the conjunctive form it can be written
as:

if (XyisLs,) and (X,isLy,) and --- and (XyisLy,), (2.8)
then (Yyis L), (Y2isLp,)...., (Yuis Lg,),

and for the disjunctive form as:

if (X] iSLAl) or (X2 is LAZ) or --- or (XN is LAN)’ (29)
then (Y is Lg,), (Y2is Lg,). ..., (Ymis Lp,),
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where X, X», ..., Xy are the input linguistic variables; Y, Y>, ..., Y are the out-
put linguistic variables; L4,, La,, ..., La,,and Lp,, Lp,, ..., Lp,, are theirlinguis-
tic values, defined with fuzzy sets A, A,, ..., Ay and By, B,, ..., By, onuniverses

X1, Xo, ..., Xy, and Y1, Y, ..., Yy, respectively.

Both implications are the fuzzy if-then rules with multiple inputs and multiple
outputs (MIMO). The MIMO fuzzy rule can be decomposed into the corresponding
set of canonical fuzzy if-then rules [16], which are the MISO (multiple inputs and
single output) type of fuzzy conditional statements with conjunctive antecedent:

N
if an? (X,isL,,), thenY is L. (2.10)

Canonical fuzzy conditional statements are the basics for representing expert
knowledge in a fuzzy system. Using pseudo-vector notation, the canonical fuzzy
if-then rule can be written as

if XisL,), then(YisLpg), (2.11)
which is an N + 1-nary fuzzy relation [4]:
R=((A;xAy x---xAy) = B) = (A= B), (2.12)
defined on X; x X, x --- x Xy x Y, with the membership function:

pr (X5 Xy, y) = @ (ua (X), g (), (2.13)

where x = [x1, ..., xn]T € Xy x X5 x -+ x Xy, y € Y, and depending on the
interpretation of the fuzzy if-then rule, @ (-, -) denotes a t-norm (a conjunctive inter-
pretation) [8, 16] or fuzzy implication (logical interpretation) [8, 9, 16].

If the conjunction “and” in the antecedents of the fuzzy if-then rules is represented
by a t-norm T, then:

A (X) = g, (1) *7 pa, (X2) *7 -« %7 flay, (XN), (2.14)

where Ay, Ay, ..., Ay are fuzzy sets representing the values of linguistic variables
in the antecedent of the canonical fuzzy rule.
Hence, for the conjunctive interpretation we get:

MR (X, Y) = up (X1, ..., XN, Y) = pa (X) *7, g (y) =
A, (X1) *7 [ha, (X2) *7 <+ - *7 ay (Xn) *1, LB (¥) (2.15)

where 7, is a f-norm representing the fuzzy if-then rule, whereas for logical inter-
pretation:
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MR (X, y) = pur (X1, ..., xn,Y) =¥ (ua (X), up () =
W (wa, (X1) *7 pa, (X2) *7 .. %7 pay (Xn) , s (), (2.16)

where ¥ (-, -) denotes a fuzzy implication.

Fuzzy implication is usually introduced using an axiomatic approach [9], where
it is defined as a continuous function ¥ : [0, 1] x [0, 1] — [0, 1], which for each
a, b, c € [0, 1] fulfills five necessary (general) conditions:

Pl: ifa <c,then¥ (a,b) > V¥ (c, b),
P2: ifb <c,then¥ (a,b) <V (a,c),
P3: v (0,b) =1,
P4 W(a, 1) =1,
P5. v (1,0) =0,

and eight recommended (specific) conditions [4]. Properties P3, P4, and P5 are
called falsity, neutrality, and Booleanity, respectively [4, 22]. As examples we can
use Lukasiewicz:

¥ (a,b)=min(l —a+>b,1), (2.17)

Reichenbach:
¥Y(a,b)=1—a+ab, (2.18)

and Zadeh fuzzy implication:

¥ (a,b) = max (1 — a, min (a, b)) . (2.19)

A single fuzzy rule describes a local relationship between the input and output
variables of the fuzzy system within the limits defined by the domain of fuzzy sets
in the rule antecedent. The complete input—output mapping is represented by the
whole collection of fuzzy if-then rules from the knowledge (rule) base. For further
considerations we assume a base consisting of / rules in the form:

N . !
_ [if and (X is L;’:), then Y is LQQ] . (2.20)

i=1

7 ={rR"},

A well-defined fuzzy rule base should be complete, consistent, and continuous
[31]. The completeness means that for each value from the input space at least one
rule is activated, that is 3;—1 2.1 pao(X) # 0. The knowledge base is consistent
if there are no rules with the same antecedent but different consequents. And finally,
the knowledge base is continuous if there are no neighboring rules, for which the
result of intersection of fuzzy sets in their consequents is an empty set.

