
Table Identification and Reconstruction
in Spreadsheets

Elvis Koci1,2(B), Maik Thiele1, Oscar Romero2, and Wolfgang Lehner1

1 Database Technology Group, Department of Computer Science,
Technische Universität Dresden, Dresden, Germany

{elvis.koci,maik.thiele,wolfgang.lehner}@tu-dresden.de
2 Departament d’Enginyeria de Serveis i Sistemes d’Informació (ESSI),
Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain

{ekoci,oromero}@essi.upc.edu

Abstract. Spreadsheets are one of the most successful content genera-
tion tools, used in almost every enterprise to perform data transforma-
tion, visualization, and analysis. The high degree of freedom provided
by these tools results in very complex sheets, intermingling the actual
data with formatting, formulas, layout artifacts, and textual metadata.
To unlock the wealth of data contained in spreadsheets, a human analyst
will often have to understand and transform the data manually. To over-
come this cumbersome process, we propose a framework that is able to
automatically infer the structure and extract the data from these docu-
ments in a canonical form. In this paper, we describe our heuristics-based
method for discovering tables in spreadsheets, given that each cell is
classified as either header, attribute, metadata, data, or derived. Exper-
imental results on a real-world dataset of 439 worksheets (858 tables)
show that our approach is feasible and effectively identifies tables within
partially structured spreadsheets.

Keywords: Speadsheet · Document · Tabular · Grid · Table · Layout ·
Recognition · Identification

1 Introduction

Spreadmarts, i.e. reporting or analysis systems running on desktop software,
are used in more than 90% of all organizations [7]. 41% of these are built with
Excel [7] which can be found on most office computers and, hence, do not incur
any additional costs. Besides the low costs there are plenty of other reasons
for using Excel as a data analysis tool, such as the high degree of autonomy,
the fast information provisioning process compared to data warehouses, and the
user desire to protect interests. While spreadmart solutions have their raison
d’être, they come with the risk that information stored in them is getting lost
since they are not part of the enterprise-wide administration. The problem of
visibility is partly tackled by new information management principles such as
data lakes [11,12] but the core problem still remains: how to extract and harvest
c© Springer International Publishing AG 2017
E. Dubois and K. Pohl (Eds.): CAiSE 2017, LNCS 10253, pp. 527–541, 2017.
DOI: 10.1007/978-3-319-59536-8 33



528 E. Koci et al.

Fig. 1. Cell classification label [10]

the rich information found in spreadsheet formats enabling their reuse and thus
fostering the understanding of data maintained in these files.

Our aim is to overcome this challenge by focusing our efforts on approaches
for table identification and layout inference in spreadsheets. In a previous paper
[10], we have proposed a machine learning approach for layout inference. We
focused on the level of individual cells, considering a large number of features
not covered by related work. From these, 43 were chosen for the final evaluation.
The results show very high accuracy with all the defined classes (labels for the
cells), and an overall 97% F1 measure.

Figure 1 provides examples for each of the cell labels. Header and Data are
the basic building blocks of a table. In addition to this, we are using the notion
of Attributes, i.e. specific data fields on the left of the table structured in a
hierarchical way. Derived cells hold aggregations of data cells. Finally, Metadata
cells provide additional information about the table as a whole (e.g., the title) or
its parts (e.g., the unit of numeric values in a column). Additional information
on these labels and the overall project can also be found on our website1.

In this paper, we build upon these notions developing novel techniques to
identify and reconstruct tables. Our approach takes as input the results from the
cell classification task. Cells are then grouped to form regions (clusters) based on
their label and location. These regions become the input for our heuristics frame-
work, called TIRS (Table Identification and Reconstruction in Spreadsheets),
which outputs tables and their layout. In the following sections we describe in
detail each individual step of this process.

The subsequent parts of the paper are organized as follows: In Sect. 2, we
define the concepts used throughout the proposed approach. The steps and
heuristics for the table identification process are described in Sect. 3. In Sect. 4,
we present the results of our evaluation. Finally, we review related work on table
identification in Sect. 5, and conclude this paper with a short summary in Sect. 6.

1 https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator.

https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator


Table Identification Spreadsheets 529

2 Preliminaries

In the following sections, we define the concepts that are used in our heuristical
framework, TIRS, and we discuss the pre-processing phase of our approach.

