
Aligning Modeled and Observed Behavior:
A Compromise Between Computation

Complexity and Quality

Boudewijn van Dongen1(B), Josep Carmona2, Thomas Chatain3,
and Farbod Taymouri2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
b.f.v.dongen@tue.nl

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{jcarmona,taymouri}@cs.upc.edu

3 LSV, ENS Cachan, CNRS, Inria, Université Paris-Saclay, Cachan, France
chatain@lsv.ens-cachan.fr

Abstract. Certifying that a process model is aligned with the real
process executions is perhaps the most desired feature a process model
may have: aligned process models are crucial for organizations, since
strategic decisions can be made easier on models instead of on plain data.
In spite of its importance, the current algorithmic support for comput-
ing alignments is limited: either techniques that explicitly explore the
model behavior (which may be worst-case exponential with respect to
the model size), or heuristic approaches that cannot guarantee a solu-
tion, are the only alternatives. In this paper we propose a solution that
sits right in the middle in the complexity spectrum of alignment tech-
niques; it can always guarantee a solution, whose quality depends on the
exploration depth used and local decisions taken at each step. We use
linear algebraic techniques in combination with an iterative search which
focuses on progressing towards a solution. The experiments show a clear
reduction in the time required for reaching a solution, without sacrificing
significantly the quality of the alignment obtained.

Keywords: Process mining · Conformance checking · ILP · Heuristics ·
Alignments

1 Introduction

The current trend to store all kinds of digital data has made organizations to
become more than ever data-oriented, thus dependent on the available techniques
to extract value from the data. Process mining is an emerging field which focuses
on analyzing the data corresponding to process executions, with the purpose
of extracting, analyzing and enhancing evidence-based process models [1]. The
application of process mining techniques is magnified in the field of Business
Process Management, where in the last couple of years we have seen important
vendors incorporating process mining capabilities to their products.
c© Springer International Publishing AG 2017
E. Dubois and K. Pohl (Eds.): CAiSE 2017, LNCS 10253, pp. 94–109, 2017.
DOI: 10.1007/978-3-319-59536-8 7

Aligning Modeled and Observed Behavior 95

One of the current challenges for process mining techniques is the computa-
tion of an alignment of a process model with respect to observed behavior [2].
Intuitively, given a trace representing a real process execution, an optimal align-
ment provides the best trace the process model can provide to mimic the observed
behavior. Then observed and model traces are rendered in a two-row matrix
denoting the synchronous/asynchronous moves between individual activities of
model and log, respectively. Alignments are extremely important in the context
of process mining, since they open the door to evaluate the metrics that asses
the quality of a process model to represent observed behavior: fitness and gen-
eralization [2] and precision [3]. Additionally, alignments are a necessary step to
enhance the information provided in a process model [1].

The current algorithmic support to compute alignments is either too com-
plex [2] or heuristic [4]. The former is defined as a search for a minimal path on
the product of the state space of the process model and the observed behavior,
an object that is worst-case exponential with respect to the size of the model.
This hampers the application of the techniques from [2] in case of medium/large
instances. In contrast, the techniques in [4] are very efficient both in time and
memory requirements, but cannot guarantee a solution always.

This paper presents an algorithm for computing alignments whose nature is
in between the two aforementioned techniques. As in [4], we ground the tech-
nique on the resolution of Integer Linear Programming (ILP) models that guide
the search for solutions while constructing the derived alignment. However, the
techniques of this paper ensure the derivation of an alignment by requiring the
feasibility of individual steps computed, in contrast to the recursive approach
applied in [4]. As in [2], the algorithm is defined on the synchronous product
between the observed trace and the process model, and we use part of the ILP
model (the tail of the solutions obtained at each step) as an underestimate of the
cost to reach a solution. The crucial element of our approach is to incrementally
construct the alignment by “jumping” over the space of solutions in a depth-
first manner, using ILP models as oracles to guide the search. The approach is
implemented in the open-source platform ProM, and experiments are provided
which witness the distinctive capabilities of the proposed approach with respect
to the state-of-the-art technique to compute alignments.

2 Related Work

The seminal work in [2] proposed the notion of alignment, and developed a tech-
nique to compute optimal alignments for a particular class of process models. For
each trace σ in the log, the approach consists on exploring the synchronous prod-
uct of model’s state space and σ. In the exploration, a shortest path is computed
in the statespace of synchronous product, using the A∗ algorithm, once costs for
model and log moves are defined. The approach is implemented in ProM, and
can be considered as the state-of-the-art technique for computing alignments.
Several optimizations have been proposed to the basic approach: for instance,
the use of ILP techniques on each visited state to prune the search space [2].

96 B. van Dongen et al.

In contrast to [2], the technique presented in [4] fully resorts in the resolution
of ILP models together with a recursive partitioning of the input trace. This
technique computes approximate alignments, a novel class of alignments where
deviations can be explained between sets of transitions, instead of singletons as
in [2]. The techniques in [4] can be a good alternative when a precise information
is not required and instead an approximation suffices.

