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Abstract. Process discovery methods automatically infer process models from
event logs. Often, event logs contain so-called noise, e.g., infrequent outliers
or recording errors, which obscure the main behavior of the process. Existing
methods filter this noise based on the frequency of event labels: infrequent paths
and activities are excluded. However, infrequent behavior may reveal important
insights into the process. Thus, not all infrequent behavior should be consid-
ered as noise. This paper proposes the Data-aware Heuristic Miner (DHM), a
process discovery method that uses the data attributes to distinguish infrequent
paths from random noise by using classification techniques. Data- and control-
flow of the process are discovered together. We show that the DHM is, to some
degree, robust against random noise and reveals data-driven decisions, which are
filtered by other discovery methods. The DHM has been successfully tested on
several real-life event logs, two of which we present in this paper.
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1 Introduction

Process models are used by organizations to document, specify, and analyze their
processes [1]. A process model describes the expected behavior of a process in terms of
its activities (i.e., units of work) and their ordering. Most contemporary processes are
supported by information systems. Often, those systems record information about the
execution of processes in databases. With the abundance of such data, there is a growing
interest in process discovery [2], i.e., revealing the actual execution of processes from
events. Process discovery methods automatically infer process models from event logs.

One important challenge for process discovery methods is to handle event logs
with noise [2,3]. In practice, event logs often contain noise, e.g., out-of-order events,
exceptional behavior, or recording errors [4]. Including all such infrequent events in the
process discovery often leads to unusable, complex models. Therefore, noise filtering
methods that distinguish noise from the regular behavior of the process may be useful.

Some of the early techniques for process discovery assumed noise-free event logs
(e.g., the Alpha algorithm [5] and the region based approaches [6]). These techniques
are of limited use in real-life settings. Most of the more recent and more sophisticated
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process discovery methods support noise filtering [3]. Existing noise-filtering methods
are based on frequencies [7–10], machine-learning techniques [11,12], genetic algo-
rithms [13], or probabilistic models [14,15]. All of those methods focus on the control-
flow perspective (i.e., the event labels) when filtering noise. Dedicated noise filtering
methods [16,17] are also based on frequencies.

However, processes are often governed by rules. Decision are taken on the basis of
available data, available resources, and the process context. Some paths may be exe-
cuted infrequently because the corresponding conditions are rarely fulfilled. Existing
methods based solely on the control-flow perspective would disregard such infrequent
behavior as noise. However, some infrequent behavior may be characterized by very
deterministic rules, and, thus, be of great interest to process analysts (e.g., in the con-
text of risks and fraud). For example, shortcuts in a process might only be taken by a
specific resource, undesired behavior might be subject to conditions, and infrequently
actions might be legitimate only for special types of cases. These kind of events should
not be set aside as noise. Methods exist to discover such decision rules [18–20] but all
rely on a previously discovered process model of the process. Hence, existing methods
do not leverage the full potential of the data perspective. Data- and control-flow need
to be discovered together. Recent work on declarative process discovery [21] considers
the data perspective. However, similar to association rule mining, sets of rules rather
than full process models are returned.

In this work, we propose the Data-aware Heuristic Miner (DHM), which takes the
data perspective into account when discovering the control flow of a process. The DHM
uses classification techniques to reveal data dependencies between activities, and uses
these data dependencies to distinguish noise from infrequent conditional behavior. It
returns process models that yield a better insight into the data perspective of processes
by revealing hidden data dependencies while filtering random noise. The evaluation on
real-life cases shows that the DHM reveals additional insights not returned by state-
of-the-art process discovery methods. We confirmed the discovered conditions with a
domain expert for one of the real-life event logs. The experiment on the synthetic data
shows that the DHM is resilient to a certain degree of randomly injected noise, which is
not characterized by data conditions. It rediscovers the original model, whereas earlier
techniques either show too much, or too little behavior. The contribution of this paper is
a process discovery method that is able to distill important information from infrequent
behavior instead of dismissing it as noise.