2.1 Cell Clusters

We decided to group cells based on the label they were assigned during the
classification process and their location. We believe that these larger structures
will help us streamline the table identification process. It is much simpler and
intuitive to work on collections of cells rather than on individual cells. Further-
more, we have to handle a much smaller number of elements, thus decreasing
the complexity of the overall process.

In the following paragraphs we provide formal definitions of the concepts
used throughout the creation of the cell clusters. We start with the definition of
the structure used to represent a sheet, which is referred to as worksheet in the
Microsoft Excel environment.

Definition 1 (Worksheet Matrix). A worksheet is represented by an m-by-n
matrix of cells, denoted as W. We refer to a cell in the matrix as Wi,j.

In this paper, we look at worksheets whose cells were previously classified by our
method [10]. We assign a label to each non-empty cell.

Definition 2 (Classified Cell). Is a cell in a worksheet, s.t. Empty(Wi,j) �= 1
and Label(Wi,j) = �. Here, function Empty returns 1 for empty cells (i.e., without
value), 0 otherwise. Function Label returns the label assigned to a classified cell,
where � ∈ Labels, Labels = {Data,Header,Attribute,Metadata,Derived}.
As we stated in the beginning of this section, our goal is to cluster cells. We
initiate this process at the row level by grouping together consecutive cells of
the same label. We refer to these mini row clusters as Label Intervals.

Definition 3 (Label Interval (LI)). A label interval is a submatrix of W,
denoted as W[i; j, j′]. For every cell Wi,j′′ in LI, where j ≤ j′′ ≤ j′,
the Label(Wi,j′′) = �. To ensure maximal intervals, we enforce that
Label(Wi,j−1) �= � and Label(Wi,j′+1) �= �.

We proceed further by grouping cells to even larger clusters, which we call Label
Regions(LRs). Intuitively, LRs can be seen as an attempt to bring together
LIs of the same label2 from consecutive rows of W. This is not straightforward,
since the start column, end column, and order (size) can vary among these LIs.
Therefore, we target those LIs that are at least partially stacked vertically.

Definition 4 (Stacked LIs). Let I be the collection of all LIs in W, then Ik
and Ik′ are stacked iff there exists at least a pair (Wi,j ,Wi+1,j) of cells s.t Wi,j

in Ik, Wi+1,j in Ik′ .

2 More specifically, all cells from these intervals have the same label.



530 E. Koci et al.

We aim at constructing maximal LRs, by merging all intervals of the same label
that are vertically stacked.

Definition 5 (Label Region(LR)). A label region is a p × q matrix of cells,
where 1 ≤ p ≤ m and 1 ≤ q ≤ n. In the trivial case a LR is made of a single
LI (i.e., LR and LI are the same matrix). Otherwise, let r and r + 1 be the
indices of any two consecutive rows in LR, where 1 ≤ r < r+1 ≤ p. Then, there
exists a pair of same-label stacked intervals (Ik,Ik′) that respectively correspond
to stacked sub-matrices in row r and r + 1 of LR. An interval It′′ is not part
of LR iff it has a different label or it has the same label but is not stacked with
any of intervals in LR.

Note that a LR is not a submatrix of W. They share LIs, but the remaining
parts of the LR might be different. We use empty cells to fill the gaps from the
clustered LIs, when necessary. In this way we ensure equally sized columns and
equally sized rows for LR matrices.

I1

I2
I3

I4 I5

R1

R2

R3

Fig. 2. Cell clustering

Example. In Fig. 2, we provide two examples that illustrate how we cluster
classified cells. Blue (backward-sloping lines) cells are of the same label λ1, and
green (forward-sloping lines) cells of the same label λ2. The ones that are blank
represent empty cells or cells that were assigned a different label than λ1 and
λ2. In Fig. 2(a) cells are clustered into five label intervals. The label intervals
I4 and I5, although in the same row, are separated because there is a cell of
a different label between them. All intervals in Fig. 2(a) can be clustered into
one label region. Contrary, in Fig. 2(b) there are three label regions, two blue
(R2 and R3) and one green (R1). We note that R1 and R2 “overlap”. In the
following sections we discuss how we treat these cases. For now we can say that
this “overlap” hints some kind of relation between these regions. Also, the case
of R3 is particular, since it is a single cell region. Such cases can happen when
it is not possible to cluster the cells both row-wise and column-wise.

