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Abstract. We describe a formally well founded approach to link data
and processes conceptually, based on adopting UML class diagrams to
represent data, and BPMN to represent the process. The UML class dia-
gram together with a set of additional process variables, called Artifact,
form the information model of the process. All activities of the BPMN
process refer to such an information model by means of OCL operation
contracts. We show that the resulting semantics while abstract is fully
executable. We also provide an implementation of the executor.
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1 Introduction

The two main assets of any organization are (i) information, i.e., data, which
are the things that the organization knows about, and (ii) processes, which
are collections of activities that describe how work is performed within an
organization.

Obviously there is the need for representing and making explicit and precise
the contents of these two assets. This has led to conceptual models for data,
such as UML class diagrams [1], and conceptual models for processes, such as
BPMN [2,3]. Unfortunately these conceptual models are only rarely formally
related [4,5]. In fact, they are typically developed by different teams, the data
management team and the process management team, respectively, which use
their own models and methodologies. This leads to the development of two inde-
pendent and unrelated designs and formalizations, one concerned with data and
one with processes, while the interaction between the two is neglected [6,7].

Moreover, when we arrive to tools for process simulation, monitoring and
execution, the two aspects need to come together, and indeed all tools, such as
Bizagi Studio or Signavio, provide a typically proprietary way to realize the
connection. However such a connection is essentially done programmatically, by
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defining an internal data model and associating it to the BPMN constructs in the
process through suitable business rules expressed as actual code (e.g., written
in Java) to detail what happens to the data and how data are exchanged with
the users and other processes. Unfortunately, this way of connecting data and
processes becomes elicited programmatically, but not conceptually.

Recent research is bringing forward the necessity of considering both data
and processes as first-class citizens in process and service design [7–9]. In partic-
ular, the so called artifact-centric approaches, which advocate a sort of middle
ground between a conceptual formalization of dynamic systems and their actual
implementation, are promising to be quite effective in practice [6,10,11].

In this paper, inspired by artifact-centric approaches, we consider the case
in which the data of the domain of interest of a given process are conceptually
represented using a UML class diagram, while the process itself is described
in BPMN. We adopt UML and BPMN as they are the standard and the most
common formalisms for conceptual representation of data in software engineering
and processes in BPM, respectively. In this way, we do not propose yet-another-
formalism, but combine standard ones in a new integrated way to link data and
processes. Other languages might be chosen as well as long as they have an
unambiguous semantics, e.g. ORM/ER-diagrams for defining the data, or UML
activity diagrams, as used for instance in [12], to define the process.

The key idea underlying our proposal is that, in order to link both formalisms,
we propose also: (1) the notion of Artifact, which acts as a collection of process
variables to be associated with a process instance, and (2) the specification of how
the process activities refer and update the variables of the Artifact, or the domain
data. Both concepts can be formally specified through standard languages that
suitable accommodate our UML and BPMN diagrams. Indeed, the Artifact can
be represented as a new class of the UML class diagram with its convenient
attributes and associations to the rest of UML classes, and the process activities
can be specified through OCL operation contracts. Again, other languages might
be chosen to establish the link, but the crucial point here is to choose a language
whose expressiveness is, essentially, first-order logics (i.e., relational algebra), as
it happens with the OCL expressions mostly used [13].

In this way, the executability of the overall framework can rely on relational
SQL technology, since the data to insert/delete/return by each activity can be
characterized through a relational-algebra query, and thus, an SQL statement.
In particular, the UML class diagram is encoded as a relational database, the
BPMN diagram as a Petri net, and the OCL contracts as logic rules that derive
which SQL statements must be applied to the database when an activity is
executed. As a proof of concept, we have developed a prototype, written in
Java, which allows loading at compile time all the models in our framework and
then execute their operations at run time in a relational database.

2 Preliminaries

UML Class Diagrams and Their Instances. A UML class diagram [1]
is formed by a hierarchy of classes, n-ary associations among such classes
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(where some of them might be reified, i.e., association classes), and attributes
inside these classes. In addition, a UML schema might be annotated with
minimum/maximum multiplicity constraints over its association-ends/attributes,
and hierarchy constraints (i.e., disjoint/complete constraints). In this paper, we
use the notation C � C ′ to refer that C is a subclass of C ′. We adopt a conceptual
perspective (as opposed to a software perspective) ofUMLclass diagrams, as typical
of the analysis phase of the development process [14].