The remainder of this paper is structured as follows. We start by introducing the
problem with an example in Sect. 2. Then, required preliminaries are introduced in
Sect. 3. Section 4 presents our novel process discovery method. We evaluate our method
using both synthetic and real-life data in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Problem Description

Figure 1 shows a simplified process from the health care domain. We use this exam-
ple in the paper to motivate the relevance of the data perspective for noise filtering.
When patients arrive at the hospital they are assigned a triage priority, registered and
assigned to a responsible nurse. Only in exceptional cases, patients are assigned the
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white triage priority. Those patients typically, leave the emergency ward directly after
registration since their injuries do not require the attendance of a doctor A . All other
patients are admitted to the emergency ward. While patients are in the emergency ward
a nurse periodically checks their condition. In parallel to this, for the group of patients
under consideration, an X-ray is taken and a doctor visits the patient. There are two
different work practices regarding these two activities. Normally, the doctor visits the
patients after which the X-Ray is taken. One particular nurse (Alice) re-sequences these
activities in the reversed order to improve the process: first the X-ray is taken and, only
thereafter, the doctor visits the patient B . As this work practice is only followed by one
nurse, it is observed less frequently. Afterwards, the doctor visits the patient one more
time and decides on the type of dismissal. Then, the patient is prepared for a possible
transfer. For patients with the out dismissal type an ambulance needs to be organized
C . This process contains three examples of infrequent, data-dependent behavior: A a
data-dependent path, B data-dependent re-sequencing, and C a data-dependent activ-
ity. The goal of our work is to rediscover such behavior, while ignoring random noise.

Fig. 1. A simplified process in BPMN notation from the emergency ward of a hospital, which is
used as motivating example throughout this paper.

(a) IM filters little of the injected noise
and fails to reveal behavior A and B .

(b) HM filters the injected noise well, but
fails to show behavior A , B and C .

Fig. 2.Models discovered by IM and HM on an event log generated from the example process.

Assume an event log of the process in Fig. 1 obtained from the information systems
of the hospital. As motivated in the introduction, it is likely that this event log contains
noise. We applied both the Heuristic Miner (HM) [8] and the Inductive Miner (IM) [9]
as representatives of discovery methods supporting noise filtering on such an event
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log with a controlled degree of noise1. Figure 2 shows the resulting process models in
BPMN notation. Clearly, both methods are unaware of the data perspective. Therefore,
they fail to distinguish between random noise and the infrequent data-dependent behav-
ior A , B , and C . It might be possible to tweak the parameters of the algorithms such
that more behavior is revealed (e.g., through grid search). Still, finding the correct para-
meter setting that does not include unrelated noise requires deep knowledge about the
underlying process. Therefore, this is often not feasible. Moreover, it is not possible
to reveal the infrequent data-dependent behavior by using decision mining techniques.
Those techniques can only reveal decision rules for paths that are reflected in the process
model, thus low-frequent but deterministic behavior remains undetected.

In the remainder of this paper, we describe the DHM, which extends the ideas of the
HM with the use of classification techniques to reveal data dependencies. Our method,
indeed, rediscovers the behavior of the process as shown in Fig. 1.

3 Preliminaries

An event log stores information about activities that were recorded by information sys-
tems supporting the execution of a process [2]. Each execution of a process instance
results in a sequence of events. Each events corresponds to the execution of one activ-
ity. Given universes of attributes A and valuesU , an event log L= (E,Σ ,#,L ) consists
of:

– E a finite set of unique event identifiers;
– Σ ⊆U a finite set of activities;
– # : E → (A �→U) obtains the attribute values recorded for an event;
– L ⊆ E∗ the set of traces over E. A trace σ ∈ L records the sequence of events for
one process instance. Each event occurs only in a single trace.

Table 1. Three traces of the example process with attributes activity, priority, nurse, and type.

Given an event e ∈ E, we write #a(e) ∈ U to obtain the value u ∈ U recorded for
attribute a ∈ A. We require events to record at least the activity attribute: #act(e) ∈ Σ
1 Here, in 5% of the cases one additional event was randomly executed out of the original order.
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is the name of the activity that caused the event. Given a trace 〈e1, . . . ,en〉 ∈ L , we
define val : E → (A �→U) to collect the latest attribute values recorded before an event
occurred, i.e., val(ei) = val(ei−1)⊕#(ei−1) with special case val(e1) = f∅.2 We denote
the predecessor event in the trace by •(ei) = ei−1 with special case •(e1) = ⊥. Finally,
in the remainder of this paper, we assume that a particular event log L = (E,Σ ,#,L )
exists to avoid unnecessary notation.

