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Abstract. A crucial requirement for compliance checking techniques is
that observed behavior, captured in event traces, can be mapped to the
process models that specify allowed behavior. Without a mapping, it
is not possible to determine if observed behavior is compliant or not.
A considerable problem in this regard is that establishing a mapping
between events and process model activities is an inherently uncertain
task. Since the use of a particular mapping directly influences the com-
pliance of a trace to a specification, this uncertainty represents a major
issue for compliance checking. To overcome this issue, we introduce a
probabilistic compliance checking method that can deal with uncertain
mappings. Our method avoids the need to select a single mapping, but
rather works on a spectrum of possible mappings. A quantitative eval-
uation demonstrates that our method can be applied on a considerable
number of real-world processes where traditional compliance checking
methods fail.
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1 Introduction

Compliance management supports organizations by ensuring that their processes
satisfy legal requirements and are executed in an efficient manner [27]. Compli-
ance checking techniques (cf. [3,20,26]) play an important role in this regard [17].
These techniques enable organizations to automatically check whether business
processes are executed according to their specifications. Specifically, they check
if any observed behavior, as recorded in an IT system and represented in the
form of an event trace, conforms to the allowed process behavior, as captured in
a process model [5]. A crucial requirement for compliance checking is that the
events contained in an event log can be related to the activities of a process
model [25]. Without knowing the relations between events and model activities,
it is not possible to determine if the behavior within an event trace conforms to
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the behavior specified by a process model. Despite this dependence of compli-
ance checking techniques on the existence of such a, so-called, event-to-activity
mapping, these mappings are often not readily available [8].

Furthermore, actually establishing event-to-activity mappings is a highly
complex task. The effort required to manually perform this task is hardly man-
ageable in practical scenarios, due to the task’s combinatorial complexity [9].
Automated mapping techniques also face considerable challenges. These chal-
lenges are caused by, among others, cryptic event names, noncompliant behavior,
and noise [7]. As a result, automated mapping techniques often cannot provide
a certain solution to the mapping problem. In fact, the task of establishing
event-to-activity mappings is conceptually equivalent to matching tasks found
in the fields of schema matching and process matching. Such matching tasks have
been shown to be inherently uncertain [14,28]. Due to this uncertainty, the goal
of mapping techniques becomes choosing the best mapping from the potential
ones [18]. Hence, there is always the risk that the selected mapping is wrong, i.e.
that the selected mapping does not correctly capture the relations between event
traces and a process model. In the context of compliance checking, selecting an
incorrect mapping is particularly harmful. If the selected mapping is incorrect,
the results obtained through compliance checking based on this mapping cannot
be trusted.

To overcome this issue, this paper presents a compliance checking method
that can be applied in spite of an uncertain mapping of events onto activi-
ties. Our method assesses the compliance of a trace by considering the entire
spectrum of potential mappings, rather than focusing on a single one. To cap-
ture this spectrum, we build on the notion of probabilistic behavioral spaces.
These behavioral spaces provide a means to capture behavioral uncertainty, i.e.
varying interpretations on described process behavior, in a structured manner.
We originally introduced this notion to capture behavioral uncertainty caused
by ambiguity in textual process descriptions [2]. We extend the original notion
with probabilistic information in the current paper and apply it in the context
of mapping uncertainty. These probabilistic behavioral spaces can be used for
compliance checking without the need to resolve uncertainty, i.e. without the
need to select a single event-to-activity mapping from a number of alternatives.
As a result, our compliance checking method avoids the risks associated with the
selection of an incorrect mapping. A quantitative evaluation demonstrates that
this method can be used to obtain comprehensive compliance checking results
for a considerably higher number of processes than traditional methods.

The remainder of this paper is structured as follows. Section 2 motivates
the problem of compliance checking in the context of uncertain event-to-
activity mappings. Then, Sect. 3 provides some necessary preliminary definitions.
Section 4 describes our compliance checking method. We evaluate the usefulness
of our method in Sect. 5. Finally, we consider streams of related research in
Sect. 6 and conclude the paper in Sect. 7.
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2 Problem Illustration

In this section, we illustrate the problem of compliance checking in the context of
mapping uncertainty. The goal of compliance checking is to determine if behavior
captured in event traces is allowed by the behavior specified in the form of a
process model. An event trace captures an execution sequence of events. These
events correspond to the actual behavior of a process, because they are extracted
from information systems that record the execution of process steps. By contrast,
process models are used in compliance checking scenarios to specify the allowed
behavior of a process. A crucial prerequisite for compliance checking is that the
events in event traces can be related to the activities of a process model. For
example, given an event trace t = <e1, e2, e3, e4, e5> and the process model
M depicted in Fig. 1, the events in t must be mapped to activities in model
M . Otherwise, it is impossible to understand which activities have occurred in
reality and, thus, whether or not t complies with M .

