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Abstract. With the aim of having individuals from different back-
grounds and expertise levels examine the operations in an organization,
different representations of business processes are maintained. To have
these different representations aligned is not only a desired feature, but
also a real challenge due to the contrasting nature of each process repre-
sentation. In this paper we present an efficient technique for aligning a
textual description and a graphical model of a process. The technique is
grounded on using natural language processing techniques to extract lin-
guistic features of each representation, and encode the search as a math-
ematical optimization encoded using Integer Linear Programming (ILP)
whose resolution ensures an optimal alignment between both descrip-
tions. The technique has been implemented and the experiments witness
the significance of the approach with respect to the state-of-the-art tech-
nique for the same task.

Keywords: Process models · Natural language processing · Integer
Linear Programming

1 Introduction

Nowadays organizations store processes descriptions in various representations.
The reason for this is the different nature stakeholders have: while textual
descriptions of processes are well-suited for non-technical users, they are less
appropriate for describing precise aspects of the underlying process [1]. In con-
trast, formal and graphical process notations (e.g., BPMN) are unambiguous rep-
resentations which can be the basis for automating the corresponding processes
within the organization [2], but they are oriented to specialized users. In this
context, due to the evolving nature of processes, there is a high risk of hav-
ing deviations between the different representations, a problem that may have
serious consequences for any organization [3].

In the last decade, the field of Natural Language Processing (NLP) has grown
up to a mature enough level, where the algorithmic support to analyze any text
is high. Currently, there are several powerful open-source libraries that can be
integrated easily to any software project, thus making linguistic analysis a reality
in many contexts [4–7]. In this paper we exploit state-of-the-art NLP algorithms
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to extract advanced linguistic features for the text found in both representations,
so that the corresponding linguistic footprint can be mapped to a canonical
form. Several similarity metrics can be defined on top of this canonical form,
including weighted versions which may favor particular characteristics of process
descriptions such as the action performed.

Once the similarity metric is chosen, the problem is casted as an optimization,
whose solution(s) represent an assignment between tasks and sentences such
that the accumulated sum of similarity is maximum. In particular, we encode
the problem as an Integer Linear Programming (ILP) model whose resolution
provides the optimal alignment between the text and the model.

The work of this paper is inspired by and shares the motivation of the seminal
work [8,9] (see Sect. 3 for an accurate comparison of both approaches). Remark-
ably, although the core algorithm for searching solutions of the techniques is
very different from our approach’s, the quality of both approaches is similar.
However, due to the simplicity of the encoding proposed, the method proposed
is much faster and can deal with model-text pairs of medium/large size in a
feasible time, a crucial distinctive feature of our approach with respect to [8,9].
By mapping the problem as an ILP, we clearly separate problem encoding from
computation, thus allowing to easily incorporate new dimensions to consider (as
we have done in this paper by incorporating actors). Notably, the technique pro-
vides a result very fast, thus widenning the application scope from post mortem
or batch analysis to real-time analysis.

The research method followed in this work is Design Science [10], which
“creates and evaluates IT artifacts intended to solve identified organizational
problems”.

The remainder of the paper is organized as follows: we provide a motivating
example in the next section. Then, in Sect. 3 a detailed comparison with related
work is reported. Preliminaries are then provided in Sect. 4, and the main contri-
bution of the paper is presented in Sect. 5. Experiments on reference benchmarks
are presented in Sect. 6. Finally, Sect. 7 concludes the paper and provides future
lines for research.

2 Motivating Example

To give some intuition let us consider the example represented by the textual
description and its corresponding BPMN model in Fig. 1. The technique we
present derives the correct alignment between sentences 1–13 and tasks A-P ,
except for task J , as this task is not mentioned in the text.