Decompositional techniques have been presented [5,6] which, instead of com-
puting alignments, focus on the problem of deciding whether a given trace fits a
process model or not. The underlying idea is to split the model into a particular
set of transition-bordered fragments which satisfy certain conditions, and local
alignments are then computed for each one of the fragments, thus providing a
upper bound on the cost of an alignment. In contrast, the technique presented
in this paper does not split the model, hence enabling the computation of align-
ments at a global (model) level. Furthermore, our technique can be applied in
the context of decisional techniques for the computation of local alignments a
fitting trace is guaranteed to be identified as such.

Few techniques exist in the literature to consider also other perspectives
beyond control-flow for the alignment computation [7]. In spite of the clear
benefit of considering a multi-perspective view on the problem, these techniques
cannot handle medium to large instances due to their algorithmic complexity. In
fact, the available implementations of such techniques use a two-stage approach,
where they first align the control flow and then consider the data/resources in a
second stage after which optimality cannot be guaranteed. Therefore, our work
can be applied directly in the first stage with some further loss of optimality.

In this paper, we focus on Petri nets as the modelling language. In [2] align-
ments are introduced for the turing complete class of models called inhibitor
nets. The work in this paper easily extends to that class by adding constraints
requiring a place to be empty before firing a transition. Since transformations
exist for most modelling languages into Petri nets (or inhibitor nets) our work
can be applied to these classes as well when doing the transformations explicitly.
However, our techniques cannot directly be translated to existing work where
alignments are computed directly on other model classes, such as declarative
models [8,9] or using different log notions, such as partially ordered logs [10,11]
as no ILP formulation exists for these cases.

3 Preliminaries

A Petri Net [12] is a 3-tuple N = 〈P, T,F〉, where P is the set of places, T is the
set of transitions, P ∩T = ∅, F : (P ×T)∪ (T ×P) → {0, 1} is the flow relation.
A marking is an assignment of non-negative integers to places. If k is assigned
to place p by marking m (denoted m(p) = k), we say that p is marked with k
tokens. Given a node x ∈ P ∪ T , its pre-set and post-set (in graph adjacency
terms) are denoted by •x and x• respectively. A transition t is enabled in a
marking m when all places in •t are marked. When a transition t is enabled, it
can fire by removing a token from each place in •t and putting a token to each

Aligning Modeled and Observed Behavior 97

place in t•. A marking m′ is reachable from m if there is a sequence of firings
t1t2 . . . tn that transforms m into m′, denoted by m[t1t2 . . . tn〉m′. A sequence of
transitions t1t2 . . . tn is a feasible sequence if it is firable from the initial marking
m0.

Workflow processes can be represented in a simple way by using Workflow
Nets (WF-nets). A WF-net is a Petri net where there is a place start (denoting
the initial state of the system) with no incoming arcs and a place end (denoting
the final state of the system) with no outgoing arcs, and every other node is
within a path between start and end. The transitions in a WF-net are labeled
with tasks or are used for routing purposes (so-called silent transitions or τ tran-
sitions). For the sake of simplicity, the techniques of this paper assume models
are specified with sound labeled WF-nets, i.e. models without lifelocks and with
only a single deadlock indicating that the model’s execution has terminated.

Definition 1 (Net System, Full Firing Sequences). A net system is a
tuple SN = (N,mstart,mend), where N is a Petri net and the two last ele-
ments define the initial and final marking of the net, respectively. The set
{σ | (N,mstart)[σ〉(N,mend)} denotes all the full firing sequences of SN .

Note that in this paper, we assume that the set of all full firing sequences is
not empty, i.e. the final marking is reachable from the initial marking.

Let N = 〈P, T,F〉 be a Petri net with initial marking m0. Given a feasible
sequence m0

σ→ m, the number of tokens for a place p in m is equal to the tokens
of p in m0 plus the tokens added by the input transitions of p in σ minus the
tokens removed by the output transitions of p in σ:

m(p) = m0(p) +
∑

t∈•p

|σ|t F(t, p) −
∑

t∈ p•
|σ|t F(p, t)

The marking equations for all the places in the net can be written in the
following matrix form: m = m0 − N− · σ̂ + N+ · σ̂, where N = N+ − N− ∈
Z

P×T is the incidence matrix of the net: N−(p, t) = F(p, t) corresponds to
the consumption of tokens and N+(p, t) = F(t, p) corresponds to production of
tokens. If a marking m is reachable from m0, then there exists a sequence σ such
that m0

σ→ m, and the following system of equations has at least the solution
�x = σ̂

#»m = # »m0 − N− · �x + N+ · �x (1)

If (1) is infeasible, then m is not reachable from m0. The inverse does not
hold in general: there are markings satisfying (1) which are not reachable. Those
markings (and the corresponding Parikh vectors) are said to be spurious [13].