2.2 Rectangular Abstractions

Although cell matrices are suitable structures for maintaining the LRs, it is
rather challenging to define heuristics on top of them. Therefore, we decided to
go for a more abstract representation, namely the rectangle. An LR can be seen



Table Identification Spreadsheets 531

as a rectangular structure that bounds cells of the same label. In the literature
this is called the minimum bounding rectangle (MBR) for a set of objects, and
is commonly used for tasks of spatial nature [4,13].

In our case, MBRs exist in the space defined by the original worksheet. The
top-left corner of the worksheet becomes the origin (0, 0). As shown in Fig. 3,
the x-axis extends column-wise, while the y-axis extends row-wise. The edges of
the MBRs are either parallel or perpendicular with these axes.

In this coordinate system, cells are rectangles, having unit width and unit
height. As such, a cell Wi,j is represented by the coordinates3: xmin = j − 1,
xmax = j, ymin = i − 1, and ymax = i.

Fig. 3. Spatial relations between rectangles in a worksheet

We can determine the MBR coordinates for a LR from the indices of the cells it
bounds. Specifically, we focus on the top-left and bottom-right cells in the LR.

2.3 Spatial Arrangements

Here, we provide some of the notions used to describe spatial relations between
the rectangles (LRs). Our aim is to explain them intuitively using the examples
in Fig. 3. Similar notions have been defined more formally in [13].

We start with the concepts that describe the relative location of rectangles.
We use the notions on the left of and on the right of to describe relations like D
to E and E to D, respectively. Likewise, F is under E, and the other way around
E is above F. We can make these relations even more specialized. For example, F
it is not strictly under E, since F is wider. However, D is strictly on the left of E,
since its projection to the y-axis is within (covered by) E’s y-axis projection. We
are also interested in intersecting rectangles, and we have distinguished several
of such cases: Two rectangles might overlap, such as A and B. They could meet
at a vertex, like C and A. Rectangles G and H meet at or partially share an edge.
Finally, rectangle I is inside rectangle H.

3 Note, MBRs rely on a reference coordinate system, while LRs rely on the spreadsheet
notation (i.e., column and row numbers).



532 E. Koci et al.

3 Table Identification

TIRS consists of a series of heuristics that are based on the concepts presented
in the previous sections. In addition to covering various table layouts, we had
to minimize the effects of incorrect classifications and empty cells (i.e., missing
values). Furthermore, we opted for heuristics that work on worksheets having
multiple tables, stacked horizontally and/or vertically.

3.1 Tables in TIRS

Data, Header, and Attribute regions play the most important role in our analysis,
since for us they are the base ingredients to form tables. Intuitively, a Data region
(LRD) acts like the core that brings everything together. A Header (LRH)
and Attribute region (LRA) can help us distinguish the boundaries of tables.
Therefore, we refer to them as “fences”, a term borrowed from [1]. Fences can
be horizontal (only Headers) or vertical (Headers4 and Attributes).

A valid table should have at least a fence (LRF) paired with a LRD. In
terms of dimension, tables must be at least a 2 × 2 matrix of cells. This means
that LRD and LRF regions are at least 1 × 2 or 2 × 1 matrices.

table := {Data,HHeaders, V Headers,Attributes,Derived,Metadata,Other}

Tables extracted by TIRS can be stored as collections of LRs. More specifically,
as shown above, a table has seven distinct sets of LRs. For most of the cases
we organize the regions forming the table by their label. We specialize Headers
to vertical and horizontal. While the set “Other” contains regions for which we
can not tell the layout function despite of their label. We provide more details
on the latter in the following sections.

Finally, we utilize the MBR concept for tables, in addition to label regions.
A table MBR is the minimum bounding rectangle for the LRs that compose it.

3.2 Pairing Fences with Data Regions

As mentioned in the previous section, TIRS needs to pair LRDs with LRFs to
form tables. Valid pairs comply with the following three conditions.

C1. The LRF is on the top or on the left of the LRD although not necessarily
adjacent to it.

C2. For a LRF , the selected LRD is the closest5. Specifically, for a horizon-
tal fence we measure the distance from the top edge of the Data region.
Respectively, we work with the left edge for vertical fences.

4 Vertical Headers occur infrequently in our annotated dataset for “pivoted” tables.
5 We quantify this using the smallest Euclidean distance between two MBRs.