Fig. 1. Example of a BPMN process model

Unfortunately, establishing a correct mapping between events and activities
is a considerable challenge. Existing techniques addressing this task can at best
indicate potential mappings and their likelihoods, instead of providing a definite
solution [8,9]. The reason why mapping techniques fail to provide definite solu-
tions is that the information they can take into account when constructing map-
pings often does not suffice to identify relations with certainty. As an example,
consider an event with the label “Product obtained”. By considering the labels,
it is not possible to determine with certainty whether this event corresponds to
activity B (“Retrieve product from warehouse”) or to activity C (“Manufacture
requested product”). Both of these activities obtain a product, but in a different
way. Even more problematic are the commonly observed event labels with cryp-
tic database field names such as CDHDR or I SM E [9]. In these cases, not even
advanced linguistic analysis tools are able to identify reliable mappings.

The inability of techniques to reliably establish event-to-activity mappings
leads to mapping uncertainty. As a result, mapping techniques generally con-
struct a number of potential mappings without being able to determine with
certainty which mapping is correct. Since existing compliance checking tech-
niques require a single event-to-activity mapping, mostly the mapping with the
highest likelihood is selected as a basis for compliance checks. However, there is
always the risk that this selected mapping is incorrect and that, consequently,
compliance checking results based on the selected mapping are incorrect as well.

To illustrate the risk of selecting a single mapping in the context of map-
ping uncertainty, assume that trace t corresponds to the activity sequence
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σ = <A,B,C,E, F>. This means that t is not compliant with model M , because
M does not allow for the activities B and C to be executed in the same process
instance, while σ contains both of these. Further assume that, due to map-
ping uncertainty, a mapping technique returns two possible mappings, one cor-
responding to the noncompliant sequence σ, but the other to the compliant
sequence σ′ = <A,B,D,E, F>. In this scenario, the ability to correctly identify
the noncompliance of t to M fully depends on the ability to select the appropri-
ate mapping from the two alternatives. In case the mapping corresponding to
σ′ is selected, then t will be considered to be compliant with M , event though
in reality the process behavior contained in t does not comply to the allowed
behavior specified by M .

The previous example illustrates that compliance checking results based on
the selection of a single, potentially incorrect mapping are not trustworthy. To
provide a comprehensive solution to this problem, this paper introduces a com-
pliance checking method that takes the entire set of potential mappings into
account. Therefore, our method eliminates the need to select a single, possibly
incorrect mapping. Hence, it mitigates the risk of drawing incorrect conclusions
about process compliance.

3 Preliminaries

This section introduces the preliminaries on which we base our compliance check-
ing method. For the purposes of this paper, we use the behavioral profile rela-
tions from [24] to capture and compare behavior contained in event traces and
process models. These behavioral relations build on a weak order relation �.
For a single event trace t = <e1, . . . , en> over a set of event classes Et, the
relation �t⊆ (Et ×Et) contains all pairs (x, y) ∈ (Et ×Et) such that there exist
two indices j, k ∈ 1, . . . , m with j < k ≤ m for which holds that ej = x and
ek = y. Intuitively, the weak order relation contains any pair (x, y) for which an
occurrence of event class x precedes an occurrence of event class y. A behavioral
profile derives three distinct behavioral relations from this weak order relation:
strict order, exclusiveness, and interleaving order. Definition 1 provides a formal
definition for the behavioral profile of a single event trace.

Definition 1 (Behavioral Profile – Trace). Let t be an event trace over a
set of event classes Et and with a weak order relation �t. Then a pair of event
classes (x, y) ∈ Et × Et is in at most one of the following relations:

– The strict order relation �t, iff x �t y and y �t x;
– The exclusiveness relation +t, iff x �t y and y �t x;
– The interleaving order relation ||t, iff x �t y and y �t x;

The set BPt = {�t,+t, ||t} is the behavioral profile of t.