Moreover, for convenience, we assume that the UML class diagram contains
only those features that can be mapped into SQL tables with primary/foreign
key constraints. For example we express in the diagram optional/mandatory
(min multiplicity 0 or 1), single/multivalued properties (max multiplicity 1 or
*), but not, e.g., min/max multiplicity 3. All other expressions are assumed to
be written and treated as OCL constraints (see below). A UML class diagram
instance is a set of objects and relationships among such objects. Each object is
classified as an instance of one or more UML classes, and each relationship as
an instance of one UML association. We assume that, whenever an object o is
classified as an instance of C, and C � C ′, then, o is also classified as an instance
of C ′. Note that this process of completing the classifications of an object can
be automatically computed through a chase over the UML class hierarchy. This
automatic mechanism is called ISA closure.

OCL. OCL [15] is a textual language for defining queries over a UML schema,
whose result depends on the contents of its UML instance. In particular, OCL
boolean expressions are widely used to define: (1) textual integrity constraints
that should be satisfied by UML instances of the schema, (2) operation contracts
pre/postconditions, that is, expressions that should be satisfied by the UML
instances of some schema before/after executing some operation, and (3) queries
specifying the return value of some operation. OCL expressions are usually tied
to a particular context UML class. For instance, the OCL operation contract of
a certain operation is tied to the class in which the operation is defined. In this
situation, the OCL expression self, refers to the object in which the operation is
invoked (in a similar way to the Java keyword this). Similarly, an OCL constraint
tied to some class C uses self to refer to any instance of C.

The core idea underlying OCL is the notion of navigation. Given an OCL
expression referring to an object, such as self, we can navigate to objects/values
related to such object through some association/attribute using the name of the
association-end/attribute we want to traverse. For instance, the OCL expres-
sion self.album tied to some context class Artist returns the albums related to
the particular artist referred by self. A navigation can also be defined starting
from an OCL expression referring to a collection of objects. For instance, the
OCL expression Artist.allInstances() refers to the set of all Artist objects, thus,
Artist.allInstances().album returns all the albums that can be obtained from all
the artists. Moreover, due to this capability of navigating from collections, OCL
permits chaining one navigation after another. For instance, self.album.track
refers to all the tracks of all the albums of a particular Artist self. Given these
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navigations, OCL offers several OCL operators to obtain basic type values (such
as boolean, or integer values), or other collections from them. For instance,
self.album.track->forAll(o|o.duration >0) returns true iff all the durations of all
the tracks o of some artist self are greater than 0.

We assume in this paper that all OCL expressions are written in the first-
order fragment of OCL [13], that is the fragment of OCL that can be seen as
fully declarative and encodable into relational algebra. Essentially, this excludes
OCL operations involving iterate, closure, basic data type operations (such as
String concat), and OrderedSet and Bag data types.

BPMN. BPMN (Business Process Model and Notation) [3] is a widely used and
well-known ISO and OMG standard language for modeling business processes.
It provides a graphical and intuitive notation which can be easily understood
by business people, analysts and developers. In a nutshell, the language uses
nodes to represent the activities or tasks of the process, whose execution order is
determined by a set of directed edges. Different gateway nodes are available to
control the flow, to allow for parallel or alternative execution paths, for instance.
Moreover, using BPMN it is also possible to represent the interaction between
different parties involved in the process, the message flow between them or the
objects involved in the process, just to mention a few examples. The diagram
has token semantics. As the different activities take place, the token (or tokens)
flows through the diagram allowing the execution of the following activities. Due
to this, it is possible to formalize a subset of the language into a Petri net [16].
This results in precise execution semantics for the BPMN diagram.

3 Linking Data and BPMN Models

We illustrate our proposal for linking process and data by means of the following
example. As we are going to see, the main advantage of our proposal is that, in
addition to the benefits of an artifact-centric approach which lets us represent
both the structural (i.e., the data) and the dynamic (i.e., the activities or tasks)
dimensions of the process, our models provide enough information to achieve
their automatic executability.