For well-structured Petri nets classes Eq. (1) characterizes reachability. It
goes beyond the scope of this paper to elaborate on the exact classes of models
for which this is the case. However, in this paper, we assume that the models we
consider belong to this class.

Next to Petri nets, we formalize event logs and traces.

98 B. van Dongen et al.

Definition 2 (Trace, Event Log, Parikh vector). Given an alphabet of
events T = {t1, . . . , tn}, a trace is a word σ ∈ T ∗ that represents a finite sequence
of events. An event log L ∈ B(T ∗) is a multiset of traces1. |σ|a represents the
number of occurrences of a in σ. The Parikh vector of a sequence of events σ is
a function̂: T ∗ → N

n defined as σ̂ = (|σ|t1 , . . . , |σ|tn
). For simplicity, we will

also represent |σ|ti
as σ̂(ti).

The main metric in this paper to asses the adequacy of a model in describing
a log is fitness [1], which is based on the reproducibility of a trace in a model:

Definition 3 (Fitting Trace). A trace σ ∈ T ∗ fits SN = (N,mstart,mend) if
σ coincides with a full firing sequence of SN , i.e., (N,mstart)[σ〉(N,mend).

Hence an optimal alignment may be fitting or not, depending on whether
the model can mimic exactly or not the behavior observed. Computing align-
ments is a complex task. In [2] the foundational work was presented to construct
alignments by depth-first search using an A∗ algorithm. The algorithm presented
there relies on two fundamental concepts:

– A synchronous product Petri net, which is a combination of the original model
being aligned and a Petri net representation of the (partially ordered) trace
in the log, and

– The marking equation of that synchronous product.

The core alignment question is formalized as follows: Given a synchronous
product with a penalty function assigning a non-negative penalty to each tran-
sition firing, find a firing sequence from the initial marking to the final marking
with the lowest total penalties.

Consider the example model in Fig. 1. This model is a simple parallelism
between transitions B and C after A and before D. Now, consider the trace
<C,D> translated into a trace net as shown in Fig. 2. Obviously, this trace does
not fit the model, as transitions A and B are missing from it. Conceptually,
the alignment problem first constructs a so-called synchronous product which is
shown in Fig. 3. Here, the two black transitions are synchronous combinations
of equally labeled transitions in the model and the trace, i.e. they have the same
input and output places in both the model and the trace net. The alignment
algorithm then finds the shortest execution sequence from the initial state to the
final state, where the firing of each transition has an associated cost. Typically,
the black transitions, called synchronous moves have the lowest cost, while the
model transitions, called model moves and the trace net transitions, called log
moves, have higher costs. For this example, the cheapest firing sequence would
be <A,C,B,D> as depicted in the upper row (model trace) of the alignment
of Fig. 4. For this alignment, the white transitions A and B have been fired
as model moves, and the black transitions C and D have fired as synchronous
moves.

1 B(A) denotes the set of all multisets of the set A.

Aligning Modeled and Observed Behavior 99

Fig. 1. Example model.

Fig. 2. Example trace net. Fig. 3. Example Synchronous
Product.

Fig. 4. An optimal
alignment.

The marking equation used for the example synchronous product model in
Fig. 3 is shown below. Here, the columns corresponding to each transition in the
incidence matrix are labeled with m, s, or l for (m)odel, (s)ynchronous, or (log)
move.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mi
p0 1
p1 0
p2 0
p3 0
p4 0
p5 0
p6 1
p7 0
p8 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Am Bm Cm Dm Cs Ds Cl Dl
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· �x +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Am Bm Cm Dm Cs Ds Cl Dl
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· �x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mf
0
0
0
0
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the remainder of the paper, we consider the synchronous product model as
the starting point and we use the partitioning of the transitions into synchronous
moves, log moves and model moves.

Definition 4 (Alignments, Optimal Alignments). Let N = 〈P, T,F〉 be a
synchronous product Petri net where T = T s ∪ T l ∪ Tm can be partitioned into
sets of transitions corresponding to synchronous moves, log moves and model
moves respectively and let (N,m⊥,m�) a corresponding net system. Furthermore
let c : T → R

+ a cost function. An alignment is a full firing sequence σa ∈ {σ |
(N,m⊥)[σ〉(N,m�)} of this system. An optimal alignment is an alignment σa

such that for all σ ∈ {σ | (N,m⊥)[σ〉(N,m�)} holds that c(σa) ≤ c(σ).

Traditional algorithms search for alignments using a depth-first search
method over a search graph in which each node represents a partial firing
sequence of the system and each edge the firing of a transition.