For a process model M , a behavioral profile BPM is computed in a similar
manner as for an event trace. The difference is that �M contains all pairs (x, y)
for which there is an event trace t possible in M such that (x, y) ∈ �t. Therefore,
the behavioral profile of a process model builds on an aggregation of the weak
order relation of all its possible traces. Definition 2 formally describes this.
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Definition 2 (Behavioral Profile – Process Model). Let M be a process
model with an activity set AM and with a weak order relation �M . Then an
activity pair (x, y) ∈ AM × AM is in at most one of the following relations:

– The strict order relation �M , iff x �M y and y �M x;
– The exclusiveness relation +M , iff x �M y and y �M x;
– The interleaving order relation ||M , iff x �M y and y �M x;

The set BPM = {�M ,+M , ||M} is the behavioral profile of M .

The behavioral profile relations form the basis of our compliance checking
method. Given an event trace t and a process model M , we can determine the
compliance of t with M by comparing the relations in BPt to those in BPM . It is
crucial to understand the different nature of the behavioral profile of a trace and
of a process model. BPt provides information on observed behavioral relations
for a single trace, whereas BPM describes constraints for these traces. Therefore,
to perform a compliance check, we do not check if the behavioral relations in BPt

and BPM are equal. Rather, we check if the relations in BPt are allowed within
the relations in BPM . This can be achieved by considering the subsumption of
behavioral profile relations, as introduced in [26]. The subsumption predicate
S(R,R′) determines if a relation type R of a process model subsumes a relation
R′ of a trace. S(R,R′) is defined as given by Definition 3. In this definition, the
short-hand notation x �−1 y is used to denote that y � x.

Definition 3 (Subsumption Predicate). Given two behavioral relations
R,R′ ∈ {�,�−1,+, ||}, the subsumption predicate S(R,R′) is satisfied iff
(R ∈ {�,�−1} ∧ R′ = +) or R = R′ or R = ||.
Intuitively, the notion of subsumption builds on the different strengths of behav-
ioral profile relations. For example, due to parallelism in the model M of the run-
ning example, the behavioral profile of M contains the relation D || F . However,
in the behavioral profile of a trace, parallelism cannot be observed, because only
a single execution of each of these activities should occur, e.g. t = <D,F,E>.
Therefore, BPt contains the relation D � F . Even though the two behavioral
profile relations are not equal, it is clear that t does not violate the constraints
expressed by M , because D � F is a valid order in which D and F can be
executed. This compliance is accounted for by the subsumption predicate, since
the predicate S(||,�) is satisfied. Similarly, an exclusion relation c+d in a trace
does not violate a strict order relation c � d in a model.

A trace t is compliant with a process model M if all behavioral profile rela-
tions in BPt are subsumed by the relations in BPM . Definition 4 captures this
for the situation when a mapping between the events of t and activities of M is
known.

Definition 4 (Trace to Process Model Compliance). Let M be a process
model with an activity set A and t = <e1, . . . , en> an event trace containing the
activities At ⊆ A. Trace t complies with process model M if for each activity
pair (x, y) ∈ (At × At) the relation in t is subsumed by the relation in M ,
i.e. the compliance predicate compl(t,M) is satisfied iff ∀R ∈ BPt ∪ {�−1

t

}, BPM ∪ {�−1
I }, it holds (xRy ∧ xR′y) =⇒ S(R,R′).
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Next, we describe our compliance checking method that employs the compliance
notion provided by Definition 4.

4 Compliance Checking Method

This section describes our method for compliance checking in the context of
uncertain event-to-activity mappings. The two-step method we propose takes as
input an event trace t, a process model M , and an uncertain mapping between
the events of t and the activities M . Note that the question of how to obtain the
mapping is not the focus of this paper, but it can be determined using techniques
from e.g. [7,8,23]. In the first step, the method uses the uncertain mapping to
generate a so-called probabilistic behavioral space for t. In the second step, we
use this probabilistic behavioral space to perform a compliance check. In the
remainder of this section, we describe the relevant concepts and steps of our
method in detail.

4.1 From Uncertain Mapping to Probabilistic Behavioral Space

In the first step of our method, we generate a probabilistic behavioral space for an
event trace. The notion of probabilistic behavioral spaces, in the remainder also
simply referred to as behavioral spaces, provides the foundation to reason about
process compliance in the context of uncertain event-to-activity mappings. The
idea underlying this notion is that an uncertain event-to-activity mapping results
in multiple views on what process behavior, in terms of process model activities,
is described by a single event trace. A probabilistic behavioral space captures
these views in a structured manner. To describe the generation of behavioral
spaces, we first define regular and uncertain event-to-activity mappings.

