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Abstract. The increasing connections of systems that produce high vol-
umes of real time data have raised the importance of addressing data
abundance research challenges. In the Industry 4.0 application domain,
for example, high volumes and velocity of data collected from machines,
as well as value of data that declines very quickly, put Big Data issues
among the new challenges also for the factory of the future. While many
approaches have been developed to investigate data analysis, data visual-
isation, data collection and management, the impact of Big Data explo-
ration is still under-estimated. In this paper, we propose an approach
to support and ease exploration of real time data in a dynamic context
of interconnected systems, such as the Industry 4.0 domain, where large
amounts of data must be incrementally collected, organized and analysed
on-the-fly. The approach relies on: (i) a multi-dimensional model, that
is suited for supporting the iterative and multi-step exploration of Big
Data; (ii) novel data summarisation techniques, based on clustering; (iii)
a model of relevance, aimed at focusing the attention of the user only
on relevant data that are being explored. We describe the application of
the approach in the smart factory as a case study.

Keywords: Data exploration · Big data · Multi-dimensional data
model · Industry 4.0 · Cyber physical systems

1 Introduction

The research challenges raised by the abundance of real time data in
Cyber-Physical Systems (CPS) have focused the attention of researchers on the
collection, organisation and exploration of data as produced by interconnected
systems, enabled by the widespread diffusion of IoT technologies [11]. Collected
data are featured by high volumes and velocity and have outgrown the ability
to be stored and processed by many traditional systems. Moreover, their value
declines very quickly, making organisations’ success more and more dependent on
how efficiently they can turn collected data into actionable insights. For instance,
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advanced Industry 4.0 capabilities, namely self-awareness, self-configuration and
self-repairing, as well asmanufacturing servitization, defined as the strategic inno-
vation of organisations’ capabilities and processes to shift from selling products to
selling integrated product and service offerings, rely on data collection and shar-
ing [10], according to the emerging “data-driven innovation paradigm” [7].

In this context, many approaches have addressed issues related to data collec-
tion and management, data analysis, data visualisation and rendering. Neverth-
less, Big Data exploration issues have been under-estimated. In this paper, we
discuss the ingredients to enable exploration of real time data in a dynamic con-
text of interconnected systems, where large amounts of data must be incremen-
tally collected, organized and analysed on-the-fly. Firstly, we envision exploration
as a multi-step process, where data can be browsed through iterative refinements
over a set of dimensions, hierarchically modelled, that are used to organise data
into a multi-dimensional model. Data modeling according to “facets” or “dimen-
sions”, either flat or hierarchically organized, has been recognised as a factor
for easing data exploration, since it offers the opportunity of performing flexible
aggregations of data [3]. On top of the multi-dimensional model, we developed
a data summarisation approach, in order to simplify overall view over high vol-
umes of data, and a model of relevance, aimed at focusing the attention of the
user on relevant data only, also when the user is not able to specify his/her
requirements through a query. The multi-dimensional model, the data summari-
sation approach and the model of relevance are the core components of our
Big&Open Data Innovation framework (BODaI) and the main contributions of
this paper. With respect to exploratory data analysis [13] and Data Mining [6],
our approach aims at supporting exploration as a multi-step process, where the
user may iteratively improve focus on relevant data, by receiving suggestions of
the system based on the model of relevance. Compared to On Line Analytical
Processing [5], we manage data that are incrementally collected, organized and
analysed on-the-fly. Finally, with respect to traditional faceted search [14], we
deal with high data volumes and velocity, that imply efficient techniques for
storing and managing them. Given the importance of these research challenges
in the Industry 4.0 domain, we describe the application of our approach in the
smart factory as a case study.