Definition 5 (Search space). Let N = 〈P, T,F〉 be a synchronous product
Petri net where T = T s ∪ T l ∪ Tm can be partitioned into sets of transitions
corresponding to synchronous moves, log moves and model moves respectively
and let (N,m⊥,m�) a corresponding net system. Furthermore let c : T → R

+

a cost function. The alignment search space is defined as S = (V,E, c), with
V = {m | (N,m⊥)[σ〉(N,m)} and E ⊆ V × T × V such that (m, t,m′) ∈ E if

100 B. van Dongen et al.

and only if (N,m)[t〉(N,m′). The root of the search space is m⊥ ∈ V the initial
marking. The target node in the search space is the final marking m� ∈ V . Note
that m� ∈ V since the final marking of a system net is assumed to be reachable.

Note that, in the general case, the search space is not bounded. There may
be infinitely many markings reachable from the initial marking and hence in the
search space. Finding an optimal alignment is translated as finding a shortest
path from m⊥ to m� in the search space, where c represents the length of the
edges2.

In order to find the shortest path3 in the search space, traditional alignment
approaches use the A∗ algorithm. This algorithm relies on a estimate function
that underestimates the remaining costs from the current node to one of the
target nodes. The cost between nodes m and m′ in V can be underestimated by
the marking equation (cf. Sect. 3) in the following way:

Definition 6 (Underestimating the costs). Let S = (V,E, c) be a search
space and mc ∈ V the current marking reached in the graph. We know that if
there exists a σ′ such that (N,mc)[σ′〉(N,m�) then mc + N · σ̂′ = m�.

Therefore, the solution to the linear problem minimize c(ς) such that # »mc +
N · ς̂ =

»

m� provides an underestimate for the cost of σ′, i.e. c(ς) ≤ c(σ′).
If no solution exists, the final marking cannot be reached, which implies that

part of the search space is not relevant or in other words a correct underestimate
for the remaining distance is infinite.

This approach to finding alignments has been implemented in ProM and has
been extensively used in many applications. However, there are two problems
with this approach. Firstly, the search space can be very large (although only
a finite part needs to be considered). Typically, the search space size is expo-
nential in the size of the synchronous product model which is the product of
the original model and the trace to be aligned. Secondly, computing estimates
is computationally expensive. This can be done both using Linear Programming
and Integer Linear Programming, where the latter provides more accurate esti-
mates. In practice however, both techniques are equally fast as the increase in
precision when doing Integer computations allows the A∗ algorithm to visit fewer
nodes.

4 ILP Techinques to Compute Alignments

4.1 Computing Optimal Alignments Using ILP

In this paper, we take a fundamentally different approach as we incrementally
construct (possibly suboptimal) alignments. We do so, by “jumping” trough
2 Since the cost function c does not allow for 0-length, there are no loops of length

0 in the graph. In the available implementations of the alignment problem, this is
hidden from the end-user when instantiating the cost function, but an ε > 0 is used
in the core computation.

3 Note that there may be more than one shortest path. Where we talk about the
shortest path, we mean any shortest path.

Aligning Modeled and Observed Behavior 101

the synchronous product model in a depth-first manner until we reach the final
marking. Once the final marking is reached, we terminate the search. Effectively,
from a given marking, we fire a total of x transitions such that these x firings are
locally optimal with respect to the cost function c and we reach the next node in
the search space, from where we continue our search. However, before discussing
our algorithm, we first consider a method for computing optimal alignments of
a given maximal length using the marking equation.

The marking equation allows us to formalize x transition executions at once
by taking the consumption matrix for each step and the marking equation for
all preceding steps in the following way:

Property 1 (Marking equation for executing x transitions). Let N = 〈P, T,F〉 be
a Petri net, m0,mf two reachable markings of the net and let σ = 〈t0, . . . , tx−1〉
be a trace such that (N,m0)[σ〉(N,mf). Furthermore, for 0 < i ≤ x, let mi be
such that (N,m0)[〈t0, . . . , ti〉〉(N,mi). Using the marking equation and general
properties of transition firing, we know the following properties hold:

– # »mf = # »m0 − N− · σ̂ + N+ · σ̂ as the sequence σ is executable,
– for 0 < i ≤ x holds that # »mi = # »mi−1 − N− · 〈̂ti−1〉 + N+ · 〈̂ti−1〉, i.e. the

marking equation holds for each individual transition in the sequence,
– for 0 ≤ i < x holds that # »mi − N− · σ̂0..i + N+ · σ̂0..i−1 ≥ 0, i.e. before firing

of each transition there are sufficient tokens to fire that transition.

The properties above are fundamental properties of Petri nets and the mark-
ing equation. They give rise to a new algorithm to find alignments of a given
length.