Example 1. Table 1 shows three traces σ1,σ2,σ3 ∈ L based on the process shown in
Fig. 1. Each event has a unique identifier. We can identify the activity of event e11 as
#act(e11) = Triage. Moreover, event e11 writes the attribute value #Priority(e11) = Red.
We obtain the latest attribute values recorded before e18 occurred as val(e18) = f , with
f (Priority) = Red and f (Nurse) = Joe.

Our method uses Causal nets (C-nets) to represent the discovered process model [8,
22]. A C-net is a tuple (Σ ,si,so,D, I,O) where:

– Σ is a finite set of activities;
– si ∈ Σ is the unique start activity;
– so ∈ Σ is the unique end activity;
– D ⊆ Σ ×Σ is the dependency relation;
– B= {X ⊆ P(Σ) | X = {∅}∨∅ /∈ X} are possible bindings;3

– I ∈ Σ → B is the set of input bindings per activity;
– O ∈ Σ → B is the set of output bindings per activity,

such that the dependency relations match the input and output bindings, i.e.,
D = {(s1,s2) ∈ Σ × Σ | s1 ∈ ⋃

β∈I(s2) β ∧ s2 ∈ ⋃
β∈O(s1) β}. We require C-nets to have

a unique start and end activity, i.e., {si} = {s ∈ Σ | I(s) = {∅}} {so} = {s ∈ Σ |
O(s) = {∅}}. The input and output binding functions of a C-net define its language.
We describe the C-net semantics by example, the full semantics are described in [22].

Fig. 3. A causal net (C-net) of the example process. Activities are depicted with boxes, the depen-
dency relations as edges, and the binding functions as black dots on the edges. The unique start
and end activities are shown as black boxes. The dotted edges are explained in Sect. 5.

Example 2. Figure 3 shows how the example from Fig. 1 can be modeled as C-net.
Activities are depicted with boxes and dependency relations as edges. There are unique
start and end activities: si and so. Output and input bindings are depicted by black dots

2 f ⊕g denotes the overriding union of f and g, and f∅ : ∅ →U is the empty function.
3 P(Σ) denotes the powerset of set Σ .
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on the edges in Fig. 3. Bindings indicate which combinations of activities can precede
or follow a given activity. Connected dots show activities belonging to the same bind-
ing. We abbreviate activity names by using the first letter. For example, after activity
si, activities T and R follow in a sequence, i.e., O(si) = {{T}}, I(T ) = {{si}} and
O(T ) = {{R}}, I(R) = {{T}}. Then, there are multiple alternative choices. Three out-
put bindings are defined for R: O(R) = {{so},{C,X},{C,V}}. Each set of activities
represents a possible choice of following activities (XOR gateway). Either only so, or
both C and X, or both C and V need to happen. Activities in the same set can be executed
in parallel (AND gateway).

4 Data-Driven Process Discovery

The DHM builds on the insight that infrequent but data-dependent process behavior is
of great interest to process analysts and, thus, should not be disregarded as noise. We
extend the ideas of the HM [8] with a measure for conditional dependency.

4.1 Data-Aware Dependency Measure

To discover data-dependent behavior in the event log, we make use of classification
techniques (e.g., decision trees). More specifically, we rely on binary classifiers pre-
dicting directly-follows relations based on attribute values recorded in the event log.
We denote these classifiers as dependency conditions.

Definition 1 (Dependency conditions). Given universes of attributes A, valuesU, and
activities Σ ⊆ U, we define the dependency conditions C ∈ (Σ × Σ) → ((A �→ U) →
{0,1}). A dependency condition Ca,b(x) = (C(a,b))(x) is a binary classifier that pre-
dicts whether an event of activity a is directly followed by an event of activity b for the
attribute values x ∈ (A �→U), i.e., Ca,b(x) = 1 when b is predicted to directly follow a
and Ca,b(x) = 0 when a different activity is predicted.

In the remainder of the paper, we denote with 1 a special dependency condition function
that returns classifiers predicting 1 regardless of the attribute values, i.e., ∀a,b∈ Σ ,∀x∈
(A �→U) : 1a,b(x) = 1. Given a dependency condition, we establish the frequency with
which activities are observed to directly follow other activities in the event log when
the condition holds. We denote this as: conditional directly follows.