In the simpler cases, the correct alignment between a task and a sentence can
be obtained just by comparing the words in the sentences and the task labels.
In this work, we aim to expand on previous techniques by considering more
information about the tasks in the form of features. To better illustrate this, let
us consider sentences 6 and 8, which correspond to tasks G and L respectively.
When performing the comparison only by looking at the task labels, there is no
clear way to distinguish G from L since they have the same label. Because of
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Fig. 1. Textual description and BPMN model of the Zoo business process. The correct
alignment is displayed in parenthesis on the task labels.

that, there is nothing preventing both tasks from getting mapped to the same
sentence. To correctly solve cases like this, semantic information is required,
such as the fact that G and L are performed by different actors, so they should
be assigned to sentences where the right actor is performing the task. Another
helpful linguistic information can be obtained from gateways surrounding a task:
Tasks following choice gateways are more likely to match sentences containing
conditional statements.

3 Related Work

The contributions of this paper intersect with various works in the literature. In
general, previous work can be categorized into transformations between models
and text (e.g., [11,12] for UML diagrams, or [1,13] for BPMN), and schema [14]
or process model [15] matching. Also, there has been work on generating process
models from group stories [16] and from use-cases [17], which are less related
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to this work since they restrict the form of the textual description used to
describe the process. For the problem considered in this paper, the transforma-
tion approches can only be applied when the source process description is unam-
biguous, and the transformation used does not modify the underlying process.
Hence, the rest of the section considers only the work that computes alignments
without requiring a transformation between process descriptions.

The seminal work [8,9] proposed an algorithm for aligning textual descrip-
tions and process models, with the particular aim of detecting inconsistencies
between both representations. Their approach consists on using a linguistic
analysis that derives a bag-of-words summary (i.e., resolving anaphoric refer-
ences, extracting relevant clauses or removing prepositions) of the main elements
in each representation. Then, a similarity computation between these elements
is applied, and finally an optimal alignment which globally maximizes the simi-
larity is computed, using a best-first search technique.

In our case, we extend the linguistic analysis with semantic role labeling,
coreference resolution, and the computation of the semantic graph. Moreover, we
encode the problem of computing an alignment as the resolution of an ILP model.
As we will see in the experiments, this algebraic representation of the alignment
problem represents a significant reduction (of several orders of magnitude) in the
time requirements for computing an alignment. Finally, we map text sentences to
feature vectors with a rich unbounded set of features, which do not depend on an
apriori assumption on the importance of certain constructions. This rich feature
representation allows to differentiate semantic roles such as actor or object, and
also allows to include other process information besides the task labels.

Table 1 shows the derived alignment for the example in Sect. 2, by both our
tool and the one introduced in [9]. We want to stress that in spite of our better
performance for this particular example, the quality of our approach and the
one in [9] is similar. We believe both contributions can be naturally combined
to boost the quality of the alignments derived.

Table 1. Errors in task-to-sentence alignments produced by our approach and by [9]’s
for the example in Sect. 2.

Task A B C D E F G H I J K L M N O P

Groundtruth 2 3 4 5 13 13 6 7 6 − 11 8 9 12 10 10

[9]’s approach ✓ ✓ 3 ✗ 6 ✗ ✓ ✓ ✓ 12 ✗ ✓ 6 ✗ ✓ 6 ✗ ✓ ✓ ✓ ✓

Our approach ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 ✗ ✓ ✓ ✓ ✓ ✓ ✓

4 Preliminaries on Process Models and NLP

4.1 Graphical Process Notations

There exist a plethora of graphical notations to model processes. A full descrip-
tion of them is beyond the scope of this paper. In this paper we focus on BPMN,
a notation that has become one of the most widely used to model business
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processes. However, the techniques presented can be adapted to other notations
like EPCs, Petri Nets, YAWL, among others.

BPMN models are composed by three types of nodes: events, activities and
gateways. Events (represented as circles) denote something that happens (e.g.,
time, messages, . . . ), rather than Activities (rounded-corner rectangles) which
are something that is done. Finally, gateways (diamond shapes) are used to
describe the control flow. These elements can be partitioned into pools or lanes,
to group activities performed by the same actor (person, department, institution,
etc.). An example of BPMN is shown in Fig. 1.

4.2 Natural Language Processing

Natural Language Processing (NLP) is a wide research area inside Artificial
Intelligence that includes any kind of technique or application related to the
automatic processing of human language. NLP goals range from simple basic
processing such as determining in which language a text is written, to high-
level complex applications such as Machine Translation, Dialogue Systems, or
Intelligent Assistants.