Example. We aim at realizing a process to create playlists from tracks of musical
albums. In particular, the process should deal with the following data and process
flow:

– Data: Each album has a title, a date of first release and exactly one associated
artist. An artist has a name and is either a physical person or a group. Each
artist has one album at least. Albums contain one or more tracks. Each track
has a number, a name and a duration and belongs to exactly one album.
Some albums are special editions and, in that case, may contain bonus tracks.
Playlists have a name and contain a nonempty set of tracks (for simplicity
the order is not of interest).
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– Process flow: Iteratively, the process asks the user for the name of an artist
and continues with two parallel branches. The first calculates and returns
to the user the set of tracks that are part of a special edition recorded by
the artist; then, it asks the user to select a subset of these tracks and builds
a playlist with them. In the second, the process obtains the set of playlists
containing a track by the selected artist. At the end of the two branches, the
set of tracks in the new playlist is returned to the user. After this, the user
decides whether he/she wishes to continue adding playlists to the system or
end the process.

In our proposal, we express the data requirements as a UML class diagram
(see Fig. 1), while the process flow is expressed in the BPMN (as shown in Fig. 2).
Notice that, as usual in BPMN, we have adopted message events for simple activ-
ities that only catch data from the user, or throw data to the user. These include
ArtistSelected, TracksPLnameSelected, PlaylistSent, and Continue.

Now, our goal is to link the process events with the data. To do so, we need to
ensure that the UML class diagram contemplates all the data modified/accessed
in every atomic activity, decision, and message received or sent in the BPMN.
Since, typically, the execution of a process needs to store some extra information
in process variables (e.g., we need to remember the artist selected by the user
at the beginning of the process since it is used in later BPMN events), we have
to extend the class diagram to capture them. In particular, we consider a new
class we call Artifact containing such process variables. To differentiate this class
from the rest, we label it with the stereotype Artifact.

number: Int
name: Sting
duration: Real

Track

SpecialEdition

title: Sting
date: Date

Album
name: String
physical/group: Bool

Artist
recordedBy1..* 1..11..* 1..1isContained

bonus
0..1

<<subset>>0..*

name: String
Playlist

in
1..*

0..*

Fig. 1. Class diagram for our playlist example
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Fig. 2. BPMN diagram representing a process for creating playlists.
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For instance, Fig. 3 shows the Artifact for our ongoing example. This artifact
is able to store the artist selected in the beginning of the process (through an
association to Artist), the name of the playlist to create (through the attribute
plname), the tracks to add in this new playlist (association to Track), the created
playlist itself (association to Playlist), and whether the user selects to end the
process or continue (attribute end).

 id : String
 plname : String [0..1]
 end : bool

<<artifact>>
Artifact

Playlist

Track

Artist* 0..10..10..1
*

*

Fig. 3. Class diagram with the representation of the artifact

Representing the process variables as an Artifact class associated to the rest
of elements in the class diagram provides the advantages of the object oriented
paradigm. That is, we can specify modifications over the process data by speci-
fying creations, deletions, and updates of objects/relations of that artifact. Note
that, in this way:

– We avoid errors in the execution of the model, as we ensure that the artifact
is linked to a specific instance of a class and not to an id of an instance which
may not exist, due to the fact that the id is wrong.

– We simplify the definition of the operation contracts by manipulating objects
(i.e. instances of classes) instead of identifiers.

Then, the idea is that, when a new process instance starts, a new Artifact
object is created to store all these process variables. Observe that this behav-
ior is similar to the use case controller in [17], as one class holds the required
information for the execution of several related operations or tasks.

The UML class diagram and its instantiation, including the artifact, can be
thought of as the information model of the process. Note that this instantiation
can be seen (and in fact, stored) as a relational database (i.e., a first-order
model).

Now, for any time instant, we define the state of the process as: (a) The
instantiation of the UML class diagram including the artifact; (b) The posi-
tions of the tokens in the BPMN diagrams. Using this notion of state, we can
describe precisely the process in terms of state evolution. For instance, our pre-
vious process can be described precisely as follows:

1. At the beginning of an iteration a message with the selected artist as payload
comes in; such artist is stored in the Artifact through the corresponding
association.
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2. Then, concurrently the process follows two branches.
– First branch:

(a) The CalcSendTracks activity calculates all tracks that are part of
some special edition recorded by the artist in artist and sends them
to the user; the tracks resulting from the calculation are not stored
in the Artifact, as they are not further used in the process, but are
instead directly sent to the user.

(b) Then, the user sends in the selected tracks and the name of the new
playlist. Both of these pieces of information are stored in the Artifact.