Definition 2 (Conditional directly follows relation). Given activities a,b ∈ Σ and
dependency conditions C, we write a >C,L b if and only if an execution of activity a
with the latest attribute values x is directly followed by an execution of activity b under
dependency condition Ca,b(x). We denote the frequency of a conditional directly follows
relation a>C,L b in the event log as:

∣
∣a>C,L b

∣
∣ = |{e ∈ E |#act(•(e)) = a∧•(e) �= ⊥∧#act(e) = b

∧Ca,b(val(e)) = 1}|.

Now, we define a data-aware variant of the dependency measure proposed by the HM.



Data-Driven Process Discovery 551

Definition 3 (Conditional dependency measure). Given activities a,b ∈ Σ and
dependency conditions C. We define a ⇒C,L b : Σ × Σ → [−1,1] as the strength of the
causal dependency from a to b under condition Ca,b in the event log:

a ⇒C,L b=

⎧
⎪⎨

⎪⎩

|a>C,Lb|−|b>C,La|
|a>C,Lb|+|b>C,La|+1

f or a �= b,

|a>C,La|
|a>C,La|+1

otherwise.

The intuition behind the data-aware variant of these measures is that a relation (a,b)
should be included in the dependency relations of the discovered causal net when it is
clearly characterized by a certain dependency condition Ca,b.

Example 3. Consider an event log L with 50 traces like σ1, 50 traces like σ2 and 50
traces like σ3 as shown in Table 1. We determine the conditional dependency mea-
sure X ⇒C,L V from activity X-Ray (X) to activity Visit (V). We assume that condi-
tion CX ,V (v) returns 1 only if attribute Nurse values takes on the value Alice. Then,
we obtain the number of times X is directly followed by V under condition CX ,V as∣
∣X >C,L V

∣
∣= 50, and the number of times V is directly followed by X under conditions

C as
∣
∣V >C,L X

∣
∣ = 0. Therefore, the conditional dependency measure under conditions

C is X ⇒C,L V = 50−0
50+0+1 ≈ 0.98. This indicates a strong dependency relation from activ-

ity X to activity V under condition CX ,V . By contrast, if we consider the unconditional
dependency measure X ⇒1,L V , then we obtain 50−100

50+100+1 ≈ −0.33. Thus, when disre-
garding the data perspective, both activities appear to be executed in parallel.

4.2 Discovering Data Conditions

We described the conditional directly-follows relation and the conditional dependency
measure. We use the latter measure to determine which relations should be included in
the C-net. Both concepts rely on discovered dependency conditions. Here, we describe
how to train a classifier that can be used as dependency condition. We build a set of
training instances for every combination of activities (a,b) ∈ Σ ×Σ .

In the remainder, B(X) denotes the set of all multi-sets over a set X . We use X =
[a2,b] as a short-hand notation to denote the multi-set X = [a,a,b], and

⊎
to denote the

sum of two multi-sets, i.e., X
⊎
[b,c] = [a2,b2,c].

Definition 4 (Training Instances). Given a source activity a∈ Σ , a candidate activity
b∈ Σ , and a dependency threshold θdep ∈ [0,1]. Let a• ⊆ Σ be the set of activities s that
directly follow a in the event log with an unconditional dependency measure above the
threshold θdep, i.e., a• = {s ∈ Σ | a ⇒1,L s ≥ θdep}. We collect those events XL,a,b ⊆ E
that directly follow an execution of a in the event log, and refer to activities in a•, or to
the candidate activity b, i.e., XL,a,b = {e ∈ E | •(e) = a∧#act(e) ∈ a• ∪{b}}. Function
TL,θdep ∈ (Σ ×Σ) → B((A �→U)×{1,0}) returns the multi-set of training instances:

TL,θdep(a,b) =
⊎

e∈XL,a,b
[(val(e),cl(e))] with cl(e) =

{
1, f or #act(e) = b
0, f or #act(e) �= b
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Conceptually, our method is independent of the used classification algorithm. Con-
cretely, we employ decision trees (C4.5) [23] as an efficient method that result in human
interpretable conditions. We build the dependency conditions C by assembling a set of
training instances TL,θdep(a,b) and training a decision tree for each possible relation
(a,b) ∈ Σ × Σ . Only good dependency conditions with discriminative power are used
later on. We use a score q(Ca,b) ∈ [0,1] to determine the quality of a particular condi-
tionCa,b. There are many possible performance measures for binary classification algo-
rithm that can be used together with our method. None of the measures is universally
accepted, the correct choice depends on the concrete application area.