The paper is organized as follows: Sect. 2 presents a motivating example,
used to introduce the innovative aspects of our approach in the Industry 4.0
domain; in Sect. 3 we describe the multi-dimensional model and proposed data
summarisation techniques; Sect. 4 provides details about the model of relevance
and how this can be engaged within the multi-dimensional model in order to
foster big data exploration; the architecture of BODaI framework and exper-
imental evaluation are detailed in Sect. 5; Sect. 6 highlights cutting-edge fea-
tures of our approach compared to the state of the art; finally, Sect. 7 closes the
paper.
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2 Motivating Example and Research Challenges

As a motivating example, we introduce here the application of our approach
for exploring real time data collected from a machine produced by an Original
Equipment Manufacturer (OEM). As shown in Fig. 1, the OEM produces multi-
spindle machines, where spindles work independently each other on the raw
material. Each spindle is mounted on a unit moved by an electrical engine to
perform X, Y, Z movements. The spindle rotation is impressed by an electrical
engine and its rotation speed is controlled by the machine control. Spindles use
different tools (that are selected according to the instructions specified within
the Part Program) in order to complete different steps in the manufacturing
cycle. For each unit, we can measure the velocity of the three axes (X, Y and
Z) and the electrical current absorbed by each of the engines, the value of rpm
for the spindle, the percentage of power absorbed by the spindle engine (charge
coefficient). Hereafter, we will refer to the measured aspects as features.

The aim of the OEM is to understand if it is possible to use real time data
collected directly from the machine control for monitoring the spindle axle hard-
ening over time and the tool wear. With spindle axle hardening we refer to a
specific behaviour of the spindle shaft that turns hard more and more due to
different possible reasons: lack of lubrication and bearing wear that may lead
to possible bearing failures. Tool wear monitoring is referred to possible tool
usage optimisation in order to balance the trade-off between the number of tools
used and the risk of breaking the tool during operations that may lead to long
downtimes.

Tool

Spindle #1

Working stations 
(raw material is 
positioned here)

Spindle #2

Spindle #3

Engine that 
moves 

spindle on X, 
Y andZ axes

Fig. 1. The multi-spindle machine from which real time data have been collected for
exploration purposes.

This opens a set of issues, mainly related to data volumes and velocity and
the considered application domain, that can be summarised as follows.
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Data Modeling for Exploration. Data modeling according to “facets” (e.g.,
categories), evenly hierarchically organised, represents a powerful mean to
enable incremental and on-the-fly data exploration. A multi-dimensional rep-
resentation of data can be helpful, since it allows aggregation of data accord-
ing to different dimensions (e.g., time, monitored spindle, tool used for a
specific manufacturing step), that might be related to the observed problems
(e.g., spindle axles hardening or tool wear), thus giving proper semantics to
the collected data. Moreover, multi-dimensional model enables refinement of
the exploration by following the hierarchical organisation of dimensions.

Data Summarisation. The ability of providing a compact view of the huge
amount of data collected from the machine is strongly required. A data sum-
marisation approach is recommended, where data should be observed in an
aggregated way, instead of monitoring each single data record, that might be
not relevant given the high level of noise in the working environment (slight
variations in the measured variables). At the same time, data aggregations
should be observed on the fly, given the highly dynamic nature of the applica-
tion domain, and efficient computation algorithms are required to summarise
data.

Data Relevance. The user who explores data needs an underlying data-model
to enable fast exploration of the available data, guiding the user towards
only those relevant measures that correspond to spindle hardening or tool
wear problems. To this aim, it is required a model of relevance that enables
to identify only relevant data on which the user must focus for managing
critical situations, taking into account volumes and speed of data collection
phase.

3 A Multi-dimensional Model for Big Data Exploration

3.1 Basic Definitions

The basic concept of the multi-dimensional model, on which exploration relies,
is the feature, that is, a monitored variable (e.g., measured through sensors and
machine control). Features are defined as follows.

Definition 1 (Feature). A feature represents a monitored variable that can be
measured. A feature Fi is described as 〈nFi

, uFi
〉, where nFi

is the feature name,
uFi

represents the unit of measure. Let’s denote with F = {F1, F2 . . . Fn} the
overall set of features.