However, linguistic analysis tools can be used as a means to structure infor-
mation contained in texts for its later processing in applications less related to
language itself. This is our case, where we use NLP analyzers to convert a textual
description of a BPM into a structured representation that can be compared,
mapped, or analyzed using more conventional tools.

The NLP processing software used in this work is FreeLing1 [5], an open–
source library of language analyzers providing a variety of analysis modules for
a wide range of languages. More specifically, the natural language processing
layers used in this work are:

Tokenization and sentence splitting: Given a text, split the basic lexical
terms (word, punctuation signs, numbers, ZIP codes, URLs, e-mail, etc.),
and group these tokens into sentences.

Morphological analysis: For each word in the text, find out its possible parts-
of-speech (PoS).

PoS-Tagging: Determine which is the right PoS for each word in a sentence.
(e.g. the word dance is a verb in I dance all Saturdays but it is a noun in I
enjoyed our dance together.)

Named Entity Recognition: Detect named entities in the text, which may
be formed by one or more tokens, and classify them as person, location, orga-
nization, time-expression, numeric-expression, currency-expression, etc.

Word sense disambiguation: Determine the sense of each word in a text (e.g.
the word crane may refer to an animal or to a weight-lifting machine). We use
WordNet [18] as the sense catalogue and synset codes as concept identifiers.

Constituency/dependency parsing: Given a sentence, get its syntatic struc-
ture as a constituency/dependency parse tree.

1 http://nlp.cs.upc.edu/freeling.

http://nlp.cs.upc.edu/freeling
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Semantic role labeling: Given a sentence identify its predicates and the main
actors in each of them, regardless of the surface structure of the sentence
(active/passive, main/subordinate, etc.)

Coreference resolution: Given a document, group mentions referring to the
same entity (e.g. a person can be mentioned in the text as Mr. Peterson, the
director, or he.)

Semantic graph generation: All the information extracted by the previous
analyzers can be organized in a graph depicting events (mainly coming from
predicates in the text), entities (coming from detected coreference groups),
and relations between them (i.e. which entities participate in which events
and with which role). This graph can be converted to triples and stored in an
RDF database if needed.

5 Aligning Model and Text with ILP

5.1 Overview

A general description of the approach is shown in Fig. 2. The overall process can
be separated into three categories. The modules handling the text in natural
language (white), the ones treating the process model (light gray) and finally,
those working on feature vectors (dark gray).

As a first stage, the model task labels and the textual process description
are analyzed using FreeLing to obtain a structured representation of the text.
After that, a phase of feature extraction follows where the model tasks and the
text sentences are both converted into a canonical feature vector representation.
These vectors can then be compared by means of standard distance metrics.

Parallel to that, a chronological partial order of both the sentences in the text
and the tasks in the model is computed. To find an optimal alignment between
model and text, these ingredients are encoded as an ILP model, whose solution
denotes an optimal alignment between tasks and sentences. That assignment
is used afterwards to both present the results to the end user and compute a
numerical similarity score.

5.2 Linguistic Analysis of Text and Model

We perform a full NLP analysis on the text body corresponding to the input
text, as listed in Sect. 4.2. This is a distinctive aspect of our approach with
respect to [8,9], since we gather the linguistic information from the semantic
graph, which contains a structured semantic representation of the text.

For the process model, we extract the natural language parts contained on it
(from the activities, events, gateways, arcs, lanes and pools), and then a simple
lingustic analysis (up to the word sense disambiguation step) is performed.2

2 In order improve the performance of the word sense disambiguator on model sen-
tences, the sentences from the text are provided as additional context to the ana-
lyzer. This greatly improves the disambiguation step when the model and the text
are sharing a common semantic domain.
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Fig. 2. Diagram illustrating the approach taken.

All the information gathered is then used in the feature extraction phase,
explained in the next section.