We opted for Cohen’s kappa (κ) [24], which indicates whether the prediction was
better than a prediction by chance (i.e., for κ > 0). Kappa favors a good prediction per-
formance on the minority class, which is a desirable property in our setting. Moreover,
it has been recommended for nonparametric binary classifiers, such as C4.5, on data
with imbalanced class priors [25]. However, we do not claim κ to be the best measure
and, thus, foresee other measures to be plugged-in depending on the application area.

Example 4. Consider the dependency threshold θdep = 0.9 and an event log contain-
ing 150 traces, where 50 traces record the same values as σ1, 50 traces the same val-
ues as σ2 and 50 traces the same values as σ3. We train a classifier for the depen-
dency condition CX ,V , i.e., the dependency relation from X-Ray (X) to Visit (V)
using the training instances TL,θdep(X ,V ). The training instances are TL,θdep(X ,V ) =
[(v1,Final Visit)50,(v2,Visit)50] with attribute value functions v1(P) = Red, v1(N) =
Joe and v2(P) = Red, v2(N) = Alice. Please note that there is no instance with the
activity Check (C) since the unconditional dependency measure X ⇒1,L C is below the
threshold of 0.9. Therefore, the instances based on trace σ3 are not included as we
already know that activity C is in parallel to X. We train a C4.5 decision tree and obtain
the dependency condition CX ,V withCX ,V (v2) = 1 and CX ,V (v1) = 0.

4.3 Data-Driven Discovery of Causal Nets

We describe the DHM method that builds C-nets based on conditional dependencies.
The DHM supports four user-specified thresholds that can be used to tune the noise
filtering capabilities to specific needs of the user. All thresholds range between 0 and 1:

– θobs, the observation threshold, which controls the relative frequency of relations;
– θdep, the dependency threshold, which controls the strength of causal dependencies;
– θbin, the binding threshold, which controls the number of bindings;
– θcon, the condition threshold, which controls the quality of data-dependencies.

We discover a C-net (Σ ,si,so,D, I,O) from event log L = (E,Σ ,#,L ) and thresholds
θobs,θdep,θbin,θcon in the following steps.

1. We want to ensure that the resulting C-net has a unique start and end activity.
Therefore, we add artificial start and end events to all traces, i.e.,
∀σ∈L (σ = (ei,e1, . . . ,en,eo)∧#act(ei) = si ∧#act(eo) = so) and Σ = Σ ∪{si,so}.
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2. We build the set of standard dependency relations as follows:

D= {(a,b) ∈ Σ ×Σ | a ⇒1,L b ≥ θdep ∧
∣
∣a>1,L b

∣
∣

|L | ≥ θobs}.

3. We discover the dependency conditions C by training classifiers for each pair
(a,b) ∈ Σ ×Σ using the training instances TL,θdep(a,b).

4. We add the conditional dependency relations to D. We use θcon instead of θobs to
obtain infrequent, high-quality data conditions:

D= D∪{(a,b) ∈ Σ ×Σ | q(Ca,b) ≥ θcon ∧a ⇒C,L b ≥ θdep}.

5. Some activities s∈ Σ might not have a predecessor or successor in the directed graph
induced by D. Intuitively, each task in a process should have a cause (predecessor)
and an effect (successor) [8], all tasks in the C-net should be connected. Therefore,
we propose two alternative heuristics to enforce this:
– all-task-connected heuristic proposed by the HM [8], or
– the accepted-task-connected heuristic, a new heuristic.

Here, we describe the new accepted-task-connected heuristic. We repeatedly con-
nect only those activities that are already part of the dependency graph using their
best neighboring activities until all activities have a cause and an effect. Then, set D
of relations necessary to connect all activities accepted so far is:

D= {(a,b) ∈ Σ ×Σ |(�x (a,x) ∈ D∧∀y (a ⇒1,L b) ≥ (a ⇒1,L y))

∨(�x (x,b) ∈ D∧∀y (a ⇒1,L b) ≥ (y ⇒1,L b)}.

We extend the dependency relations with the new relations, i.e., D = D∪D. There
might be new, unconnected activities in D. Therefore, we repeat adding the best
neighboring activities until set D is empty.