Definition 7 (Up To Length x Alignment as ILP problem). Let N =
〈P, T,F〉 be a synchronous product Petri net and let (N,m⊥,m�) a correspond-
ing net system. Furthermore let c : T → R

+ a cost function. Let
#»

θ0, . . . ,
»

θx−1 be
a set of x vectors of dimension |T | as the optimal solution to the following {0, 1}
ILP problem:

minimize∑
∑

0≤i<x

c(
#»

θi) (2)

subject to # »m⊥ +
∑

0≤j<x

N · #»

θj =
»

m� (3)

∀0≤i<x
#»

θi · #»
1 T ≤ 1 (4)

»m⊥ +
∑

0≤j<i

N · #»

θj − N− · #»

θi ≥ 0 (5)

∀0<i<x
»

θi−1 · #»
1 T ≥ #»

θi · #»
1 T (6)

An optimal solution to the problem above constitutes a full firing sequence σ
of length l =

∑
0≤i<x

#»

θi · #»
1 T of the net N in the following way: for each 0 ≤ i < l

102 B. van Dongen et al.

holds that σi = t ≡ #»

θ (t) = 1, i.e. the sequence σ is made up of those transitions
which correspond to the variables taking value 1 in this system. Note that for
l ≤ i < x holds that

#»

θi · #»
1 T = 0.

The target function shown as Eq. 2 above sums the costs of firing transitions
in the net. Equation 4 ensures that each vector corresponds to at most one firing
of a transition and Eq. 5 ensures that firing all transitions tj preceding transition
ti from the initial marking produces sufficient tokens in every place to enable
transition ti. Equation 6 ensures that in any solution the vectors

#»

θ =
#»
0 are

grouped together and finally, Eq. 3 ensures that the final marking is reached
after firing at most k transitions.

Before showing how the ILP definition above can be extended to find align-
ments up to length k, we first show that any optimal alignment σ indeed corre-
sponds to an optimal solution to this ILP for k = |σ|.
Theorem 1. Let N = 〈P, T,F〉 be a synchronous product Petri net and let
(N,m⊥,m�) a corresponding net system. Furthermore let c : T → R

+ a cost
function and σ an optimal alignment of N . We show that there is an optimal
solution to the k-alignment ILP for k ≥ |σ| corresponding to σ, i.e. the ILP-
alignment problem provided us with optimal alignments.

Proof. The proof consists of two parts. First, we show that σ translates into a
solution of the ILP. Then, we show that there cannot be a more optimal solution
as this would imply there is a more optimal alignment.

Let Θ = { #»

θ0, . . . ,
»

θ|σ|−1} be a set of vectors, such that for all 0 ≤ i < |σ|
holds that

#»

θi(t) = 1 if and only if σi = t, otherwise
#»

θi(t) = 0. We show that this
is a solution to the ILP of Definition 7 by enumerating the constraints:

(4) For all 0 ≤ i < |σa| it trivially holds that
#»

θi · #»
1 T = 1,

(5) Since σ is a full firing sequence, we know that for each 0 ≤ i < |σ| holds
that (N,m⊥)[σ0..i−1〉(N,m) for some marking m in which transition σi is
enabled. Furthermore, the marking equation states that # »m⊥+N·σ̂0..i−1 = #»m

and #»m − N− · 〈̂σi〉 ≥ 0.
The definition

#»

θi leads to the fact that
∑

0≤j<i

#»

θj = σ̂0..i−1, hence we con-
clude that # »m⊥ + N · ∑

0≤j<i

#»

θj = #»m and #»m − N− · θi ≥ 0. Combining this
yields # »m⊥ +

∑
0≤j<i N · #»

θj − N− · θi ≥ 0 for all 0 ≤ i < |σ| ,
(6) Since all vectors

#»

θi contain one element equal to 1 this is trivially true,
(3) Similar to the proof for Eq. 5, this equation is satisfied.

The set of vectors Θ indeed is a solution to the ILP corresponding to the full
firing sequence σ. Now we prove that no better solution to the ILP exists by
contradiction. Assume there is a solution Θ′ = { #»

θ′
0, . . . ,

»

θ′
|σ|−1} which is a solution

to the ILP with a lower target function than Θ. We know we can construct a
σ′ = 〈t0, . . . , tl−1〉 for Θ′ with length l ≤ |σ| (Definition 7). Furthermore, we
know σ′ is a full firing sequence. Since

∑
0≤i<|σ′|c(#»θ′

i)
<

∑
0≤i<|σ|c(#»θi)

and the
relation between σ and Θ, we know that c(σ′) < c(σ). However, this violates the
definition of σ being an optimal alignment. ��

Aligning Modeled and Observed Behavior 103

The ILP formulation above allows us to compute an optimal alignment if we
know an upper bound k for the length of such an alignment. Unfortunately, such
an upper bound cannot be given in advance as this would require knowledge of
the alignment sought. Furthermore, the large number of variables in this ILP
(the number of transitions in the synchronous product model times the length
of the alignment) makes this ILP intractable in any real life setting.