Definition 2 (Measure). We define a measure Xi(t) a value for the feature
Fi, expressed in terms of the unit of measure uFi

and of the timestamp t, that
represents the instant in which the measure has been taken. At a given time t, a
set of measures can be identified, one for each considered feature. Therefore, we
denote with vector X(t) a record of measures 〈X1(t),X2(t), . . . Xn(t)〉 obtained
at a given time t and synchronised with respect to the acquisition timestamp.

Examples. In the running example, velocity of the three axes X, Y and Z, elec-
trical current, the value of spindle rpm and percentage of absorbed power are
modelled as features.
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3.2 Clustering-Based Data Summarisation

Records of measures collected at a given time interval Δt are clustered. Clus-
tering offers a two-fold advantage: (a) it gives an overall view over a set of
measure records, using a reduced amount of information; (b) it allows to depict
the behaviour of the system better than single records, that might be affected by
noise and false outliers, in order to observe a given physical phenomenon. When
dealing with real time data, collected for example in Cyber Physical Systems,
we face with data streams, where data are not all available since the begin-
ning, but are collected in an incremental way. For these reasons, an incremental,
data-stream clustering algorithm has been developed, in order to extract from
records of measures in a time interval Δt a set of clusters aimed at summarising
collected measures. The clustering algorithm is performed in two steps: (i) in
the first one, a variant of Clustream algorithm [1] is applied, that incrementally
processes incoming data to obtain a set of syntheses; (ii) in the second step,
X-means algorithm is applied [12] in order to cluster syntheses obtained in the
previous step. X-means does not require an a-priori knowledge on the number
of output clusters. Syntheses are defined as follows.

Definition 3 (Synthesis). We define a synthesis of records S as a tuple con-
sisting of five elements, that is, S = 〈N,LS, SS,X0, R〉, where: (i) N is the
number of records included into the synthesis (from X(t1) to X(tN ), where
tN = t1 + Δt); (ii) LS is a vector representing the linear sum of measures
in S; (iii) SS is the quadratic sum of points in S; (iv) X0 is a vector repre-
senting the centroid of the synthesis; (v) R is the radius of the synthesis. In
particular:

LS =
N∑

k=1

X(tk) SS =
N∑

k=1

X2(tk) (1)

X0 =
∑N

k=1 X(tk)
N

(2)

R =

√∑N
k=1(X(tk) − X0)2

N
(3)

The second step aims at clustering syntheses. Clustering is performed to min-
imise the distance between syntheses centroids within the same cluster and
to maximise the distance between syntheses centroids across different clusters.
Clusters give a balanced view of the observed physical phenomenon, grouping
together syntheses corresponding to the same working status. Details about the
algorithm for syntheses generation and clustering are out of the scope of this
paper.

Definition 4 (Cluster). A cluster C is defined as follows: C = 〈C0,SC〉, where
C0 is the cluster centroid, SC is the set of syntheses belonging to the cluster.
We denote with SC the set of identified clusters.
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3.3 Dimensions

Clusters are associated with values of specific dimensions. Among dimensions, we
mention time, feature space, working mode and other domain-specific dimensions.

Time. Time is the most important dimension. In fact, the clustering algorithm
described in the previous section is computed incrementally over time. The min-
imum granularity of time dimension corresponds to the time interval over which
clustering is performed. This means that, considering Δt as the time interval on
which records of measures are grouped in syntheses, that in turn are clustered,
every Δt seconds the clustering algorithm outputs a new cluster set SC built
on top of the previous sets. Δt is chosen at configuration time such that 1/Δt is
greater than the data acquisition frequency.

Feature Space. Feature spaces are used to represent different physical phe-
nomena of a system that are being monitored. In the running example, the
spindle hardening and the tool wear are feature spaces. A feature space con-
ceptually represents a set of related features, whose measures are useful in
order to describe the evolution over the time of monitored physical phenom-
ena. Multiple feature spaces might be observed, and the observation of a fea-
ture might be useful to monitor more than one feature space. We denote with
FS = {FS1, FS2, . . . FSm} the set of feature spaces, where FSj ⊆ F and m ≤ n.
Feature spaces can be monitored independently each others.