5.3 Feature Extraction

Up to this point, the model and text are represented using different structures
and handled separately. At this step they are both converted into an identi-
cal representation of feature vectors by the means of a feature extraction step.
The purpose of this transformation is to enable the comparison by deriving a
canonical representation. The motivation of using feature vectors is to aim for
an open description of the text in both representations, i.e., to consider features
as assignments to linguistic characteristics extracted from the text. We have
considered the following linguistic characteristics in our approach (unless stated
otherwise, target text in descriptions below refers to either a sentence in the
textual description or to the label of a model task):

contains lemma(l, pos) This feature is extracted from the target text if it con-
tains a word with the lemma l and part-of-speech pos.

contains action(a) This is extracted from a target text where the action a (typ-
ically a verb) is found.

agent contains(l, v) This feature encodes who is performing the text or task
action. It is extracted for text sentences whenever l is found as the agent of
verb v, or for model tasks containing verb v and belonging to a swimlane/pool
containing l.
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contains synset(s) This feature is extracted whenever the WordNet synset s
appears in the target text.

contains hypernym(s) This feature is extracted from a target text containing a
word for which s is an hypernym3 at distance HL or less. HL is a parameter
of the algorithm.

object contains(l, v) This feature is extracted when l is found as the direct
object of verb v in the target text.

follows conditional containing(l) This feature is extracted when l is found in
a clause after a conditional statement (i.e. then, or else) in the text sentence,
or when l is found in a task following an exclusive gateway with a question.

Table 2 shows some of the features extracted for sentence 3 in the example
from Sect. 2, “If he wants an individual membership, he must prepare his per-
sonal information”. Note that the features include information such as lemma
customer being mentioned, when it does not appear in the sentence. This is
because the coreference resolution module detected that pronoun he in this sen-
tence is referring to the actor customer mentioned somewhere else in the text.
Also, output of the Semantic Role Labeler is also encoded in features stating
that customer is the agent of action want and prepare, and that information is
the object of prepare.

Table 2. Set of features (some omitted for brevity) for example sentence 3.

contains lemma(customer, noun) contains lemma(want, verb)

contains lemma(individual, adj.) contains action(want)

contains action(prepare) contains synset(09984659-n::client)

contains hypernym(10741590-n::user) agent contains(customer, wants)

agent contains(customer, prepare) object contains(prepare, information)

Clearly, because the features are instantiated by words, this generates an open
space of potentially infinite dimensions. For instance, the feature contains action
is instantiated twice for the sentence The crane catched a fish and flew away :
contains action(catch) and contains action(fly). In practice, this is handled by
using a sparse representation of vectors.

The set of features proposed encodes high-level semantic information such as:
who is the agent of the action, what is the action, or under what conditions is
the task executed. That context is sometimes crucial in detecting whether a task
is describing an action, referring to it or just using similar terms. The model and
the text should generate similar feature vectors whenever the similarity between
a sentence and a task is high, and vice-versa. This means the chosen features
must represent properties that can be found both in the BPMN model and the
textual description.
3 A word w1 is a hypernym of w2 iff w1 describes a superclass of w2 (e.g. mammal is

a hypernym of cat, and document is a hypernym of letter). Hypernymy is obtained
from WordNet.
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5.4 Similarity Metrics

After the feature vector transformation defined in Sect. 5.3 it suffices to compare
similarities between feature vectors in order to compute the similarity between a
task and a sentence. In order to adjust the relevance of a feature f , we associate
a scalar weight wf to it as the product of two values: a constant value wc

f that is
particular for each feature class (e.g.: contains lemma), and a variable value wv

f

whose magnitude depends on certain conditions. The set of constant weights of
each feature class is a parameter of the algorithm. As an example, the particular
weight of a feature such as contains lemma(customer, noun) can be defined as
the product of a constant factor for all instances of contains lemma and the
tf-idf 4 score of this lemma in the sentence.

Three similarity metrics are available as parameters: The Cosine similarity
and the weighted versions of the Jaccard index and the Overlapping index. We
have evaluated all three metrics and have chosen the last one as the default
for our tool, since it gives more intuitive numerical values and the performance
between all three does not differ significantly:

Weighted overlapping index This metric expands the Overlapping index by
considering weighted elements in the set, such as in our case:

WeightedOverlapping(A,B) =

∑
f∈A∩B wf

∑
g∈smallest(A,B) wg

This metric returns a bounded value between 0 and 1.