Table Identification Spreadsheets 533

C3. The pair of MBRs representing correspondingly the LRD and the LRF
are projected in one of the axes, depending on the fence orientation. The
length of the segment shared by both projections represents the overlap. We
transform the overlap into a ratio by dividing it with the largest projection.

Overlap(xProjection(LRD), xProjection(LRF))
Max(xProjection(LRD), xProjection(LRF))

> θ (1)

Equation 1 shows how to calculate this for the x-axis (relevant to horizontal
fences). The threshold θ was determined empirically and set to 0.5.

3.3 Heuristics Framework

The TIRS framework is composed of eight heuristic steps (activities). The initial
Data-Fence pairs are created in the first five steps. While, the subsequent activ-
ities aim at completing the table construction by incorporating the remaining
unpaired regions. In the following paragraphs we present each step and illustrate
their relevance with examples from Fig. 4.
We should note that the examples in Fig. 4 hide the complexity of tables in
our real-world dataset. For instance, fences might contain hierarchical struc-
tures, spanning in multiple rows and columns. Furthermore, misclassifications
and empty cells can occur in arbitrary locations, and implicate various label
regions (not only fences).

S1. In the first step, we attempt to create one-to-one pairs of Fence-Data, based
on the three conditions listed in Sect. 3.2. Figure 4(a) and (d) provide exam-
ples of such tables.

S2. Mainly due to misclassifications multiple fence regions can be found that
satisfy C1 and C2, but fail to comply with C3. An example is shown in
Fig. 4(b). In such cases, we treat the individual regions as one composite
fence, omitting the in-between “barriers”. Equations 2 and 3 respectively
show how to calculate the overlap ratio and projection-length to the x-
axis for a composite fence (CF), containing N sub-regions. We handle these
calculations similarly for y-axis projections. Having the results from the
equations, we proceed to check if C3 is satisfied.

cmp overlp =
N∑

i=1

Overlap(xProjection(LRD), xProjection(CF i)) (2)

cmp length =
N∑

i=1

xProjection(CF i) (3)

S3. There can be a fence (simple or composite) that satisfies C3, but it is located
inside the Data region far from the top edge or left edge. This might happen
due to incorrect classification in worksheets that contain conjoined tables
(i.e., not separated by empty columns or rows). We provide an example in



534 E. Koci et al.

Candidate Fence Data Region Misclassifica on Data Misclass

Fig. 4. Table types: cases b, c, e, and f also occur for tables with vertical fences

Fig. 4(f). When such a fence is identified, we separate the Data region into
two parts. When the fence is horizontal, we pair it with the lower part,
otherwise with the right part.

S4. There are cases where “small” Data regions are under or on the right of
a “bigger” fence (e.g. the table in Fig. 4(c)). For these cases, the fence is
treated as first-class citizen. Data regions that comply to condition C1 and
are closer to this fence, than other ones, are grouped together. Again, we use
similar formulas to Eqs. 2 and 3 to calculate the overlap and the projection-
length of composite Data regions.

S5. At this step, we take a much more aggressive approach, in order to form
tables with the remaining unpaired regions. We start by grouping fences.
When working horizontally, we merge fences whose y-axis projections over-
lap. Likewise, we look for overlaps on the x-axis for vertical fences. After-
wards, we proceed in the same way as in step S4. Figure 4(e) illustrates a
table that can be the output of this step.

S6. Here, we attempt to incorporate unpaired regions located in-between exist-
ing tables (i.e., constructed during S1–S5). In addition to the Data and
fences, we also consider Metadata and Derived regions. For a pair of tables
stacked horizontally, we assign the unpaired regions to the top table. When
working with vertically stacked tables, we favor the left one. Obviously this
and the following step, make sense when there are more than one extracted
tables.

S7. We proceed by merging tables whose MBRs overlap. This will correct incon-
sistencies that might have happened during the previous steps. For example,
a Data region is partially under a fence from another table.

S8. Finally, we assign the remaining unpaired regions, of all labels, to the nearest
existing table.