For a given trace t = <e1, . . . , en> over a set of event classes Et and a
process model M with an activity set AM , we use EA(t,M) to denote a single
event-to-activity mapping between the events in t and the activities in AM . The
mapping EA(t,M) consists of a number of correspondences between individual
events and activities. Each correspondence e ∼ a ∈ (Et×AM ) denotes a mapping
relation between an event e and an activity a. For example, given a trace t =
<e1, e2, e3> a mapping EA(t,M) = {e1 ∼ a, e2 ∼ b, e3 ∼ c} indicates that
trace t corresponds to the execution of the sequence of process model activities
<a, b, c>. We shall refer to such a sequence of process model activities as a trace
translation of event trace t, because it represents a translation of the trace’s
events into process model activities. Definition 5 formalizes this notion. Note
that, for the sake of readability, we here focus on one-to-one relations between
events and activities in a trace translation. However, our compliance checking
method also works on trace translations which are based on one-to-many or
many-to-many mappings between events and activities.

Definition 5 (Trace translation). Given an event trace t = <e1, . . . , en>
with a set of event classes Et, a process model M with an activity set AM ,
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and an event-to-activity mapping EA(t,M) ⊆ (Et × AM ) we define a trace
translation as σ(t) = <a1, . . . , an>, where for each 0 < i ≤ n, it holds that
ei ∼ ai ∈ EA(t,M).

We use EA(t,M) to denote an uncertain event-to-activity mapping between
an event trace t and a process model M . EA(t,M) consists of a number of event-
to-activity mappings, where each EAi ∈ EA represents a potential way to map
the events in t to the activities in AM . Therefore, each mapping EAi ∈ EA

yields a different trace translation for t. Together, these translations represent
the spectrum of process behavior that might be contained in t, i.e. the behavioral
space of an event trace. Since each mapping can be associated with a probability,
we include a probabilistic component in our definition of a behavioral space, as
captured in Definition 6.

Definition 6 (Probabilistic Behavioral Space). Given an event trace t =
<e1, . . . , en> with a set of event classes Et, a process model M with an activ-
ity set AM , and an uncertain event-to-activity mapping EA(t,M), we define a
probabilistic behavioral space as a tuple PBSt = (Σ(t), φ), with:

– Σ(t): the set of trace translations of trace t over the activity set A as given
by the event-to-activity mappings in EA(t,M);

– φ : Σt(A) → [0, 1]: a function that assigns a probability to each trace transla-
tion in Σ(t).

The set Σ(t) comprises the set of potential trace translations of trace t over
the activity set A, where each translation σi ∈ Σ(t) is based on a mapping
EAi ∈ EA(t,M). The probability function φ assigns a probability pi to each
translation σi(t) ∈ Σ(t). These probabilities can generally be based on the con-
fidence of an event-to-activity mapping technique. For instance, a technique
based on the semantic similarity scores, such as [8], can quantify the probability
as the product of the similarity scores associated with each correspondence in the
trace translation. If no such probabilities are available, the most straightforward
solution is to assign an equal probability pi = 1 / |Σt| to each translation.

4.2 Using Behavioral Spaces for Compliance Checking

In this section, we illustrate the usefulness of probabilistic behavioral spaces
for compliance checking in the context of uncertain event-to-activity mappings.
The goal of compliance checking is to determine if the behavior in a trace t is
allowed by the behavioral specification of a process model M . Since uncertain
event-to-activity mappings lead to multiple views on the process model behavior
contained in a trace (i.e. its trace translations), different translations can lead to
different compliance checking results. By using probabilistic behavioral spaces,
we can perform compliance checks in spite of such different translations. In the
remainder of this section, we demonstrate how to perform compliance checking
using behavioral spaces by introducing a probabilistic compliance measure. Fur-
thermore, we discuss the valuable diagnostic information that these compliance
checks can provide.
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To perform our compliance checks, we introduce a compliance metric that
quantifies the compliance of a probabilistic behavioral space PBSt to a process
model M . The metric combines the compliance assessments for individual trace
translations with probabilistic information. The metric determines for each trace
translation σ ∈ Σ(t) in a behavioral spaces whether it is compliant or not. This
is achieved by computing the behavioral profile BPσ for a trace translation σ as
described in Sect. 3. Since a trace translation contains a subset of the activities
of a process model, we can proceed to determine if σ complies with a model
M by comparing BPσ with BPM according to Definition 4. By taking the sum
of the probabilities associated with all compliant translations, we obtain the
probability that a trace t is compliant with a model M . Definition 7 formalizes
this metric.