(c) Using the Artifact stored tracks and plname, the BuildPlayList
activity creates a new playlist. Such playlist is then stored in the
Artifact.

– Second branch:
(a) The CalcSendPlaylists activity, starting from the Artifact’s stored

artist, collects all its tracks, computes the set of playlists that already
exist which contain tracks by the selected artist and sends it to the
user. Notice that, since this result is not used anymore in the process,
it is not stored in the Artifact.

3. After these two branches complete their computations and join, a message
with the newly created playlist is sent to the user.

4. Finally the Continue? activity gets the info of whether the user wants to
continue or not, and stores it in the Artifact boolean variable end. Then,
depending on this information, the XOR-gateway ends the process or per-
forms another iteration.

This description of the state evolution can be made completely executable
by (1) specifying the previous activities and start/end/message event through
a formal language; and (2) adopting the Petri Net semantics for BPMN control
flow.

Thus, for this purpose, we specify each activity in the BPMN diagram
through an OCL operation contract. Each OCL operation will have a precon-
dition, stating the conditions that must be true before the task can take place,
and a postcondition, indicating the resulting state of the system after the oper-
ation’s execution. Some of the tasks will only return information to the user
without making any changes (we will call them queries): these tasks will include
the keyword result as part of the postcondition. OCL operation contracts need
to refer to the instances of Artifact to get rid explicitly of the information
manipulated by the process.

In Table 1 we show the OCL operation contracts for the BPMN diagram in
Fig. 2. Note that we have also specified a contract for the start and end event in
this diagram. The former (Initialize) is in charge of instantiating the artifact
that will keep the information for the execution of the current process. The latter
(End) is in charge of deleting the artifact and its relationships. Except for the
task Initialize, which is a class operation, the rest of the tasks are instance
operations invoked over the artifact being manipulated by the process (the one
created by Initialize).
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Table 1. OCL contracts for the events and activities of the BPMN diagram

4 Achieving Executable Business Process Models

To make this framework executable, we encode the UML class diagram as a
relational database manageable through SQL, the BPMN diagram as a Petri
net, and the OCL contracts as logic rules that derive which SQL statements
must be applied to the database when the corresponding activity is executed.
In this way, we get the executability of the framework benefiting from standard
relational database technology.
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From the Class Diagram to a Database Schema. We encode the UML class
diagram into a relational database following well-known techniques of database
design [18]. Note that in this step we also store the Artifact (i.e., the process
variables) in the database since the Artifact appears in the UML schema.

From the BPMN Diagram to a Petri Net. The BPMN diagram can be
formalized into a Petri net by following [16]. This proposal focuses on formalizing
the control-flow (i.e. the execution order of the tasks and events) of BPMN
models, which is exactly what we need in this case. Roughly, each task will map
to a transition with one input and one output place. Gateway nodes will, in the
general case, correspond to a combination of places and silent transitions, to
represent the routing behaviour of the gateway. This translation to a Petri Net
is needed to make sure formally that the order of execution of the processes is
exactly the one defined by the BPMN.

Petri nets also require an initial marking, which represents the initial state
of the BPMN model. In general, this means placing a single token in the place
that corresponds to the start node of the BPMN model. By following the token
semantics of the resulting Petri net, it is possible to know exactly which tasks
or events are ready to take place.

The Petri net we obtain in our example is shown in Fig. 4. Each task cor-
responds to a labelled transition, which has one input and one output place.
Each gateway node maps to a set of places and transitions. For instance, the
XOR merge gateway placed before the task ArtistSelected corresponds to the
transitions and places inside the dotted rectangle in Fig. 4. The initial marking
consists in putting a token in the most left-side place (the one with no input
arcs).

Fig. 4. Petri net resulting from the transition of the BPMN. The dotted rectangle
shows the transitions and places corresponding to the translation of the XOR merge
gateway placed before ArtistSelected.

From the OCL Operation Contracts to Logic Derivation Rules. Each
OCL operation contract is encoded into a set of logic rules which, intuitively,
derive the SQL insertions/deletions/updates that we must perform on the SQL
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database when applying the operation. In this way, we move from the declarative
OCL specifications to an imperative formalism that can be executed.