5.5 Text and Model Ordering

When only considering the similarity metrics defined in the previous section,
a task and a sentence might be very similar but may appear at very different
parts of the corresponding representations [8]. For example, the action described
by the sentence might occur in the last part of the text, while the task could
be amongst the first tasks to execute in the process model. This means the
chronological order of the events must be taken into account when trying to
determine whether a task and a sentence refer to the same action.

Consequently, we seek to find the partial order relation � between the ele-
ments of both representations, text and model, such that e � e′ means: “Element
e happens before, or at the same time as e′”. This allows us to define the strict
order relation � as

e � e′ ⇐⇒ e � e′ ∧ e′ � e

In the process model, the computation of the strict ordering relation goes
beyond the mere structure of the model, and instead should be computed from

4 The tf-idf of a token t is the product of tf := (Number of appearances of t in
its sentence/Number of tokens in that sentence) and idf := loge(Total number of
sentences/Sentences containing t).
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the underlying behavior. Fortunately, there are efficient techniques to determine
the strict order relation [19,20] of a process model. In this paper, the relation
� corresponds to that same relation in the behavioral profile of the model as
explained in [19].

Using the example in Sect. 2, a full behavioral profile would be extracted
containing relations such as G � I (happens before), B +C (exclusive) or H||L
(parallel).

For the case of the text, it has been shown that the ambiguities present in
textual descriptions make it impossible to determine the order of the tasks in
them with total certainty [21]. This makes it hard to precisely extract the order
unless techniques for extracting temporal relations are applied [22,23]. In our
case, we have chosen to simplify the problem assuming a sequential order of the
events depicted in the text. This assumption fails whenever the text deliberately
reports events in reverse order such as in: “Task A is performed. But before A,
Task B must have been executed.”. In practice we hardly found such reverse
ordering constructions in the texts describing process models.

5.6 Optimal Alignment Computation

This final step aims to find the optimal alignment between sentences in the
textual description and tasks in the model. That information is then used in
order to compute the global similarity between the model and the text as a
numeric score. The information found in the optimal alignment can also aid in
finding the actual inconsistencies between both representations as seen in [8]:
(i) Tasks describing actions not appearing in the text, (ii) Sentences describing
actions which are not in the model, and (iii) Different orderings of tasks.

For a formal definition of the problem, let the task set be T , the sentence
set be S and sim(s, t) be the computed similarity between s ∈ S and t ∈ T 5 (cf
Sect. 5.4). We assume for all pairs of elements both in S and T the order relation
� has been computed.

We define an alignment as a partial function fA : T �→ S of tasks to sentences
such that fA(t) = s, meaning that task t is describing the same actions as
sentence s. In a fashion similar to that of [8], we define the optimal alignment
f∗
A to be the alignment fulfilling the following properties:

Partial assignment The domain of f∗
A, denoted by Dom(f∗

A) is a subset of the
whole set of tasks, i.e. all t ∈ T ′, for T ′ ⊆ T .

Order consistency Let s = f∗
A(t) and s′ = f∗

A(t′) for some pair of different
tasks (t, t′). Then, the following restriction must hold: t � t′ =⇒ s � s′

Optimality The value of
∑

t∈Dom(f∗
A) sim(t, f∗

A(t)) is the maximum value such
that the two other properties hold.

5 In this case, sim(s, t) corresponds to WeightedOverlapping(vs, vt) where vs and vt
are the feature vectors of s and t respectively.
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In order to obtain a solution, the aforementioned properties can be encoded
in the following ILP:

maximize:
∑

s∈S

∑

t∈T

at,s · sim(t, s)

subject to:

∀t ∈ T :
∑

s∈S

at,s = 1

∀(s, s′) ∈ S × S, (t, t′) ∈ T × T, t � t′ ∧ s′ � s : at,s + at′,s′ ≤ 1
variables:

∀s ∈ S, t ∈ T : at,s ∈ {0, 1}

The variables at,s can be interpreted as: “Task t is assigned to sentence s”, i.e.:
as,t ⇐⇒ s = f∗

A(t). The first family of constraints limits the number of sen-
tences per task to exactly one6; this contradicts the requirement for function
f∗
A to be partial, since a solution to the ILP model will has domain T . In prac-

tice, however, a threshold is used on the value sim(t, s), and hence, assignments
between tasks and sentences below this threshold are discarded. Finally, the sec-
ond family of constraints encodes the Order consistency property by discarding
the cases in which the order restriction would be violated.