4.2 Computing Alignments Without Optimality Guarantees

To overcome the limitations of not knowing the length of the alignment and the
intractability of the ILP computation, we introduce an algorithm for incremen-
tally computing alignments. The core idea of this algorithm, which again relies
heavily on the marking equation, is the following. We use an ILP problem that
constructs an exact prefix of an alignment of relatively short length (for example
x = 10 transitions) and estimates the remainder of the alignment in the same
way the A∗ techniques do. Then, we execute the exact prefix of relatively small
length x, compute the resulting marking and repeat the computation until we
reach the target marking.

Definition 8 (k of x prefix Alignment as ILP problem). Let N = 〈P, T,F〉
be a synchronous product Petri net where T = T s ∪T l ∪Tm are the partitions of
T and let (N,m⊥,m�) a corresponding net system. Furthermore let c : T → R

+

a cost function. We assume k ≤ |T l|.
Let Θ = { #»

θ0, . . . ,
#»

θx} be a set of x+1 vectors of dimension |T | as the optimal
solution to the following ILP problem:

minimize∑
∑

0≤i≤x

c(
#»

θi) (7)

subject to # »m⊥ +
∑

0≤j≤x

N · #»

θj =
»

m� (8)

∑

t∈T s∪T l

∑

0≤i<x

θi(t) ≥ k (9)

∀0≤i<x
#»

θi · #»
1 T ≤ 1 (10)

»m⊥ +
∑

0≤j<i

N · #»

θj − N− · #»

θi ≥ 0 (11)

∀0<i<x
»

θi−1 · #»
1 T ≥ #»

θi · #»
1 T (12)

C · # »

θx−1 · #»
1 T ≥ #»

θx · #»
1 T (13)

An optimal solution to the problem above constitutes a firing sequence σ of
length l =

∑
0≤i<x

#»

θi · #»
1 T of the net N identical to Definition 7. Note that the

constant C in Eq. 13 is a sufficiently large constant, for example C = |T |2. A
specific value for C can be identified, but this is beyond the scope of the paper.

104 B. van Dongen et al.

Algorithm 1. Sequential Alignment
1 function Align (N, mc, m

�, e, l, x, k);

Input : A net N , the current marking mc, the target marking m�, the last
estimate for the remaining cost e, the number of events to be
explained l and two parameters x and k with k ≤ x and k ≤ e

Output: A firing sequence σ
2 if mc = m� then
3 return 〈〉
4 else

5 Solve Θ = { #»

θ0, . . . ,
#»

θx} as the optimal solution to the k of x ILP of

Definition 8 and let σ be the firing sequence derived from
#»

θ0 . . .
»

θx−1

6 c′ =
∑

0≤i<x c(
#»

θi)

7 e′ = c(
#»

θx)

8 if
#»

θx �= #»
0 ∧ c′ + e′ ≥ 2 · e then

9 return Align(N, mc, m
�, e, l, x + 1, min(k + 1, l))

10 else

11 compute m as #»m = # »mc +
∑

0≤i<x N · #»

θi

12 k′ =
∑

t∈Ts∪T l

∑
0≤i<x θi(t)

13 return (σ ◦ Align(N, m, m�, e′, l − k′, x, min(k, l)))

14 end

15 end

The difference between Definitions 7 and 8 is relatively small, but significant.
The added vector

#»

θx in the solution does not represent a single transition exe-
cution. Instead, it represents the “tail” of the alignment, i.e. the resulting firing
sequence σ is no longer a full firing sequence as it is not guaranteed to reach
the target marking. Instead, it reaches some intermediate marking m and

#»

θx is a
vector underestimating the cost for reaching the final marking from m identical
to the underestimate function in A∗ as defined in Definition 6. Once the optimal
solution to the ILP is found, the marking m reached after executing σ is taken
as a new final marking and the problem is reinstantiated with that marking as
initial marking.

The second important difference is the k used solely in Eq. 9. This equation
ensures that σ contains at least k transitions from the set of synchronous moves
or log moves, i.e. it guarantees progress as it is a property of a synchronous
product that there are no loops in the log move and synchronous move possible.

Using the k of x ILP we present the sequential alignment algorithm as Algo-
rithm1 and using the algorithm outlined in Algorithm1 we define an (k, x)
sequential alignment.

Definition 9 ((k, x) - Sequential Alignment). Let N = 〈P, T,F〉 be a syn-
chronous product Petri net where T = T s∪T l∪Tm are the partitions of T and let
(N,m⊥,m�) a corresponding net system. σ = Align(N,m⊥,m�, inf, |T l|, x, k)
is an (k, x) sequential alignment, where k ≤ |T l| and k ≤ x.

Aligning Modeled and Observed Behavior 105

The sequential alignment algorithm is a recursive algorithm. It starts by
solving a k of x ILP problem which for which a solution is assumed to exist.
After solving the ILP, the solution is compared to the previous estimate (the
cost of

#»

θx). If the new optimal solution deviates too much from the expected
solution e′ +c′ ≥ 2 ·e and the

#»

θx is non zero, i.e. the final marking is not reached,
then we go into a backtracking phase. We try again, with increased value of x
(and k if applicable). If the initial ILP cannot be solved, i.e. no solution exist,
backtracking can also be used. However, we typically assume our process models
to be sound workflow models.