The logic rules we obtain from each operation have the following form:

ins P(x) : −opName(a), arg0 opName(x0), ..., argN opName(xn), pre(xpre), query(xq)

del P(x) : −opName(a), arg0 opName(x0), ..., argN opName(xn), pre(xpre), query(xq)

result(x) : −opName(a), arg0 opName(x0), ..., argN opName(xn), pre(xpre), query(xq)

The head of each rule determines the kind of SQL statement to apply (inser-
tion, deletion, or query), while the body specifies for which values. That is, intu-
itively, a rule of the first form states that when a user invokes operation opName
to artifact a with the n arguments specified in arg0 opName, ..., argN opName,
then some facts P(x) must be inserted in the database if the precondition
encoded by pre(xpre) is satisfied.

The variables x are instantiated using the arguments given by the user x0, ...,
xn, or even the result of a first-order query query(xq) that retrieves values from
the current database state (or process data stored in the artifact a). If the query
returns a set of tuples, or one argument itself is a set of tuples, the rule derives
as many insertions as elements in the set.

Similarly, rules of the second and third form state deletions of facts and spec-
ify the tuples to return to the user as result. Attribute modifications are encoded
by using the well-known strategy of combining a deletion and an insertion rule
for the same fact.

The translation from OCL contracts to this logic formalism is an exten-
sion of the one in [19]. In particular, the extension we propose in this paper is
intended to: (1) allow using the query query(xq) to instantiate the variables used
in the insertions/deletions to apply, (2) deal with OCL Set typed arguments, and
(3) retrieving results for the user.

Given an OCL contract, its translation into logics consists in two steps. The
first one parses the OCL postcondition to identify the different rules we need to
create (i.e., it identifies the heads of the different rules to build). The second is in
charge of creating the bodies of these rules, which is done by parsing the opera-
tion name, arguments, and the pre/postcondition to identify how to instantiate
the variables from the rule head.

Identifying the Head. We analyze the OCL postcondition to determine which
kind of updates are performed by the operation. Essentially, such updates are:
object creation/deletion, object specialization/generalization, relationship inser-
tion/deletion, attribute insertion/deletion/modification, and queries. Each of
these updates will lead to one or several derivation rules. For instance, an object
creation of class C, where C is a subclass of C ′, leads to a derivation rule of
the form ins C(o), together with another derivation rule of the form ins C ′(o).
Intuitively, the set of derivation rules generated for each object insertion/deletion
performs the ISA closure as stated in the Preliminaries.
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In Table 2 we show how we identify such updates and the derivation rules
they originate. This table is an extension of the translating rules defined in [19]
to sets and data extracted from the database. Intuitively, we traverse the OCL
postcondition to find the OCL patterns stated in the left column of the table and,
for each match, we create a new derivation rule as stated in the right column.
In this table, we use o and u to refer to OCL object expressions of type C,
and a and b to refer to OCL value expressions (such as constants). Moreover,
we use role to refer to property call navigations through associations R, attr to
property call navigations to attributes A, and query to refer to an OCL query
expression. Finally, we assume that t is a tuple of n variables, where n is the
arity of the TupleType returned by the OCL query, or 1 if the OCL query returns
an object/value.

Table 2. OCL patterns to derivation rules

OCL pattern Update kind Derivation rules to create

o.oclIsNew() Object creation ins C(o)
ins C’(o), for each C � C’

C.allInstances()->excludes(o) Object deletion del C(o)
del C’(o) for each C’ � C
del C”(o) for each C � C”

o.oclIsKindOf(C’) Object specialization ins C’(o)
ins C”(o) for each C’ � C” � C

not o.oclIsKindOf(C’) Object generalization del C’(o)
del C”(o) for each C” � C’

o.role->includes(u)
o.role->includesAll(u)

Relationship insertion ins R(o, u)

o.role->excludes(u)
o.role->excludesAll(u)

Relationship deletion del R(o, u)

o.oclINew() and o.attr = a Attribute insertion ins A(o, a)

o.attr = null Attribute deletion del A(o, a)

o.attr = b Attribute update ins A(o, b)
del A(o, a)

result = query Query result(t)

Deriving the Body. Once we know the kind of updates each operation applies, we
have to determine the values for which they should be applied. This is achieved
by means of the expression in the body of the rule, which consists of two different
parts: one which is common to all derivation rules of each operation specifying
the operation name, arguments and precondition; and a specific part for each
derivation stating the specific queries (i.e., a conjunctions of literals referring to
the database state) used to instantiate the variables in the rule. We explain each
part in the following.
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– Common part of the body. The common part of the body consists of one
literal representing the operation we are translating opName(a), whose unique
variable represents the artifact in which we are applying the operation, the
arguments arg0 opName(X0), ... , argN opName(Xn) representing the values
given by the user to perform such operation, and one logic query pre(Xpre)
encoding the precondition of the operation. Such logic query is obtained by
translating the OCL precondition into logics according to the proposal in [20].