Theorem 1. The ILP model for aligning textual descriptions and process mod-
els is feasible and computes an optimal alignment f∗

A for a similarity metric
sim.

6 Experiments and Tool Support

The techniques of this paper have been implemented and are available as a
web application7. The tool uses FreeLing for linguistic analysis, and Gurobi [24]
as ILP solver. As similarity metric, we used the weighted overlapping index.
Below we provide the two main experiments performed, devoted to analyze the
positioning of the tool with respect to the state-of-the-art tool for the same task,
(Sect. 6.1) and to test the tool capabilities in handling large instances (Sect. 6.2).
The experiments for both tools have been performed on the same machine.

6 Note that these equations can also be encoded using the Special Ordered Sets (SOS)
constraint ∀t : at,1, · · · , at,|S|, which denotes exactly the same constraint, and yields
better performance in the ILP solvers that implement it.

7 The web application is available at: http://xorrai.cs.upc.edu:8080/bpmninterface/.
The tool we present in this paper corresponds to the BPMN vs Text tab.

http://xorrai.cs.upc.edu:8080/bpmninterface/


424 J. Sànchez-Ferreres et al.

6.1 Comparison with the Technique from [9]

Table 3. Accuracy and solving time of our pro-
posal and the one in [9].

Model |T | |S| [9] approach Our proposal

Acc. ms/task Acc. ms/task

Model1-2 8 6 100.0% 98 100.0% 29

Model1-4 7 11 100.0% 256 100.0% 45

Model10-1 4 3 75.0% 94 75.0% 27

Model10-10 10 8 70.0% 92 80.0% 26

Model10-11 9 7 77.8% 53 66.7% 23

Model10-12 5 4 80.0% 14 80.0% 23

Model10-13 4 3 100.0% 15 100.0% 25

Model10-14 10 5 50.0% 595 60.0% 29

Model10-3 12 11 91.7% 807 75.0% 28

Model10-4 11 9 90.9% 1,221 90.9% 28

Model10-5 4 4 100.0% 338 100.0% 24

Model10-6 4 3 75.0% 89 75.0% 20

Model10-7 8 7 100.0% 555 100.0% 19

Model10-8 5 7 80.0% 374 60.0% 27

Model10-9 8 5 100.0% 388 75.0% 23

Model2-1 26 38 76.9% 7,532 76.9% 134

Model2-2 19 30 63.2% 7,706 73.7% 84

Model3-1 6 7 100.0% 97 83.3% 28

Model3-2 6 4 100.0% 72 100.0% 20

Model3-3 4 5 100.0% 228 100.0% 29

Model3-4 2 4 50.0% 153 50.0% 56

Model3-5 11 9 81.8% 214 72.7% 31

Model3-6 6 8 83.3% 515 83.3% 28

Model4-1 18 40 33.3% 30,757 55.6% 173

Model5-1 2 6 0.0% 341 0.0% 73

Model5-2 5 5 60.0% 572 80.0% 30

Model5-3 9 10 55.6% 1,015 55.6% 34

Model6-2 4 5 75.0% 255 75.0% 33

Model6-3 5 9 80.0% 985 80.0% 1,880

Model6-4 9 14 66.7% 1,204 44.4% 47

Model7-1 4 7 100.0% 442 100.0% 30

Model8-1 5 3 100.0% 167 80.0% 18

Model8-2 5 6 40.0% 461 60.0% 26

Model8-3 5 5 100.0% 445 80.0% 26

Model9-1 7 8 71.4% 151 85.7% 33

Model9-3 6 4 100.0% 83 66.7% 25

Model9-4 7 5 28.6% 89 71.4% 26

Model9-5 8 7 62.5% 579 62.5% 24

Model9-6 8 13 37.5% 1,275 25.0% 45

BicycleManuf 9 12 100.0% 772 66.7% 41

ClaimsCreation 6 5 83.3% 467 100.0% 30

HotelService 12 11 91.7% 196 83.3% 33

Dispatch-of-g 7 7 71.4% 709 100.0% 35

Hospital 14 14 28.6% 25,109 71.4% 35

Hotel 12 11 83.3% 198 83.3% 30

Self-service 18 13 83.3% 1,002 88.9% 38

Underwriter 7 11 85.7% 274 100.0% 43

Zoo 15 12 46.7% 214 73.3% 31

Micro average 73.7% 3,517 76.3% 76

Macro average 75.6% 1,860 76.4% 79

Median 80.0% 357.5 80.0% 29.5

To validate the quality of the
results provided by our tool,
we compare them with the
ones generated by the app-
roach in [9], on a gold stan-
dard from [13] that was later
extended by the authors of [9].
We also expanded the gold stan-
dard with the last group of mod-
els, taken from [13]. The models
in this benchmark were manu-
ally analyzed in [9,13] to obtain
the correct assignment between
tasks and sentences, so that the
quality of a tool can be assessed.

Table 3 reports the results.
For each model, we provide
the number of tasks and sen-
tences. Moreover, for each app-
roach we report the accuracy
(ratio of tasks correctly assigned