Table Identification Spreadsheets 535

Algorithm 1. Table creation in TIRS
Input: Set of LRDs (D), set of LRHs (H ), set of LRAs (A)
Output: Set of extracted tables from the worksheet (T)

1 begin
2 T ← ∅;
3 UF ← ∅, UD ← D ; // UF: unpaired LRFs,UD: unpaired LRDs
4 O ← {Horizontal, V ertical};
5 foreach o in O do
6 if o == Horizontal then UF ← H else UF ← UF ∪ A;
7 foreach d in UD do
8 f ← GetNext(UF), newtbl ← false;
9 while f �= null and newtbl == false do

10 if IsValidPair({d},{f},o) then // S1: line 10-12
11 (T, UF, UF ) ← Construct({d},{f},UD,UF,T,o);
12 newtbl = true;

13 else if IsDataBreaker(d,f ) then // S3: line 13-16
14 (d1, d2) ← BreakInTwoParts(d,f );
15 (T, UF, UF ) ← Construct({d2},{f},UD,UF,T,o);
16 d ← d1;

17 f ← GetNext(UF);

18 if newtbl == false then // S2: line 18-20
19 CF ← GetCompositeFence(d,UF,o);
20 if IsValidPair({d},CF,o) then
21 (T, UF, UF ) ← Construct({d},CF,UD,UF,T,o)

22 UH ← UF ∩ H, UA ← UF ∩ A; // Extract unpaired Headers & Attributes
23 foreach o in O do
24 if o == Horizontal then UF ← UH else UF ← UF ∪ UA;
25 foreach f in UF do // S4: line 23-25
26 CD ← GetCompositeData({f},o,UD);
27 if IsValidPair(CD,{f},o) then
28 (T, UD,UF ) ← Construct(CD,{f},UD,UF,T,o);

29 foreach MF in MergeByOrientation(UF,o) do // S5: line 26-28
30 CD ← GetCompositeData(MF,o,UD);
31 if IsValidPair(CD,MF,o) then
32 (T, UF, UF ) ← Construct(CD,MF,UD,UF,T,o)

33 return T;

34 Function Construct(SD,SF,UD,UF,T,o): // SD: Selected LRDs, SF: Selected LRFs
35 table ← CreateTable(SD,SF,o);
36 TT ← T , TUD ← UD, TUF ← UF ; // Temporary variables in this function
37 (TUD, TUF ) ← FilterOutPaired(table,TUD,TUF);
38 ConT ← HandleTableBreakers(table,TUF,o); // Trivial case ConT = {table}
39 foreach t in ConT do
40 foreach u in {TUD ∪ TUF} do
41 if IsInside(table,u) or IsOverlap(table,u) then AddOtherRegion(table,u) ;

42 (TUD, TUF ) ← FilterOutPaired(table,TUD,TUF);
43 TT ← TT ∪ {t};
44 return (TT, TUD, TUF );

Algorithm 1 provides a high level view from the execution of table creation steps
(S1–S5). For each individual step S1 to S5, we first process horizontal and then
vertical fences. Our empirical analysis showed the former are by far more com-
mon, thus we prioritize them. Additionally, we give priority to Headers over
Attributes. It is fair to claim that Headers represent more “secure” fences, since
less misclassification involve this label compared to Attributes [10]. Another
details is that of S4 and S5 being executed only after all the types of fences are
processed by steps S1–S3.



536 E. Koci et al.

Furthermore, to avoid any inconsistencies, after the table creation we execute
a series of operations. We incorporate regions that partially overlap or fall inside
(complete overlap) the table (line 34–35). We exclude the paired regions from
the next iterations (line 31 and 36). Also, we call function HandleTableBreakers,
which basically is a batch execution of step S3.

Finally, at line 35 we use function AddOtherRegion. At this point of the
algorithm we can not tell what the role of the fully or partially overlapping region
is, since we already have paired the main components of the table. Therefore,
we keep such regions at a special set called “Other”.

4 Experimental Evaluation

In the following subsections, we discuss the evaluation of our proposed approach.
Firstly, we present the dataset that was used for our experiment. Afterwards,
we define how we measure the success of our method, and present the results of
our evaluation.

4.1 Dataset of Annotated Tables

For our experiments we have considered spreadsheets from three different
sources. EUSES [8] is one of the oldest and most frequently used copora. It has
4, 498 unique spreadsheets, which are gathered through Google searches using
keywords such as “financial” and “inventory”. The ENRON corpus [9] contains
over 15, 000 spreadsheets, extracted from the Enron email archive. This corpus
is of a particular interest, since it provides access to real-world business spread-
sheets used in industry. The third corpus is FUSE [3] that contains 249, 376
unique spreadsheets, extracted from Common Crawl6.