The knowledge base is constructed first by acquiring knowledge about the mod-
eled phenomenon, and next by representing it in a form of fuzzy conditional rules.
In practice, there are three basic methods to create a fuzzy rule base [16]:
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e by using knowledge of a human expert or based on the physical laws describing
the phenomenon (white box modeling),

e by automatically extracting the rules based on numerical data representing the
relationship between inputs and outputs of the phenomenon (black box modeling),

e mixed, where part of the knowledge is derived from a human expert and part from
automated extraction (grey box modeling).

The possible applications of a fuzzy system depend, however, not only on the
properly defined knowledge base, but also on the appropriate design of an inference
engine.

2.3 Approximate Reasoning

Inference methods originating from classical logic are based on so-called rules of
inference. A rule of inference is a pattern of reasoning that explains how a conclusion
may be logically derived from a given premise previously assumed to be true. One of
the most commonly used rules of inference is the rule of detachment, often referred
to as modus ponendo ponens (“the way that affirms by affirming”). Modus ponendo
ponens (MPP) is based on two premises. The first is the conditional statement p —>
q, namely that “p implies g”. The second assumes that the antecedent p of the
conditional statement is true. From these two premises it can be concluded that the
consequent g is true. The MPP rule can be written as [4]:

Premise I (fact): p
Premise II (rule): p = ¢
Conclusion: q

or symbolically:
(PA(p=q) =q. (221

Binary logic assumes only two possibilities: total compliance or total noncompli-
ance of the fact with the implication antecedent. In contrast, fuzzy inference engines
use an approximate reasoning based on the generalized rules of inference. The gen-
eralized modus ponendo ponens (GMPP) may be written as [34]:

Premise I (fact): p’
Premise II (rule): p = ¢
Conclusion: q
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or:

[P A(p= 9] =4, (2.22)

where statements p’ and ¢’ are similar, respectively, to p and g.

A conditional fuzzy rule can be defined as a fuzzy relation, and hence, the state-
ments in antecedents and consequents as fuzzy sets. The statement X is L 4 is a fact,
where L4 denotes the label of a linguistic variable X defined by a fuzzy set A’ on
the universe X. The knowledge is represented by the fuzzy conditional rule “if X is
L4, then Y is Lp,” where L4 and L g are the linguistic values of linguistic variables
X and Y, defined by fuzzy sets A and B, on the universes X and Y, respectively.
Consequently, the inference scheme of GMPP takes the form:

Premise I (fact): X is L4
Premise II (rule): if X is L4, then Y is Lp
Conclusion: YisLp

or:
[(XisLy)A (XisLy=>YisLg)]=>YisLy. (2.23)

The fuzzy set B’ is determined using Zadeh’s compositional rule of inference [34].

2.3.1 Compositional Rule of Inference

The compositional rule of inference (CRI), also known as supremum-star composi-
tion [34], is a generalization of an operation for determining the function value. The
first stage of CRI is to construct a cylindrical extension of a fuzzy set A’ (x) from
the universe X to X x Y:

\4 ecan (X, = Uy . 2.24
oy sty Meean (X, y) = pa (x) (2.24)

Secondly, an intersection (logical product) of cylindrical extension Ce (A’) and fuzzy
relation R is constructed using -norm 7':

Y MCe(A)NR (-x9 )’) = MCe(A) (-xs y) *T R (X, y) (2 25)
CNERAT = g (x) *7 R (X, ) '
The final CRI outcome is a result of the Ce (A’) N R projection on Y:
Voo e (y) = suplua (x) *xr g (x, y)]. (2.26)

yeY xeX
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The fuzzy set B’ can also be presented as a composition of a fuzzy set A’, which is
an unary fuzzy relation, with conditional fuzzy rule R being a binary fuzzy relation:

B = A'oR, (2.27)

where o is the operator of the supremum-¢-norm composition.
The GMPP for the ith canonical fuzzy if-then rule (2.20) can be written as [16]:

B — A 6RD = Ao (Am — B(")), (2.28)

where A’ = A} x A} x --- x Al is a multidimensional fuzzy set that defines the
value of the multidimensional input linguistic variable on the space X = X; x X, x
o Xy

The membership function of the conclusion B'?) is calculated as follows.

wpo (¥) = sup [pa (X) *7, pwgo (X, y)] =
xeX

sup [pear (x1) *7 pay (x2) *7 -+ %7 gy, (Xn) *1, g (x1, ..., xn, )], (2.29)

xeX

where 7 is a t-norm of the supremum-#-norm composition. In the case of the con-
junctive interpretation (2.15) we can write:

ppo (v) = sup [puar (X) *7, piao (X) *7, o (¥)] =

xeX

sup [ (1, (x1) %7 pay (x2) %7+ %7 pay, (X)) *7,
xeX

(g (01 g G2 wr oo wr iy (o)) 1, g 0] (230)
And for logical interpretation (2.16) we get:

ppo (y) = sup [pua () *7, ¥ (uao (X), o ()] =

xeX

sup [ (1, (x1) %7 pay (x2) %7 -+ %7 fay, (X)) *7,
xeX

9 (g ) 47 sy () 47+ ar g o) oo )] 23D

Under certain conditions [5], logical and conjunctive interpretation of fuzzy con-
ditional rules leads to equivalent inference results.

Equations (2.30) and (2.31) define the membership function of a fuzzy set repre-
senting the resulting conclusion of an inference using only one fuzzy if-then rule. For
a knowledge base consisting of many fuzzy conditional statements it is necessary to
combine conclusions from all individual rules.
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2.3.2 Approximate Reasoning with Knowledge Base

Generally, there are two methods of approximate reasoning that can be applied to
determine the outcome fuzzy set B’ on the basis of a collection of fuzzy if-then
rules [4]:

e composition-based inference (first aggregate then infer: FATT), where first a com-
bination of all rules from the knowledge base is constructed, and then inference
using the supremum-star composition is conducted,

e individual rule-based inference (first infer then aggregate: FITA), in which the first
step involves inference using the supremum-star composition for each of the rules
individually and then, a combination of inference results is performed.

The FATI process of combining the rules, as well as the stage in the FITA schema
of determining the resulting conclusion, is called aggregation [10]. The aggregation
can be defined by introduction of the concept of the aggregation operator [16], which
for I values xy, x», ..., x; € [0, 1] represents a mapping & : [0, 1Y =0, 11:

1
x:@xiz@(xl,xz,...,xl). (2.32)
i=1

There are various definitions of aggregation operator including logical sum, rep-
resented by an s-norm (Mamdani combination [19]), logical product, represented by
a r-norm (Godel combination [16]), as well as nonmonotonic fuzzy operations that
allow conducting the inference even if part of the knowledge is missing [32]. Most
of them can be defined as special cases of the generalized average operator [4]:

1 1 1 i
W) (xl,...,xn:Lﬂwxi:[;Z(xi)“ : (233)

i=1 i=1

fora € R\ {0}.
Consequently, the first stage of the FATI method can be defined as:

1
%2 =P R, (2.34)
i=1

where R®) is the ith fuzzy relation.
Next, the outcome fuzzy set B} ., is determined for an input fuzzy set A’ using
the GMPP:

1
Bpyr =N oZ=Ao [@ R(")j| , (2.35)
i=1
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the membership function of which is defined as

M B () = Sup [MA' (x) *1, Lz (x, y)]

XeE

= sup {MA’ (X) *, |:@ KUro (X, y):| ] (2.36)

xeX i=1

In the case of the FITA method, first the conclusion of each fuzzy if-then rule is
determined:

i:l\zf . B'D =A"o RV, (2.37)

the membership function of which is written as:

wpo (y) = su};g [MA' (X) *7, go (X, y)] . (2.38)
xeX

During the next stage, these partial results of the inference are aggregated forming

the outcome fuzzy set:
1

By QB o R"), (2.39)

defined by the membership function:

I
we,,. ()= @ sup [par (X) *7, pro (%, )] (2.40)
i=1 XX

It can be proven [7], that the results of the FATI method are a subset of those
obtained using the FITA procedure:

B;’ATI < B;'"ITA’ (241)

that is:
O =pg . (2.42)

yeY I-AII FITA

Usually, for simplicity of calculations, the B} ,,, is used instead of B}, ,, under
the assumption that the difference is insignificant [4].
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2.3.3 Fuzzification and Defuzzification

In many applications inputs of the fuzzy systems are defined as crisp numerical
data. However, approximate reasoning requires inputs to be represented as fuzzy
sets. The process of mapping real values Xo = [xo1, X02, - - - » xon]" € X c R¥ toan
N-dimensional fuzzy set A’ defined on X is called fuzzification. The fuzzification
can be symbolically expressed as a transformation of N-dimensional space into a
multitude of fuzzy sets [16]:

X=7X. (2.43)

Using membership functions we can write:
X={ua ®| xeX, ua (x) €[0,1]}. (2.44)

Among many definitions of a fuzzification operator, the singleton fuzzifier can be
distinguished:

1, x=x,
(X)) = bxx, = 2.45
Har (X) X0 {0, X £ %, (2.45)

for which both methods of approximate reasoning (FATI and FITA) provide equiv-
alent inference results [5].

The result of approximate reasoning is a fuzzy set B’ (y), which can be associated
with a specific linguistic label. However, there are applications that require a crisp
numerical inference outcome. The process of calculating a representative numerical
output yp € Y from the outcome fuzzy set B’ (y) on Y is called defuzzification.
Defuzzification is a mapping of a multitude of fuzzy sets defined on the space Y to
a single numerical value from Y [16]:

Z(Y) =Y. (2.46)
Using membership functions we get:

{upg Ml yeY,up(y)el0,1]} = Y. (2.47)

Due to the different criteria for determining which element y, of the fuzzy set
B’ (y) should be regarded as the most representative one, there are many definitions
of the defuzzification procedure [6, 14, 31]. One of the most popular is a center of
gravity method (COG), which specifies the result as a center of the area under the
membership function pp (y):

[yus () dy
Y

D 2.48
[ s (y)dy (2:48)
Y

Yo
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2.4 Basic Types of Fuzzy Systems

Due to a wide range of possible applications there are many different types of fuzzy
systems that have been proposed in the literature thus far [4, 16, 22, 23, 31]. But new
solutions characterized by decreased computation complexity, improved modeling
quality, or greater ease of the linguistic interpretation of the inference results are still
the topic of research. The model proposed by E.H. Mamdani and S. Assilan [19]
is generally regarded as the first fuzzy system presented in the literature. Currently,
it can be considered as the foundation of the fuzzy models family based on if-then
rules with fuzzy sets in antecedents as well as consequents.

2.4.1 Mamdani-Assilan Fuzzy Model

The Mamdani—Assilan fuzzy system (MAFS) uses a set of conditional fuzzy rules
in the canonical form (2.20), which can be determined by a human expert. The
MAFS is based on the conjunctive interpretation of fuzzy rules, where the conjunctive
“and” of a rule antecedent is defined with the #-norm minimum (A). The inference
results from individual rules are aggregated by applying the s-norm maximum (V).
The numerical inputs Xg = [x¢1, X02, - - - s X0 v]T are mapped into fuzzy sets with the
singleton fuzzifier, and the numerical outcome is calculated using the COG method.
The approximate reasoning schema is realized on the basis of Eq. (2.40), which takes
the form:

1
wp () =\/ [nan (x0) A ppo (], (2.49)

i=1
where
Ha (Xo) = g0 (Xo1) A Hyo (Xo2) A== A g (Xon) - (2.50)

The above equation defines the so-called firing strength of the ith rule, denoted as
F® (x0). Hence, the formula (2.49) can also be written as