6. We discover the input and output binding functions of the C-net. For the output
binding function O(a) of an activity a ∈ Σ , we need to determine which executions
of b ∈ Σ (with (a,b) ∈ D) were caused by an execution of activity a. We use the
heuristic proposed by the HM [8] and repeat it for completeness. The heuristic con-
siders activity b to be caused by activity a only if it is the nearest activity that may
have caused b. Any other activity s executed in between a and b should not be a
possible cause of b, i.e., (s,b) /∈ D. Given a trace σ = 〈e1, . . . ,ei, . . . ,en〉 ∈ L , the
set of activities O(ei) ⊆ Σ that were caused by an event ei is:

O(ei) = {b ∈ Σ |#act(ei) = a

∧ ∃i< j≤n #act(e j) = b∧ (a,b) ∈ D

∧ ∀i<k< j (#act(ek),b) /∈ D}.

We determine the frequency |o|L,a ∈ N of an output binding o⊆ Σ for activity a ∈ Σ
in the event log L as:

|o|L,a =
∣
∣{e ∈ E | #act(e) = a∧O(e) = o}∣∣ .
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Then, we build the complete multi-set of output bindings with the most frequent
bindings. Those bindings that fulfill the user-specified binding threshold θbin:

O(a) = {o ⊆ Σ | |o|L,a
maxo⊆Σ (|o|L,a)

≥ θbin}.

The input binding function I is obtained by reversing the same approach.

Within the scope of this paper, we do not elaborate on the other heuristics of the HM [8],
such as long-distance, length-two loops, and the relative-to-best. Those heuristics and
improvements to the HM described by the Fodina miner [26] can be used together
with the DHM. The choice which heuristics to apply highly depends on the process at
hand. For example, the all-task-connected heuristic results in a process model with all
observed activities regardless of the chosen observation frequency threshold θobs. Even
activities that are only observed once are added. This might not be desirable as very
infrequent activities might be considered as noise. Therefore, we introduced the new
accepted-task-connected heuristic.

5 Evaluation

We implemented the DHM in the open-source framework ProM4. The package Data-
AwareCNetMiner provides a highly interactive tool, which allows to quickly discover
C-nets for different parameter settings and to explore the discovered data dependencies.
C-nets can be converted to Petri nets or BPMN models. Therefore, existing tools can be
used on the results. We applied our method to both synthetic and real-life event logs.

5.1 Synthetic - Handling Noise

Event Log and Methods. We generated an event log with 100,000 traces and approxi-
mately 900,000 events by simulating the process model shown in Fig. 3. There are three
data attributes: Priority (P), Nurse (N), and Type (T). We adjust the frequency distri-
butions of these attributes such that paths A, B, and C in model Fig. 3 are recorded
infrequently. Specifically, only 1.4% of the traces record P= white, 19.1% of the traces
record N = Alice, and 4.3% of the traces record T = out. We compared three methods:
our proposed method (DHM), the heuristic miner with frequency filtering (HMF), and
the heuristic miner without frequency filtering (HMA). All three methods, used thresh-
olds θobs = 0.06 (0.0 for HMA), θdep = 0.9, θbin = 0.1, θcon = 0.5 together with the
accepted-task-connected heuristic. We used C4.5 as classifier and estimated its perfor-
mance using 10 times 10-fold cross validation.

Experimental Design. The experiment should evaluate the noise filtering capabilities
of our method. Therefore, we injected noise into the event log by randomly adding one
additional event to an increasing number of traces.5 Then, we compared the discov-
ered dependency relations with those of the reference model (Fig. 3) in terms of graph

4 The package DataAwareCNetMiner can be downloaded from http://promtools.org.
5 The synthetic event logs can be downloaded from http://dx.doi.org/10.4121/uuid:
32cad43f-8bb9-46af-8333-48aae2bea037.

http://promtools.org
http://dx.doi.org/10.4121/uuid:32cad43f-8bb9-46af-8333-48aae2bea037
http://dx.doi.org/10.4121/uuid:32cad43f-8bb9-46af-8333-48aae2bea037
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edit distance (GED) [27]. We did not use fitness, precision, or behavioral comparison
measures as those would not be applicable in this setting. Fitness and precision do not
measure the performance wrt. the reference model (gold standard). Moreover, when the
discovered models are not sound (e.g., having a deadlock), the behavior may be unde-
fined even when the model is close to the original. Behavioral measures would also
fail to distinguish the difference between the data-dependent re-sequencing of activities
(pattern C in Fig. 3) and simple parallelism. For example, both in Fig. 3 and in Fig. 2(b)
activities Visit and X-Ray are behaviorally in parallel.
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Fig. 4. Graph edit distances between the dependency relations discovered by the compared meth-
ods and the reference dependency relations for varying amounts of injected noise.