to its matching sentence) and
the execution time (average
time per task) for each tool.
To obtain a global perspec-
tive of the results, we provide
a micro-average (total compu-
tation time over total num-
ber of tasks in all models), a
macro-average (total computa-
tion time over number of mod-
els) and a median. The hughe
differences between both meth-
ods are caused by a small sub-
set of models that are more dif-
ficult to solve than the rest.
Although our approach pro-
duces slightly better accuracies
than [9], the difference is not
significant. However, our app-
roach can obtain the same accu-
racy in the alignment with a
remarkable reduction of compu-
tation time.
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6.2 Experiments on Large Instances

In the previous experiment validated the quality of the results provided by our
technique. In this second experiment we focus on the time performance, using
models of increasing size. This will allow to extrapolate the capabilities of our
approach for larger instances. For the sake of comparison, we also include the
execution times for the current implementation of the tool described in [9].

Due to the small number of available model–text pairs, and to reduced range
of model sizes in existing data, we opted for generating a synthetic dataset
of model-text pairs. The model generation consists of two steps: first we use
the PGL2 tool [25] to generate the structure of a BPMN model. The second
step consists of enriching the generated model by replacing model labels with
randomly generated task descriptions. Once a process model is generated, a text
is also generated with a random number of sentences |S| = |T | ± k, where |T |
is the number of tasks in the model, and k was set to three in the experiments.
Both the text sentences and the task descriptions in the model are generated
with a simple word–bigram Markov model built using [26], trained with all the
textual descriptions from the benchmark in Sect. 6.1. The generated synthetic
benchmark has 400 model–text pairs ranging from 1 to 115 tasks.

Figure 3 shows the execution time of both tools for all model sizes8. The
plots show that our approach has an asymptotic behavior with a complexity
much lower than the methods in [9]. Remarkably, there is a correlation between
the variance in the execution time and the input size: from size 50 upwards in
the plot of the right of Fig. 3, one can see that the execution time for models of
similar size varies significantly. This suggests that other factors, apart from the
model size, influence the execution time.

Fig. 3. Left: Execution times (in seconds) for [9] and our approach. Right: Zoom-in for
the execution times of our approach.

8 We could not include all the executions for the approach from [9] since instances
bigger than 46 tasks hit the imposed 4 h time limit.



426 J. Sànchez-Ferreres et al.

7 Conclusions and Future Work

In this paper we have proposed a novel approach for aligning textual descriptions
and graphical models of processes. By applying a full linguistic analysis that
results in an extensive set of features, and casting the problem as a mathematical
optimization, we were able to align instances of unprecedented size. Moreover, in
terms of quality the technique performs similar to the state of the art approach.

As a future work, we plan to expand the capabilities of the tool in different
dimensions. First, we plan to incorporate the analysis of temporal relations in
the text so that the control flow is better described. Second, a full exploration
of the parameters of the technique (e.g., the weights for the similarity metric)
will be done to boost the quality of the results. Finally, we plan to evaluate the
tool in more realistic scenarios.
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