1
up () =\ [F? x0) A ppo (3)]. (2.51)
i=1

Using the COG defuzzification we get:

[yup () dy
Y

I 2.52
Y0 [ s (y)dy (2:32)
Y
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4 J"f{? M) K Aﬁ) | p,a-';.(le o 39’3 Hely)
min
X: Xo2 ;1 };
£4(x) () 4 i(y)
4 A:L.o_ | Ha(Xs) o 10| e 1{’0 Hg(y)
,min
X, %3 Y
max
La(y)
1.0 |
e dy)
Yo 7

Fig. 2.3 Example of fuzzy inference using the Mamdani—Assilan fuzzy system with two inputs

and the knowledge base consisting of two conditional fuzzy rules

Figure 2.3 shows an example of fuzzy inference using MAFS with two inputs and

the knowledge base consisting of two conditional fuzzy rules.

The defuzzification requires high computational complexity, however, some sim-
plifications can be applied. Using the algebraic product f-norm and the arithmetic
mean as the aggregation operator we obtain a Larsen fuzzy system, which is defined

as [16]:

l—
() = 7 DL F (%0) s (7).
i=1

By substitution of (2.53) into (2.52) we get:

M

Il
—_

FO (x0) [y wpo (y)dy
Y

L

Yo =

M~

j=1

~
Il

FO (x0) [ po (y)dy
Y

(2.53)

(2.54)
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Denoting the area under a membership function of the fuzzy set B® (y) as

o (go (¥)) z/ugm ) dy, (2.55)
Y

and its center of gravity as y, we can write:
I

> FO (%) o (o ()
yO = i=1 . (2'56)

1
Zl FO (x0) & (npo (¥))
iz

The above solution requires only a single calculation of the areas under the mem-
bership functions and centers of gravity locations for all fuzzy rules. By assuming
additionally that &7 (g (y)) are the same for all / consequents, we get the Sugeno—
Yasukawa fuzzy model [26].

Approximate reasoning without the defuzzification necessity was presented in
papers by Takagi and Sugeno [27] and Sugeno and Kang [25]. The proposed model,
called the Takagi—Sugeno—Kang fuzzy system (TSKFS), is described in the following
subsection.

2.4.2 Takagi-Sugeno—Kang Fuzzy System

The knowledge base of the TSKFS consists of conditional fuzzy rules with the
consequents in the form of classical functions, the arguments of which are the input
numerical data:

v i
#={RV}_ = {if A (xo,, is Lﬁ;'j) ,then y = y (xo)} , (2.57)
n=I1 i=1
where x,, is an input singleton, Xo = [xo1, X2, - - . » Xon] ', and y@ (x) is the function
in the ith consequent.
The output of each fuzzy rule is a crisp numerical datum y = y® (x;), and the
TSKEFS outcome is calculated as a weighted average of individual outputs:

I . .
2 F© (x0) @ (x0)
Yo=""— : (2.58)
> FU) (x0)
j=1
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where

F© (X0) = g0 (X01) *1 g (X02) *7 -+ %7 g0 (o) (2.59)

is the firing strength and %7 is a #-norm (usually a minimum or algebraic product).

Equation (2.58) can be interpreted as a mixture of experts, each modeled by a
single fuzzy rule. Each rule defines the relationship between outputs and inputs of
the system in the relevant input range. The weighted average of statements from all
local experts (rules) determines the reasoning result. The weight, represented by the
firing strength of the rule, specifies the influence level of a single expert on the final
inference outcome.

The consequent of the ith TSKFS fuzzy rule can also be understood as a singleton
[4], the location of which is determined by the function y® (x):

mpo () = &, y0 = {0, V£ y(i) Xo). (2.60)

Hence, the TSKEFS is usually referred to as the fuzzy system with “moving” single-
tons. The term “moving” relates to the relationship between a singleton location and
the input numerical data. The amplitude (height) of the singleton after the approxi-
mate reasoning is defined by the firing strength of a rule.

The TSKFS consequents are frequently defined as linear functions (first-order
polynomials):

¥y (x0) = p§ 4 p\Vxo1 + pYx0or + - 4 piyxoy = pP 7T, (2.61)

where p) is the (N + 1)-dimensional vector of parameters of the function y (x),
and x;, denotes the extended input vector:

x)=[1x%]". (2.62)

A collection of simple linear functions y® (x) allows for modeling the most
complex input—output relationships. Overlapping areas of antecedents in neighboring
rules ensure smooth switching between the local models.