It is easy to see that the algorithm terminates, i.e. either the final marking
m� is reached, or the value of x is increased until it equals the length of the
shortest path from the current marking to the final marking in which case the
solution of the k of x ILP becomes optimal and

#»

θx =
#»
0 .

4.3 Quality of Alignments

The sequential alignment algorithm presented in Algorithm1 is guaranteed to
terminate and to return an alignment. However, it is not guaranteed to return
an optimal alignment. This is due to the fact that the marking equation used for
the

#»

θx vector does not correspond to an actual realizable sequence. Instead, as
in the original A∗ approach, is merely underestimates the optimal costs to reach
the final marking. As such, sub-optimal decisions may be made in each prefix.
In particular, this is the case if the model contains many so-called “transition
invariants”, the simplest case of which are structured loops of activities.

Even if a trace perfectly fits the model, extreme cases can be devised where
the sequential algorithm may construct sub-optimal alignments (although this
requires the introduction of duplicate labels), while at the same time, for some
classes of model and log combinations, optimality can be guaranteed. Hence,
overall, it is impossible to say anything about the quality of the delivered align-
ment in advance. However, as the experiments in the next section show, in prac-
tical cases, the alignments are of high quality and the reduced time complexity
is well worth the trade-off.

In our experiments, which we present in the next section, we considered the
relative error of the costs as a measure for the quality. This relative error is
defined as the cost of the sequential alignment exceeding the cost of the optimal
alignment as a fraction of the cost of the optimal alignment.

5 Evaluation

In order to assess the quality of the proposed technique, we conducted various
experiments. In this section, we show one of these experiments on a real-life
dataset and model. The dataset used deals with the treatment of sepsis patients
in a hospital [14]. There are 1050 cases with in total 15214 events over 16 activ-
ities. There are 74 unique sequences of activities in the log and the model used
contains 19 labeled transitions and 30 unlabeled routing transitions. The model

106 B. van Dongen et al.

Fig. 5. Comparison of computation
times.

Fig. 6. Relative error of 1-of-4 align-
ments.

is free-choice and contains both loops and parallel constructs, i.e. it belongs to
the class of models considered in this paper.

The experiments were conducted on a Core i7-4700MQ CPU with 16GB
of memory, of which at most 8GB of memory were allocated to the Java vir-
tual machine. In the interest of fairness, all algorithms were executed in single-
threaded mode4.

Figures 5 and 6 show the analysis time of aligning this log on the given
model using three techniques, namely (1) the baseline traditional A∗, (2) our
approach using Gurobi [15] as a backend ILP solver and (3) our approach using
LpSolve [16] as a backend solver5. The x-axis shows the fitness of the trace (based
on the baseline which guarantees optimal alignments) and for each trace, both
computation time and relative error in total costs for the alignment returned are
plotted. The time is plotted on the left-hand logarithmic axis and the error on
the right-hand axis.

As shown in Fig. 5, the computation time of alignments using our approach
is orders of magnitude lower than when using A∗. However, in some cases, sub-
optimal solutions may be returned which are up to 84% off in terms of the total
costs as shown in Fig. 6. The overall error on the entire log is 7, 87% for Gurobi
and 7, 05% for LpSolve. The differences between the two solvers are explained
by their local decisions for optimal solutions which may lead to different choices
in the alignments. For two other models in the same collection, the results are
even better, with at most an 6.7% cost overestimation.

What is important to realize is that the larger errors in the cost coincide with
higher computation times in the A∗ implementation. Inspection of the specific
cases shows that these cases suffer from the property that the estimator used
in A∗, which coincides with our

#»

θx, performs poorly. In the A∗ case, optimality

4 The classical A∗ approach can be executed in multi-threaded mode, in which case
multiple traces are aligned at once. Furthermore, the Gurobi solver can also be
used in multi-threaded mode, which only affects the branch-and-bound phase of the
solving.

5 We did not compare our approach to [4] since the latter does not always produce a
real alignment.

Aligning Modeled and Observed Behavior 107

Fig. 7. Time to compute alignments
vs. length of the original trace.

Fig. 8. Comparison of computation
time and error of A∗ with 1-of-4 align-
ments.

is still guaranteed, but at a cost of performance, while in our approach, the
“wrong” decision is made for the alignment, leading to errors.

Figure 5 suggests that, when cases become more fitting, the computation
becomes more expensive. However, this result is misleading as the numbers are
not corrected for the length of traces, i.e. the traces that are better fitting in this
dataset are typically longer. Therefore, in Fig. 7 we show the relation between
the trace length and the computation time for both A∗ and for our approach
using Gurobi.

Figure 7 shows that our approach scales linearly in the length of the trace.
This is expected since, for longer traces, more ILPs need to be solved. However,
these ILPs are all of equal size and, since they have the same structure, of
comparable complexity.