– Specific part of the body. The queries in this part are obtained through the
logic translation of the o, u object expressions, a, b value expressions and the
query expression appearing in Table 2, which is only performed if the expres-
sions do not explicitly refer to operation arguments (since they have been
encoded already previous step). We also use [20] to perform this encoding.
Essentially, this consists in translating each OCL navigation as a sequence of
logic atoms representing the different associations it traverses to. For instance,
t.album.artist is translated into track(T, Al) ∧ recordedBy(Al, Ar). The idea
of the translation is that, each logic variable used in the navigations repre-
sents a different UML object, and thus, can be further used to state conditions
over such object. For instance, specialEdition(Al) states that the UML object
represented by the variable Al is a specialEdition.

As an example, the OCL contracts of the operations BuildPlaylist and Calc-
SendTracks are translated as the rules set shown in Listings 1.1, and 1.2. Note
that the variables in the head of the rules are instantiated using queries in the
body of the rules.

Listing 1.1. Logic encoding for task BuildPlaylist

ins_Playlist(Pl) :- buildplaylist(A), artifactPlname(A,Pl)
ins_TrackIn(Tr, Al, Pl) :- buildplaylist(A), artifactPlname(A,Pl),

artifactTrack(A,Tr,Al)
ins_ArtifactPlaylist(A,Pl) :- buildplaylist(A), artifactPlname(A,Pl)

Listing 1.2. Logic encoding for task CalcSendTracks

result_CalcSendTracks(T,Al) :- calcSendTracks(A), track(T,Al), recordedBy(Al,
Ar), artifactArtist(A,Ar), specialEdition(Al)

5 Executing the Framework

The proposed framework allows us to automatically and unambiguously execute
processes defined according to our specification models. We have built a Java
library for this purpose1. This library permits loading in compilation time the
underlying semantic models of the framework and executing its operations at
runtime. That is:

1 A prototype of this library together the necessary code/models to execute the BPM
used in this paper can be found at http://www.essi.upc.edu/∼xoriol/opexec/.

http://www.essi.upc.edu/~xoriol/opexec/
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– Given (at compilation time): (1) a SQL database connection encoding a UML
schema, (2) a set of derivation rules defining the semantics of the operations,
(3) a map from the logic predicates to the SQL tables/columns.

– Given (at runtime): (4) an operation name, (5) the values for their arguments.
– Executes (at runtime): (6) the updates specified in the derivation rules of

the operation in the database, and (7) returns to the user the information
specified in the result part of the operation.

The current version of the Java library does not check yet whether the operations
executed by the user match the order imposed by the Petri nets. However, we
understand that this critical (and necessary) functionality may be achieved by
integrating any Petri Net simulator in our library and this is why we have left
implementation of this part for future work. In contrast, the tool works in any
relational database management system and it is able to check whether the
executed operations cause the violation of some integrity constraint (such as the
min/max multiplicity constraints of the UML class diagram, other UML class
diagram annotations such as subset), by means of the implementation of the
incremental integrity checking approach in [21].

Operation Executor Library Architecture. The architecture of our library
is shown in Fig. 5. Briefly, a user loads (at compilation time) the previous mod-
els in the Controller component, which stores them. When the user wants to
start executing the process, he/she invokes the controller to instantiate a new
ProcessExecutor. This class executes all the operation invocations of such process
instance. Thus, each instance of this class has its own (unique) artifact ID,
which is used to store, in the database, all the process data related to such
process instance. When a user invokes an operation to the ProcessExecutor, the
ProcessExecutor creates an OperationExecutorThread, in which we store the
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models

ProcessExecutor

artifactID

OperationExecThreadOperationExecThreadManager

operationExecThreadQueue

1. Loads models
(compilation time)

2. Creates
ProcessExecutor

2.1 creates

1.1 creates

3. Calls operation/s on ProcessExecutor
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3.2 enqueues

3.3. executes

Database

3.4 executes

Operation
Executor 
Library

derivationRules

Fig. 5. OperationExecutor Java library architecture
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derivation rules related to such operation. Then, the ProcessExecutor adds it
to the OperationExecutionThreadManager. This component is in charge of
executing the operation as soon as it can be executed. When the
OperationExecutionThread is executed, it performs the following steps:

1. It instantiates the updates (insertions/deletions) that it must apply according
to the derivation rules and the database state.