Results. All models could be discovered in about 3 s using 2GB of memory. Our
method was able to rediscover the conditional relations A , B and C , i.e., the red
edges in Fig. 3. The original rules P= white and T = out were discovered for relations
A and B . For path C , two rules were discovered: N = Alice for the edge from X-Ray
to Visit and N �= Alice for the edge from Visit to X-Ray. Our method discovered the
data-dependent re-sequencing of activities Visit to X-Ray, whereas the standard HM
(cf. BPMN model in Fig. 2(b)) considered both activities as parallel. Figure 4 shows the
result of the GED measurement for noise levels ranging from 0% to 40%. Our method
(DHM) handles the added noise well until 25% of the traces were modified. The HM
with frequency-based noise filtering (method HMF) is also unaffected by the injected
noise. However, it fails to discover the reference model even without noise, as shown
in Fig. 2(b). The GED of the method HMF improves after injecting noise in 20% of the
traces because the frequency of relation C increases by chance. When lowering the
observation frequency threshold (method HMA), the injected noise quickly affects the
discovery and undesirable dependencies appear. We did not include the IM in Fig. 4, as
it returns models with a different structure. However, the models returned by the IM are
already undesirable for an event log with 5% noise, c.f., Fig. 2(a).

5.2 Real-Life - Revealing Data Dependencies

We used two real-life event logs to show that our method can reveal infrequent behavior
in a practical setting. Using the DHM important conditional dependencies can be found
where existing methods abstract away such dependencies.
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Data and Methods. The Road Fines (RF) event log was recorded by an information
system that handles road-traffic fines by an Italian local police force [28,29]. This event
log contains about 150,000 cases, 500,000 events, and 9 data attributes. The Hospi-
tal Billing (HB) event log was obtained from the ERP system of a hospital. It contains
100,000 cases with 550,000 events and 38 data attributes related to the billing of medical
services. We applied the proposed method (DHM), the HMwith the same frequency fil-
ter settings (HMF) and the Inductive Miner (IM) to both event logs. Without a reference
model and knowledge about expected noise levels, we could not compare the discov-
ered models to a gold standard. Therefore, we compare the novel insights obtained by
using our method with those from the other methods.

Road Fines. Figure 5 shows the C-net discovered by the DHM in about 4 s for the RF
log. We used the all-task-connected heuristic of the original HM, since we know that
each activity is of interest. We used eight of the attributes including a derived isPaid
attribute since this process is about the payment of fines. We used C4.5 with 10-fold
cross validation and only accepted classifications with θcon ≥ 0.5. Most of the observed
behavior (97.8%) can be replayed on the C-net using the alignment method presented
in [22]. Our method reveals three additional relations (red edges), which are numbered
in Fig. 5. Table 2 lists the conditional data-dependency measure, the frequency, as well
as quality and used attributes of the obtained dependency condition for each relation.
The first two relations target activity Add Penalty and both have a very good quality
score. The decision rule for relation 1 mainly depends on the value of the dismissal
attribute. Cases with values G do not receive a penalty, whereas cases with value NIL
receive a penalty depending on the fine amount, the number of points, and the article.
According to [29] this is to be expected as those cases are dismissed by the judge.
Relation 2 is mainly based on the attribute isPaid. Unpaid fines that have with a
small amount of less than 35 EUR receive a penalty. Relation 3 was discovered for
cases with a dismissal value of # or G. It is to be expected that the process finishes
for cases with this code, since those cases are dismissed by the prefecture. Interestingly,
this relation also occurs for cases with a dismissal value of NIL and high postal
expenses. This should not happen, since those fines still need to be paid [29]. The DHM
revealed three data dependencies that give more insights into the recorded behavior
without obstructing the process model with infrequent noise. In the model obtained by
IM none of the three relations are directly visible. Therefore, current decision mining
techniques would not be able to discover the conditions.