From these three corpora, we randomly selected and annotated 216 spread-
sheet documents. This translates into 465 individual worksheets. The annota-
tions were performed by experts from our group, using a tool we developed in our
previous work [10]. Each non-empty cell was assigned one of the five predefined
labels (see Fig. 1). Additionally, we recorded tables as ranges of cells (storing the
address of the top-left and bottom-right cells). Thus, for each annotated cell we
can tell the table it belongs to.

For the evaluation of TIRS, we used 858 annotated tables. Out of this, 541
come from FUSE, 222 from ENRON, and 95 from EUSES. We should note that
we omitted from our analysis 26 worksheets (40 “tables”). These worksheets
contain only Data, and no fences. During the annotation phase we marked these
Data as valid tables. However, later we decided to exclude them, since they do
not comply anymore to our table definition (see Sect. 3.1).

4.2 Evaluation Objectives and Metrics

An extracted table Te is considered a match to an annotated table Ta when
they share at least 80% of their cells, considering only the Data, Header, and
6 http://commoncrawl.org/.

http://commoncrawl.org/


Table Identification Spreadsheets 537

Attribute regions (as mentioned in Sect. 3, these regions form the base of tables).
To perform the comparison, we represent both Te and Ta as rectangles. For a
pair Te and Ta we evaluate the spatial match using the formula below, where
γ = 0.8.

match(Te, Ta) =
overlap(area(Te), area(Ta))
max(area(Te), area(Ta))

≥ γ (4)

We should note the reasons behind the omission of Derived and Metadata
regions. Firstly, as can be seen from our table definition, they are not a must for
its existence. Secondly, Metadata and Derived are not necessarily always related
to a single table. During the annotation phase, we encountered Metadata that
provide information relevant to multiple tables in the worksheet. Also, in our
dataset a small number of Derived regions contain aggregations coming from
several tables. Such regions, related to multiple tables, emerge “orphan” from
our annotation phase, since we avoid assigning a table to them. Clearly, there is
the need for more sophisticated ways to handle Metadata and Derived, but for
the moment we exclude them from our analysis.

4.3 Evaluation Results

We present our evaluation per corpus, per number of misclassifications in the
worksheet, and finally per table arrangements. The latter is related to the way
tables are stacked in the worksheet.

We use precision and recall [14] to evaluate how good our approach is at
identifying spreadsheet tables. In our context, precision measures the percentage
of extracted tables (Te), i.e., that match an annotated table (Ta). While, recall
measures the percentage of Ta that were matched by our method.

Additionally, we compare the number of Te with the number of Ta in the
worksheet. The ratio where these numbers are equal is recorded by the “Equal”
metric. The “Not Equal” metric records the cases these numbers differ (i.e., we
extracted more or fewer tables than the actual number of tables in the work-
sheet).

As seen in Fig. 5(a), our approach performs considerably well for FUSE
tables, but poorly for ENRON tables. During an empirical examination, we
noted that tables from ENRON tend to have a more complex structure, when
compared to the other two corpora. We believe this to be the main reason for
low scores in this corpus. This claim is further enforced by the results of the cell
classification evaluation [10], where ENRON worksheets exhibit more misclassi-
fications.

For EUSES, considering also Fig. 5(b), we are able to match well the actual
number of tables in worksheets, but in terms of precision and recall we do not
achieve that high scores. It seems that for a number of cases the extracted tables
do not overlap significantly (≥80%) with the annotated tables in the worksheet.



538 E. Koci et al.

FUSE ENRON EUSES
Precision 78% 39% 58%
Recall 72% 40% 68%

FUSE ENRON EUSES
Equal 82% 52% 85%
Not Equal 18% 48% 15%

Fig. 5. Results per corpus

None Few(1-3) Bunch(4-7) Many(8-∞
Precision 82% 56% 60% 53%
Recall 82% 53% 53% 57%

None Few(1-3) Bunch(4-7) Many(8-∞
Equal 90% 70% 54% 43%
Not Equal 10% 30% 46% 57%

Fig. 6. Results per number of misclassifications

Figure 6 shows that our method performs well when there are no misclassi-
fications. In contrast to what we expected, precision and recall do not follow a
decreasing trend as we move to worksheets with more incorrect classifications.
This is not the case for the equal and the not equal metrics.