Definition 7 (Behavioral Space Compliance). Let t be a trace with a prob-
abilistic behavioral space PBST (t) = (Σ(t), φ) and BPM a behavioral profile for
a process model M with activity set AM . Then we define:

– ΣC(t) ⊆ Σ(t) as the set of trace translations in Σ(t) compliant with BPM ;
– ProbCompl(t,M) =

∑
σ∈ΣC(t) φ(σ): as the behavioral space compliance of

trace t to model M , where φ(σ) captures the probability of translation σ.

Two interesting properties of this compliance metric are worth considering
in more detail. First, when compared to traditional compliance checking, the
metric provides probabilistic instead of binary results. In traditional compliance
scenarios, i.e. without uncertainty, a trace is either compliant or noncompliant.
In the scenario with uncertainty, traces are either compliant, noncompliant, or
potentially compliant. Figure 2 visualizes this.

Legend:

Noncompliant traces

Potentially compliant traces

Compliant traces

Fig. 2. Three types of compliance assessments for probabilistic compliance checking.

Potentially compliant traces are those traces for which some trace transla-
tions are compliant with a process model, whereas others are noncompliant. The
compliance of these traces is associated with a certain probability 0 < p < 1.
Take, for instance, the trace t1 = <e1, e2, e3, e4, e5> and its two translations from
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the running example, σ1(t1) = <A,B,D,E, F> and σ2(t1) = <A,B,C,E, F>.
Assume that σ1(t1) is associated with a probability of 0.8 and σ2(t1) with prob-
ability 0.2. Given that σ1(t1) is compliant with M and σ2(t1) is noncompliant,
the trace t1 is potentially compliant with M , with a probability of 0.8. There-
fore, we know that t1 is is more likely to be compliant than not. Furthermore,
we also know the mapping conditions under which t1 is compliant or noncom-
pliant. Namely, t1 is compliant if the correspondence e3 ∼ D holds, whereas the
trace is noncompliant if e3 ∼ C is true. This is the kind of diagnostic infor-
mation we referred to earlier, which can be useful because it provides insights
into which aspects of an uncertain mapping lead to uncertainty in compliance
checking results for observed behavior.

The second interesting property of the compliance metric is that, despite
its probabilistic nature in the presence of mapping uncertainty, the metric
ProbCompl(t,M) often still yields non-probabilistic results. To illustrate this,
consider a (partial) trace t2 = <e1, e2, e3> with translations σ1(t2) = <B,A,D>
and σ2(t2) = <B,C,D>. Although mapping uncertainty has resulted in two
trace translations, ProbCompl(t2,M) yields a non-probabilistic results since nei-
ther of the translations are compliant with model M . Therefore, it is certain that
t2 is noncompliant. In a similar fashion, a (partial) trace t3 = <e1, e2, e3>, with
translations σ1(t3) = <A,B,D> and σ2(t3) = <A,C,D> can be said to be
compliant with certainty. No matter if e2 corresponds to activity B or C, the
trace is compliant. Such cases occur in particular when activities are behaviorally
equivalent compared to each other. In this case, B and C have such equivalence,
because they present proper alternatives for each other.

The previous example illustrates that our compliance checking method can
be used to determine compliance with certainty in situations where traditional
compliance checking methods would not be able to make trustworthy compli-
ance assessments. In Sect. 5, we demonstrate the usefulness of this property in
practical settings.

5 Evaluation

In this section, we present an evaluation that we conducted to demonstrate the
capabilities of the proposed compliance checking method for uncertain event-to-
activity mappings. The goal of this evaluation is to assess how the impact of
mapping uncertainty on the compliance checking task can be reduced by using
our method. To achieve this, we compare results obtained through our method
against results obtained by using a traditional compliance checking method. We
apply these methods on a collection of real-world process models and accompa-
nying event logs. Specifically, we evaluate for how many traces in these event
logs the two methods can provide compliance checking results with certainty.