Hospital Billing. Figure 6 shows the C-net discovered by the DHM in about 3 s for the
HB event log. The discovered model fits 97% of the observed behavior. We used the
new accepted-task-connected heuristic since not all of the 21 activities may be of inter-
est. We discovered the model using C4.5 on a subset of 13 attributes. Here, the quality
threshold is set to θcon ≥ 0.6 and the quality is, again, determined by 10-fold cross vali-
dation. Compared to the model returned by the HMF, our method revealed six additional
dependencies. Again, we numbered these relations in Fig. 6, and list some key statistics
in Table 3. For the purpose of this evaluation, we discussed the discovered conditional
dependencies with a domain expert from the hospital who works in this process. Rela-
tion 1 is based on a special closeCode that is used when nothing can be billed and,
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Fig. 5. Process model discovered for the RF log. The numbered edges were added by our method.

Table 2. Dependency conditions discovered for the RF log.

Nr Source Target Count Quality Dependency Used Attributes

1 Appeal to
judge

Add penalty 279 0.86 0.93 amount,
dismissal, points,
article

2 Payment Add penalty 3,629 0.89 1 amount, isPaid

3 Not. Res.
Appeal to Off

End 83 0.56 0.98 dismissal,
expense

hence, the process ends. Relation 2 occurs mostly for two specific caseType values.
According to the domain expert both case types correspond to exceptional cases: one
is used for intensive care and the other for cases for which codes cannot be obtained
(Code Nok). Relation 3 is, again, related to a specific caseType. This type is used
for intensive-care activities as well and, often, does not require a code to be obtained.
Relation 4 is also mainly related to the caseType and to some degree to the medical
specialty. Both relation 5 and relation 6 are conditional to the attribute closed,
which indicates whether the invoice is closed or not. Clearly, deleted cases should not
be in the closed status, whereas reopened cases with a change in diagnosis can be even-
tually closed in the future. The process model discovered by the DHM provides a bal-
anced view on the interesting infrequent paths of the billing process together with the
more frequent, regular behavior. Moreover, additional insight is provided by revealing
the conditions with which infrequent paths occur. Again, the model returned by the IM
did not include any of the six paths.

Limitations. We acknowledge that there are some limitations to our method. First,
we only consider conditional directly-follows dependencies. Like most process mining
approaches, our method requires sufficiently large event logs. Small event logs might,
by chance, not contain all directly-follows relations. Moreover, more complex patterns
of conditional infrequent behavior, e.g., longer sequences or sub-processes, cannot be
discovered. Second, there is a risk that the returned C-nets are unsound [22] since our
method is based on the HM. However, recent research shows that it is possible to struc-
ture the discovered model afterwards [30]. Third, as all data-driven method the DHM
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Fig. 6. Process model discovered for the HB. The numbered edges are added by our method.

Table 3. Dependency conditions discovered for the HB log.

Nr Source Target Count Quality Dependency Used attributes

1 Fin End 3,619 0.98 1 closeCode

2 Release Code Nok 1,674 0.62 0.99 caseType

3 Release Billed 468 0.93 0.98 caseType

4 Code Nok Billed 1,481 0.84 0.99 caseType, specialty

5 Reopen Delete 1,128 0.83 0.81 closed

6 Reopen Change Diagn 212 0.97 0.99 closed

relies on data attributes and infrequent process paths being recorded. Last, we used only
two real-life event logs in the evaluation. Therefore, only limited claims on the general
applicability of the method can be made. We have also tested the DHM on other event
logs. However, very few event logs with data attribute are publicly available.

6 Conclusion

We presented the Data-aware Heuristic Miner (DHM), a process discovery method that
reveals conditional infrequent behavior from event logs. The DHM distinguishes unde-
sired noise from infrequent behavior that can be characterized by conditions over the
data attributes of the event log. This is the first approach that uses both event labels
and data attributes when discovering the control-flow. Dependency conditions are dis-
covered using classification techniques, and, then, embedded in a complete process
discovery algorithm built upon the Heuristic Miner. The returned process models are
annotated with information on the discovered rules. We applied the DHM to a synthetic
and two real-life events logs of considerable size and complexity. We showed that the
DHM can efficiently handle large event logs and is robust against typical levels of ran-
dom noise. The evaluation on two real-life cases shows that the DHM provides insights
that could be easily missed when relying on state-of-the-art, frequency-based tech-
niques. In our future work, we would like to extend the idea from directly-follows rela-
tions to more complex patterns of conditional behavior (e.g., long-term dependencies).



Data-Driven Process Discovery 559

The DHM successfully reveals data dependencies based on directly-follows relations,
but dependencies that cannot be captured by directly-follows relations might be missed.
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