We believe that in the case of precision and recall factors other than the
number of incorrect classifications have strong influence. The graphs presented
in Fig. 7 seem to support this claim.

Fig. 7. Results per table arrangements

We observe that our method performs well for worksheets that contain one
table, as shown in Fig. 7. We can also say, that precision and recall are tolera-
ble for tables stacked vertically (row-wise). However, for horizontal alignments
(column-wise) our scores are quite low. Probably, this impacts the performance
for worksheets that contain both horizontal and vertical alignments of tables.

We believe the fact that we give more priority to horizontal fences, as men-
tioned mentioned at the end of Sect. 3.3, can explain the results in Fig. 7. Clearly,



Table Identification Spreadsheets 539

we have biased TIRS towards tables stacked vertically. This is for a good reason,
since they appear more frequently.

65% 63%

Precision Recall

75%

25%

Equal Not Equal

Fig. 8. Overall results

In Fig. 8 we provide the overall results from our evaluation. In general, it
is difficult to assess the performance of our approach, since to the best of our
knowledge there is no similar work to directly compare these results with (see
also Sect. 5). On the one hand, the precision and recall measures, provided in
Fig. 8(a), are lower than expected. On the other hand, the results presented in
Fig. 8(b) are satisfactory.

Closing the evaluation remarks, we point out that cells wrongly classified as
Data and Header play a considerable role in the performance of TIRS. As we
previously mentioned in this section, we exclude Metadata and Derived from
our evaluation, and only consider the other three remaining labels. However,
misclassifications might introduce Data and Header where there should have
been Derived and Metadata cells. The classification results, presented in our
previous paper [10], show that 98.7% of the misclassified Derived were labeled
Data. For incorrectly classified Metadata, 43% were mistakenly marked as Data
and 44% as Header. Such misclassifications often increase the size of Te, and
make it difficult to identify a match (true positive). In other words, Te and Ta

might share all the cells of the true table base (i.e., the annotated Fence and
Data regions), but few incorrectly classified cells in Te effectively reduce the ratio
of their overlap (see Eq. 4).

5 Related Work

In this section, we review some of the related work on table identification and
layout inference in spreadsheets. At [5] the authors present their work on what
they call data frame spreadsheets (i.e., containing attributes or metadata regions
on the top/left and a block of numeric values). Using linear-chain, conditional
random field (CRF), they perform a sequential classification of rows in the work-
sheet, in order to infer its layout. Their next immediate focus is extracting the
hierarchies found on the top (Header) and left (Attribute) regions. They pro-
ceed with the extraction of the data in the form of relational tuples, based on the
information they inferred about the structure of data frame. In contrast to us,
the authors do not distinguish the individual tables in the worksheet, but rather



540 E. Koci et al.

assume only data-frame like spreadsheets. At [2], the authors present their work
on schema extraction for Web tabular data, including spreadsheets. They exten-
sively evaluated various methods for table layout inference, all operating at the
row level. The CRF classifier combined with their novel approach for encoding
cell features into row features (called “logarithmic binning”) achieves the high-
est scores. Though the authors discuss how the inferred layout could be used to
extract the schema for the tables in a spreadsheet, they do not provide an experi-
mental evaluation of their claims. Nevertheless, we borrow from them and enforce
with our work the idea that the header and data are instrumental for identifying
and processing tables. The paper [1] presents work on header and unit inference
for spreadsheets. Unlike us, the authors take a software engineering perspective.
They utilize the inferred table structure to identify unit errors in spreadsheets.
The authors have defined a set of heuristics based spatial-analysis algorithms,
and a framework that allows them to combine the results from these algorithms.
Unlike in our work, their spatial use cell features (e.g., content type and formula
referencing), rather a pre-assigned labels from a classification task. Addition-
ally, they have evaluated their approach in two datasets, containing 10 and 12
spreadsheets, respectively. They report few errors regarding the header inference,
which is one of their main targets. However, the authors do not discuss how their
framework performs on the table level. At [6], the authors present DeExcelera-
tor, a framework which takes as input partially structured documents, including
spreadsheets, and automatically transforms them into first normal form rela-
tions. For spreadsheets, their approach works based on a set of simple rules
and heuristics that resulted from a manual study on real-world examples. Their
framework operates on different granularity levels (i.e., row, column, and cell),
considering the content, formating, and location of the cell/s. They evaluated
the performance of their system on a sample of 50 spreadsheets extracted from
data.gov, using human judges (10 database students). In contrast, we performed
our evaluation in a much larger dataset covering a broader spectrum of spread-
sheets.