2. It checks that these updates do not cause any constraint violation according
to the incrementally checking method defined in [21].

3. If no violation is found, the updates are translated as SQL insert/delete/up-
date statements and executed, and the query to retrieve the result of the
operation execution is performed (if the operation returns some result).

4. Otherwise, an exception is thrown.

6 Related Work

In the following, we first discuss related frameworks for linking data and
process models, and then, discuss several of their formalizations to achieve their
executability.

In terms of the framework for modeling data and business processes, many of
the existing works [9–11] use languages grounded on logic, which are formal and
unambiguous but more difficult to understand than BPMN and UML. There are
other approaches which use graphical representations which are more intuitive
and appealing to business analysts and developers, such as [12,22,23]. [23] is
based on the Guard-Stage-Milestone approach, which represents the evolution
of each relevant object in a lifecycle following a more declarative approach than
ours. [22] uses artifact union graphs, which are similar to Petri nets, to repre-
sent the process. [12] is the most similar approach to ours and relies on various
UML diagrams (different to the ones we consider) and OCL contracts to repre-
sent the data and the process. However, none of these works deal with process
executability; most of them focus on studying the correctness of the model.

Regarding process executability, BPEL (or WS-BPEL) allows to specify exe-
cutable business processes using an XML format which makes it difficult to read.
Although there is a mapping between BPMN 2.0 and BPEL it is incomplete and
suffers from several issues [24]. The work of [25] uses XML nets, a Petri-net-
based process modelling approach which is meant to be executable. It uses a
graphical language, which maps to a DTD (XML Document Type Definition)
to represent the data required by the process, and the data manipulations are
graphically shown in the XML net. In contrast to our approach, this solution
is technology-based, as the specification of the models is based on XML, and
details of how to achieve executability are not explained.

YAWL [26] is a workflow graphical language whose semantics are formally
defined and based on Petri nets, with its corresponding execution engine. The
language offers both a control-flow and data-flow perspective of the process,
where data is defined following an XML format. Intuitively, the tasks are then
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annotated with their inputs and outputs, but they do not allow defining what
changes are made by each of them. Therefore, the execution engine only detects
missing information and it is not able to fully execute the operation.

In [27] an hybrid model using a data-oriented declarative specification and a
control-flow-oriented imperative specification of a business process are defined.
Using this approach it is possible to obtain automatically an imperative model
that is executable in a standard Business Process Management System. However,
data is defined as a set of unstructured variables and the pre and postconditions
merely state conditions over the data, instead of indicating exactly what is done
by the different tasks.

Earlier, similar attempts to ours are [28,29]. Both approaches focus on defin-
ing a conceptual model which can then be automatically translated to achieve
execution. However, the purpose of [28] is different to ours: their main goal is to
be able to validate the model through execution, while ours is to achieve exe-
cutability by using the current de facto standard languages for data and process
representation. Similarly, the approach in [29] - which translates the models into
Pascal - is outdated by current, object-oriented programming languages.

In addition, it is worth noting that most of these proposals do not use stan-
dard formalisms for conceptual representation, as we do.

7 Conclusions

We have proposed a framework to link data and business processes, which can
be to be executed automatically. It uses the BPMN language to represent the
processes, the UML class diagram for the data, and OCL operation contracts
to define what do the tasks in the process. Using these languages, we are not
proposing any yet-another-formalism but using a standard one in a new inte-
grated way to link data and processes.

We have shown the feasibility of our approach by creating a Java library
which, given a model, is able to execute the tasks and update the information
base accordingly. Before applying the changes, the tool performs an incremental
checking of integrity constraints to determine if there are any violations. If this
is the case, it will throw an exception. Otherwise, it applies the changes to
the underlying database that stores the data. All of this is performed without
requiring user intervention.

With the approach we present here, we blur the distinction between specifi-
cation and implementation, since the specification itself is executable.
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