5.1 Test Collection

To perform the evaluation, we use a collection of real-world business process mod-
els from the BIT process library, first analyzed in an academic context by Fahland
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et al. [13]. The BIT process library consists of 886 process models from vari-
ous industries, including the financial services and telecommunications domains.
The same collection that has been used to test several event-to-activity map-
ping approaches [7,9], which motivates our choice for it. Hence, we believe that
results obtained by using this collection present a realistic view on the applica-
bility of the event-to-activity mapping approach against which we compare our
compliance checking method. Furthermore, due to the size of the collection and
its broad coverage of real-world process models, the collection seems well-suited
to achieve a high external validity of the results.

From the test collection, we omitted any process model with soundness issues
such as deadlocks or livelocks. Furthermore, we omitted a number of large models
for which the event-to-activity mapping approach was not able to produce a
results due to memory shortage. Note that the same filtering steps are also
applied in [7]. As a result of the filtering, a collection of 598 process models
remains available for usage in our evaluation.

Process model

1. Generate 
event log & 
insert noise

2. Generate 
event-to-activity

mapping(s)

4. Perform 
compliance 

check

Compliance checking
results

3. Compute 
behavioral space 

per trace

Fig. 3. Overview of the evaluation setup

5.2 Setup

Figure 3 depicts the steps of our evaluation approach. To perform these steps,
we employ the ProM6 framework, which provides a vast amount of so-called
plug-ins that implement process mining techniques1. For the first two steps of
our approach we use existing plug-ins for event-to-activity mapping techniques,
as described in [7]. For step 3 and 4, we have implemented the generation of
behavioral spaces and our proposed method for compliance checking as a plug-
in, which is available as part of the BehavioralSpaces package in ProM6.

Step 1 of the evaluation approach first generates an event log or each of the
598 process models in the filtered test collection. Staying true to the evaluation
of [7], we generate a log containing 1000 traces for each model. For process
models that include loops, we generate traces with a maximum length of 1000
events. Since we are interested in compliance checking, we transform these fully
compliant logs into partially non-compliant logs. We achieve this by using a
noise-insertion plug-in in ProM. This plug-in randomly adds noise to a log (i.e.
possible noncompliance) by shuffling, duplicating, and removing events for a
given percentage of traces. In this manner, we generate six different event logs,
respectively containing noise in 0, 20, 40, 60, 80, and 100% of the traces.

1 See www.promtools.org for more information and to download the framework.

www.promtools.org
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In step 2, we take a process model and an accompanying event log and use the
mapping technique from [7] to establish an event-to-activity mapping. We have
selected this particular technique because it returns all potential mappings in
case of uncertainty. Furthermore, the technique is relatively robust in the context
of noncompliant behavior. In case the approach can compute a single mapping,
i.e. there is no mapping uncertainty, we can conclude that for this process model
and event log, traditional compliance checking techniques suffice to determine
the compliance of all traces in the log. If the mapping approach returns multiple
possible mappings, i.e. there is mapping uncertainty, we continue with the third
step of the evaluation.

Step 3 computes a behavioral space for a trace based on an (uncertain) event-
to-activity mapping EA established in the previous step. We obtain a behavioral
space by creating a trace translation for each of the potential event-to-activity
mappings included in EA.

Lastly, in step 4 we assess if we can determine the compliance or noncom-
pliance of a trace despite the presence of mapping uncertainty. We achieve this
by computing the ProbCompl metric for the behavioral space of a trace t. If
this metric returns a compliance level of 0.0 or 1.0, we know the compliance of t
with certainty. For other values, the consideration of behavioral spaces does not
suffice to determine the compliance in a certain manner, though we still obtain
probabilistic and diagnostic information on its compliance.

5.3 Results

Figure 4 presents the results of our evaluation experiments. The figure illus-
trates for what percentage of traces deterministic compliance checking results
are obtained by our proposed method and traditional methods.

For noise level 0, where all traces in the event logs are compliant with the
process models, we can observe that the mapping approach can only establish
an event-to-activity mapping for 70.2% of the models in the collection. Since
none of the traces are noncompliant in this log, these issues are caused by activ-
ities which are behaviorally identical to each other. An example of this is seen
for activities B and C of the running example. Because of these issues, tradi-
tional compliance checking techniques can only assess the compliance of 70.2%
of the traces. However, by using behavioral spaces, we can still determine the
compliance of a trace with certainty when mapping uncertainty is caused by
such behavioral equivalent activities. Hence, by using our proposed compliance
checking method, we can determine the compliance of traces with certainty in
100% of the cases. Due to its relative robustness to noise, the mapping app-
roach obtains the same results for logs in which 20% of the traces contain noisy
behavior. Therefore, the results obtained by our method are equal for this set of
logs.