In the A∗ case, we see that there is a considerably larger influence of the trace
length to the time do compute alignments. The time complexity of A∗ depends
on two factors, namely the size of the synchronous product’s statespace and the
accuracy (and time complexity) of the internal heuristic used. The size of the
synchronous product’s statespace is the product of the model’s statespace and
the length of the trace, hence this also scales linearly in the trace length. The
internal heuristic used in A∗ is comparable to our tail computation for

#»

θx which,
for most Petri nets, is a fairly good heuristic. As such, the performance of A∗ is
polynomial6 in a linearly growing graph, which is exactly what’s shown in the
figure.

To emphasize the importance of our work even further, we show results on
a well-known, artificial benchmark example in Fig. 8. This example was taken
from [17] where a model is presented with 239 uniquely labeled transitions and
massive parallelism. Here, we clearly see that our approach, both using LpSolve
or Gurobi, can be used to find alignments for all traces within a couple of seconds.
6 In this case quadratic, but in general, the quality of the heuristic used in A∗ degrades

with the number of semi-positive transition invariants in the model, but that dis-
cussion is beyond the scope of this paper.

108 B. van Dongen et al.

The A∗ approach however, can only find alignments in some cases, before running
out of time (the limit per trace was set at 200000 states, roughly correspond-
ing to 15 min of computation time). Furthermore, in those cases where the A∗

completes, our sequential algorithms returns optimal alignments.
In all experiments above, the cost function used was chosen in such a way

that the penalties for labeling an event as a so-called log move or a transition
as a so-called model move were equal to 1 and all figures were made using 1-
of-4 prefix alignments. We tested various other values for both k and x and the
results were comparable as long as k is significantly smaller than x. The full code
is available in the anti-alignment package in ProM and is fully integrated in the
conformance checking framework therein.

6 Conclusions

Alignments are a well-known basis for further analysis when comparing process
models to event logs, but traditional alignment techniques suffer from computa-
tional complexity and the unpredictable nature of the computation time. In this
paper, we presented an incremental approach to compute alignments for a given
log and model using ILP.

Our approach is heuristic in nature, i.e. the result is not guaranteed to be
optimal, but the computation time is shown to be linear in the length of the
input trace (around 8 ms per event in our experiments on a high-end laptop
computer) and the error in the final results, while depending on the parameters,
is shown to be reasonable.

In the paper, we introduce the theoretical foundations of our work, we present
the algorithm with proof of termination and we show experimental results on
real-life cases. We compare our implementation using both a freely available ILP
solver as well as an industrial ILP solver with the state-of-the-art in alignment
computation.

All datasets and implementations used in this paper are freely available for
download and the software is integrated in the process mining tool ProM.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011)

2. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische
Universiteit Eindhoven (2014)

3. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Bus. Manag. 13(1),
37–67 (2015)

4. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior
of large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.)
BPM 2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016). doi:10.1007/
978-3-319-45348-4 12

http://dx.doi.org/10.1007/978-3-319-45348-4_12
http://dx.doi.org/10.1007/978-3-319-45348-4_12

Aligning Modeled and Observed Behavior 109

5. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: a generic app-
roach. Distrib. Parallel Databases 31(4), 471–507 (2013)

6. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

7. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

8. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Inf. Syst. 47, 258–277 (2015)

9. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

10. Lu, X., Mans, R., Fahland, D., van der Aalst, W.M.P.: Conformance checking in
healthcare based on partially ordered event data. In: Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation, ETFA 2014, Barcelona, Spain, 16–
19 September 2014, pp. 1–8 (2014)

11. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on par-
tially ordered event data. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP,
vol. 202, pp. 75–88. Springer, Cham (2015). doi:10.1007/978-3-319-15895-2 7

12. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–574 (1989)

13. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).
doi:10.1007/3-540-65306-6 19

14. Mannhardt, F.: Sepsis Cases - Event Log. Eindhoven Univer-
sity of Technology. Dataset (2016). http://dx.doi.org/10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460

15. Gurobi Optimization, I.: Gurobi optimizer reference manual (2016)
16. Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve : Open source (Mixed-Integer)

Linear Programming system
17. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance checking in

the large: partitioning and topology. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 130–145. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40176-3 11

http://dx.doi.org/10.1007/978-3-319-15895-2_7
http://dx.doi.org/10.1007/3-540-65306-6_19
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.1007/978-3-642-40176-3_11
http://dx.doi.org/10.1007/978-3-642-40176-3_11

	Aligning Modeled and Observed Behavior: A Compromise Between Computation Complexity and Quality
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 ILP Techinques to Compute Alignments
	4.1 Computing Optimal Alignments Using ILP
	4.2 Computing Alignments Without Optimality Guarantees
	4.3 Quality of Alignments

	5 Evaluation
	6 Conclusions
	References