6 Conclusions and Future Work

In this paper we presented TIRS, a heuristics based framework for table iden-
tification in spreadsheet. Unlike related work, we utilized the location and the
labels assigned to the cells from a classification method we developed in a pre-
vious work. We introduced the concept of label regions and their representation
as minimum bounding rectangles. The latter is a vital tool for defining a rich
set of heuristics, such as the ones used in TIRS. For our evaluation, we used a
large dataset of tables, covering various domains and formats. The results show
that we achieve satisfactory performance in the sample of worksheets from FUSE
and in worksheets that contain one table. The lowest scores come from ENRON
worksheets and worksheets that contain horizontally stacked tables.

We see two possible actions to improve our approach in the future. Firstly,
we can come up with more specialized heuristics, taking into account also the



Table Identification Spreadsheets 541

domain of the spreadsheets. Here, in addition to the labels, we could utilize
various cell features in a similar fashion as in related work. Secondly, we can
enrich TIRS with more sophisticated techniques, coming from fields such as
machine learning and statistics.

Acknowledgments. This research has been funded by the European Commission
through the Erasmus Mundus Joint Doctorate “Information Technologies for Business
Intelligence - Doctoral College” (IT4BI-DC).

References

1. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spa-
tial analyses. In: VL/HCC 2004, pp. 165–172. IEEE (2004)

2. Adelfio, M.D., Samet, H.: Schema extraction for tabular data on the web. VLDB
6(6), 421–432 (2013)

3. Barik, T., Lubick, K., Smith, J., Slankas, J., Murphy-Hill, E.: FUSE: a repro-
ducible, extendable, internet-scale corpus of spreadsheets. In: MSR 2015 (2015)

4. Caldwell, D.R.: Unlocking the mysteries of the bounding box (2005)
5. Chen, Z., Cafarella, M.: Automatic web spreadsheet data extraction. In: SSW 2013,

p. 1. ACM (2013)
6. Eberius, J., Werner, C., Thiele, M., Braunschweig, K., Dannecker, L., Lehner, W.:

DeExcelerator: a framework for extracting relational data from partially structured
documents. In: CIKM 2013, pp. 2477–2480. ACM (2013)

7. Eckerson, W.W., Sherman, R.P.: Strategies for managing spreadmarts. Bus. Intell.
J. 13(1), 23–24 (2008)

8. Fisher, M., Rothermel, G.: The EUSES spreadsheet corpus: a shared resource
for supporting experimentation with spreadsheet dependability mechanisms. In:
SIGSOFT 2005, vol. 30, pp. 1–5. ACM (2005)

9. Hermans, F., Murphy-Hill, E.: Enron’s spreadsheets and related emails: a dataset
and analysis. In: Proceedings of ICSE 2015. IEEE (2015)

10. Koci, E., Thiele, M., Romero, O., Lehner, W.: A machine learning approach for
layout inference in spreadsheets. In: KDIR (2016)

11. Mohanty, H., Bhuyan, P., Chenthati, D.: Big Data: A Primer. Springer India, New
Delhi (2015)

12. O’Leary, D.E.: Embedding ai and crowdsourcing in the big data lake. IEEE Intel-
ligent Systems 29(5), 70–73 (2014)

13. Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles,
and spatial data structures. International Journal of Geographical Information
Science 11(2), 111–138 (1997)

14. Ting, K.M.: Precision and recall. In: Encyclopedia of machine learning,
pp. 781–781. Springer (2011)


	Table Identification and Reconstruction in Spreadsheets
	1 Introduction
	2 Preliminaries
	2.1 Cell Clusters
	2.2 Rectangular Abstractions
	2.3 Spatial Arrangements

	3 Table Identification
	3.1 Tables in TIRS
	3.2 Pairing Fences with Data Regions
	3.3 Heuristics Framework

	4 Experimental Evaluation
	4.1 Dataset of Annotated Tables
	4.2 Evaluation Objectives and Metrics
	4.3 Evaluation Results

	5 Related Work
	6 Conclusions and Future Work
	References