The results change for higher noise levels. For these sets of logs, the map-
ping approach fails to establish certain event-to-activity mappings for increas-
ing numbers of processes. At 40% noise, the approach fails to establish certain
mappings for 62.2% of the processes. This means that traditional compliance
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checking techniques can only make compliance assessments in 36.8% of the cases.
By contrast, our compliance checking method still succeeds to determine the
compliance of 75.5% of the traces with certainty. The gap between our compli-
ance checking method and traditional methods is even bigger for noise levels of
60% and higher. As Fig. 4 illustrates, the performance of the mapping approach
and, thus, also of both compliance checking methods stabilizes for these noise
levels. However, traditional compliance checking methods can only determine
compliance for approximately 22.0% of the traces. By contrast, our proposed
compliance checking method still provides deterministic results for 66.4% of the
traces, i.e. for 3 times as many traces.

In summary, traditional compliance checking techniques become less and less
useful. For high noise levels, they can provide results for as little as 22.0% of the
traces. While the certainty obtainable through compliance checking with behav-
ioral spaces is also affected by the increased levels of noise, the impact is much
smaller. Therefore, we can conclude that in practical scenarios our compliance
checking method is much wider applicable than traditional compliance checking
methods.

6 Related Work

The work presented in this paper primarily relates to two major research streams:
process matching and conformance checking.

Techniques for process matching concern the establishment of links between
process concepts in different artifacts. The most commonly addressed use case for
this is process model matching, where links are established between activities
and events in different process models [10]. So-called process model matchers
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address this task by exploiting different process model features, including natural
language [12], model structure [11], and behavior [15]. Therefore, they use similar
techniques as the works, considered throughout this paper, that relate events to
process model activities. Similar to the event-to-activity mapping task, it has
been found that model-model matching is also inherently uncertain [16]. Other
process matching techniques focus on different use cases, such as the alignment
of natural language texts to process models [1] and the alignment of events from
different event logs [19].

Process compliance checking techniques are applied in various application
scenarios, including process querying [6], legal compliance [22], and auditing [4].
A plethora of techniques exist for this purpose (cf. [3,5,20,21]). In this paper, we
have used techniques that perform compliance checks based on behavioral profile
relations, introduced in [26]. These techniques are computationally highly effi-
cient, which makes them an ideal choice for compliance checking in the context
of the potentially vast number of translations per trace. Other commonly used
techniques perform compliance checks based on so-called alignments. These tech-
niques, introduced in [3,5], provide different diagnostic information than com-
pliance checks based on behavioral profiles. Furthermore, the compliance checks
can be considered to be more accurate in certain situations, because behavioral
profile relations abstract from certain details of process behavior. However, these
techniques are computationally much more demanding than the highly efficient
compliance checks based on behavioral profiles. For the purpose of efficiency,
recent advances in decomposed compliance checking present a promising direc-
tion [20]. Since the interpretations in a behavioral space generally have consider-
able overlaps, such techniques could be useful in order to reduce the computation
time required for compliance checking.

7 Conclusion

In this paper, we introduced a compliance checking method that can be used
in the presence of uncertain event-to-activity mappings. Our method considers
all potential mappings generated by automated mapping approaches. As such,
it can provide compliance checking results without the need to select a single,
possibly incorrect mapping to base compliance checks on. Therefore, it avoids
the risk of drawing incorrect compliance conclusions. A quantitative evaluation
based on a large collection of real-world process models demonstrated that our
method can provide deterministic compliance checking results for a considerable
amount of situations where traditional compliance checking methods fail.

Our proposed method has to be considered in light of a considerable limi-
tation. Namely, the obtained compliance checking results are dependent on the
quality of the generated event-to-activity mappings. Most importantly, its results
can be negatively affected if the correct mapping is not included in the set of
potential mappings generated by any approach. Still, by applying our method,
we eliminate the need to select a mapping from the set of potential methods.
Hence, our method significantly reduces the possibility of drawing incorrect
conclusions.
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In future work, we intend to extend the coverage of our compliance checking
method. For example, we want to provide instantiations based on other notions
of compliance, such as alignment-based compliance or by considering data asso-
ciated with events. Furthermore, we want to investigate possibilities to use our
compliance checking method to improve existing event-to-activity mapping tech-
niques or to support selection among potential mappings.
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