An example of TSKFS inference with two inputs and two conditional fuzzy rules
is shownin Fig. 2.4. The main advantage of the TSKFS is the low computational effort
required to determine the numerical output of the system as the inference process
does not involve defuzzification. However, it does not allow for the application of
different interpretations of the fuzzy rules and different types of aggregation opera-
tors. This is due to the application of singletons in the rules consequents. The artificial
neural network based fuzzy inference system (ANNBFIS) [17] is devoid of such
disadvantages. The ANNBFIS combines the benefits of the usage of a fuzzy set in
the rule consequent (as in the MAFS) together with the dependency of the consequent
location on system inputs (as in the TSKFS) [4, 15, 16]. Another extension of the
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Fig. 2.4 An example of approximate reasoning with Takagi—Sugeno—Kang fuzzy system with two
inputs and two fuzzy if-then rules

TSKES is the Tsukamoto fuzzy system (TFS) [28]. The main difference between
TSKEFS and TFS is the method of determining the singleton location in the consequent
of the fuzzy rule. In TFS it is defined using a monotonic function as well as a firing
strength of the rule.

2.4.3 Tsukamoto Fuzzy System

The knowledge base of TFS is a collection of fuzzy conditional statements in the
form:

N
RV =if \ (x()n is Lﬁ{j) .then y = £, (F® (xp)), (2.63)

n=I

where f; (y) is a monotonic function in the ith consequent.
For the firing strength equal to F) (xq) the consequent is a singleton with the
amplitude F© (xo) and the location y such that F© (x¢) = f; (y):



40 R. Czabanski et al.

FO(xp), y = y?,

wpo (y) = F® (X0) 8y 0 = [0’ v £y, (2.64)

where y@ = £ (F© (xo)).

The inference outcome of the TFS is calculated as a weighted average of singleton
locations from all rules, with weights defined as the rules firing strengths:

i=1

yo="5 = - . (2.65)
2 FY (xo) 2 FY (xo)
s =

§ oo 0§ 00 57 (F000)
i=1

An example of the Tsukamoto approximate reasoning with two inputs and two
fuzzy if-then rules is shown in Fig.2.5.

The TFS is rarely used due to the difficulty in obtaining the conditional fuzzy
rules from a human expert in the form (2.63). For the same reasons the Baldwin
fuzzy system (BFS) [1, 2] is difficult to apply in practice. The BFS represents a

HA_E?__ o () FASQ_- ﬂe(z'l_t
min F(l] (Xo)
4 X, ycin (%) y
;uﬂ.j(.ﬁd- ;m;(xl) MA(]_X)(;:_ ‘IIAZj.-(Xz) ,"'"B(f[))—‘
. min F(,J(XOE
X Xz y(ZJ(xo} y
max
4e(y)
1.0
[,1 :
Y

b

Fig. 2.5 Example of the Tsukamoto approximate reasoning with two inputs and two fuzzy if-then
rules
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different approach to fuzzy modeling, which is not based on Zadeh’s compositional
rule of inference but on reasoning using fuzzy truth value restrictions. The literature
describes many other interesting proposals of fuzzy models, including those based on
interval-valued fuzzy sets and type-2 fuzzy sets. A detailed overview can be found,
for example, in [13, 18, 29, 30].

2.5 Summary

In this chapter we discussed basic problems related to the idea of fuzzy systems
based on the Zadeh compositional rule of inference. The presentation started with
explaining the concepts of the linguistic variable and fuzzy conditional statement.
Next, different types of the fuzzy if-then rules and various methods of their mathe-
matical representation were presented. Also, an overview of the compositional rule
of inference proposed by Zadeh was introduced. General theoretical considerations
on approximate reasoning were supplemented with examples of elementary fuzzy
models. We described the basic solutions being the foundation of many modern con-
structions including fuzzy systems of Mamdani—Assilan, Takagi—Sugeno—Kang, and
Tsukamoto.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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