Working Mode. The working mode represents the conditions in which moni-
tored cyber physical system operates. Working mode can be identified through
one or more parameters. In our running example, working mode is identified by
the kind of manufacturing task that is being processed, described within the Part
Program of the machine, and by the machine model. Roughly speaking, working
mode represents the context in which data analysis/comparison between collected
measures might have sense. For example, comparison between the behaviour of
two machines is meaningful only if two machines are executing the same Part
Program and machine model is the same.

Domain-Specific Dimensions. Other dimensions can be considered depend-
ing on the specific domain of interest. In the running example, domain-specific
dimensions are the monitored physical system (e.g., the spindle) and the tool
used for the manufacturing process.

Dimensions can be organized in hierarchies, at different levels. Formally, we
denote with D = D1×D2×. . .×Dp the multi-dimensional space created by p
dimensions D1,D2, . . . Dp. We denote with Di

j the i-th level in the hierarchy of
j-th dimension and with di ∈ Di a single value of the dimension Di.

Example. The time dimension can be considered starting from the level of hour
(if clustering is performed every hour), hours can be aggregated into days, days
can be aggregated into months, that can be in turn aggregated into quarters,
that is, time[hour:days:month:quarters]. Tools can be aggregated into tool
types (tool[tool:tool type]). Spindles can be aggregated into the machines
they belong to (monitored system[spindle:machine]).
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3.4 Multi-dimensional Model

Our multi-dimensional model consists of an hypercube such as the one shown
in Fig. 2 for the running example. Dimensions represent axes of the hypercube,
that is defined as follows.

Fig. 2. The multi-dimensional data model for big data exploration.

Definition 5 (Multi-dimensional model). Wedescribethemulti-dimensional
modelasasetV nodes.Eachnodev ∈ V isdescribedasv = 〈SC(d1, d2, . . . dp)〉,where
SC(d1, d2, . . . dp) representsacluster set, obtainedatfixedvalues for eachdimension
d1 ∈ D1, d2 ∈ D2 . . . dp ∈ Dp.

For example, in Fig. 2 the node identified as “A” represents the cluster set iden-
tified at time t1 for machine m1 (spindle c3), that is using tool u3 and is work-
ing within the working mode w3, considering features in the feature space fs1.
Exploration will be performed within this data structure as described in the next
section.

4 Relevance-Based Big Data Exploration

Theproposedapproachenablesexplorationofrealtimedataincrementallycollected
and organized, as well as aggregated on-the-fly. The user is guided by the multi-
dimensional model through a set of steps according to data relevance aspects.
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4.1 Model of Data Relevance

In Exploratory Computing (EC), during exploration steps data can be consid-
ered as relevant if they differ from an expected status. The latter one can be for
example a normal distribution of values of a feature, as assumed in [3]. In our
case, the expected status corresponds to the one of normal working conditions
for monitored cyber physical systems. The expected status can be tagged by
domain expert while observing the monitored system when operates normally.
Let’s denote with ŜC(d1, d2, . . . dp) the cluster set identified during such condi-
tion, for dimension values fixed at d1, d2, . . . dp.

The model of relevance adopted in our approach is based on the concept
of cluster distance. The algorithm proposed here is inspired by [4] and has been
adapted to the multi-dimensional model considered in this paper. Given two sets
of clusters SC1 = {C1, C2, . . . , Cn} and SC2 = {C ′

1, C
′
2, . . . , C

′
m}, with size n and

m respectively, we evaluate the distance between SC1 and SC2 by aggregating
distances between each cluster belonging to SC1 and the closest cluster belonging
to SC2 and viceversa, for symmetry purposes (see, for example, C2 and C ′

2 in
Fig. 3). Formally, the distance is computed as:

Δ(SC1, SC2) =

∑n
i=1 d(Ci, SC2) +

∑m
j=1 d(SC1, C

′
j)

m + n
(4)

Fig. 3. Illustration of cluster’s sets changes in time due to spindle hardening that may
cause a decrease of rpm and an increase of the percentage of absorbed power. In the
figure is showed how the cluster C2 ∈ SC1 changed its position, as well as its size, from
time tn to tn+1; this changes may indicate an anomaly like the spindle hardening.

where d(Ci, SC2) = minj=1,...mdc(Ci, C
′
j) and d(SC1, C

′
j) = mini=1,...n

dc(Ci, C
′
j) is the distance between clusters. To compute the distance between

two clusters dc(Ci, C
′
j), we combined different factors: (i) the distance between

clusters centroids dC0(Ci, C
′
j), to verify if C ′

j moved with respect to Ci (or vicev-
ersa); (ii) the intra-cluster distance dintra

c (Ci, C
′
j), to verify if there has been an

expansion or a contraction of cluster C ′
j with respect to Ci; (iii) the difference

in number of syntheses contained in Ci and C ′
j , denoted with dN (Ci, C

′
j):

dc(Ci, C
′
j) = αdC0(Ci, C

′
j) + βdintra

c (Ci, C
′
j) + γdN (Ci, C

′
j) (5)
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where α, β and γ ∈ [0, 1] are weights such that α+β +γ = 1, used to balance the
impact of terms in Eq. (5). To set the optimal weights, a grid procedure can be
performed over α and β (γ is set with 1 − α − β), with the value of each weight
varying from 0 to 1. In our preliminary experiments, we put α = β = γ = 1

3 .
In particular, dC0(Ci, C

′
j) is computed by applying the Euclidean distance

(D0) between clusters’ centroids, according to the following formula:

D0 =
√

(Ci
0 − Cj

0)2 (6)

where Ci
0 and Cj

0 are centroids of Ci and C ′
j , respectively. The intra-cluster

distance dintra
c (Ci, C

′
j) is obtained by recursively computing Δ(SCi

,SC′
j
) on the

sets of syntheses of Ci and Cj , that is:

dintra
c (Ci, C

′
j) =

∑n1
k=1 d(Sk, C ′

j) +
∑n2

h=1 d(Ci, Sh)
n1 + n2

(7)

where Sk ∈ SCi
, Sh ∈ SC′

j
, |SCi

| = n1, |SC′
j
| = n2, d(Sk, C ′

j) =
minh=1,...n2ds(Sk, Sh) and d(Ci, Sh) = mink=1,...n1ds(Sk, Sh). Term ds(Sk, Sh)
represents the average inter-syntheses distance (D1):

D1 =

√∑N1
i=1

∑N1+N2
j=N1+1(X(ti) − X(tj))2

N1N2
(8)

where N1 and N2 are the number of records in Sk and Sh, respectively.

4.2 Multi-step Guided Data Exploration

Starting the Exploration. To start the exploration, the user might specify
a set dr of preferred values for the dimensions he/she is interested in, where
dr = {dr

1, d
r
2, . . . d

r
p} and dr

i ∈ Di. The user might specify preferences on a sub-
set of dimensions in D. Let’s denote as bounded the dimensions on which the
user expressed a preference, as unbounded the other dimensions. The systems
identifies a subset V ′ ⊆ V of nodes within the multi-dimensional model, such
that the values of bounded dimensions corresponds to the one specified in dr.
The exploration will start from nodes v ∈ V ′. We remark here that bounded
dimensions must be considered starting from selected level in the hierarchy. This
means that if the user selects a specific machine, the monitored system dimen-
sion is bounded at machine level, but remains unbounded at spindle level, that
is, no preferences are expressed on spindles and the user is enabled to browse
data among all spindles that compose the selected machine. For example, if
dr = 〈−, fs1, m1,−,−, w1〉, feature space, machine and working mode are the
bound dimensions, while time, tool and spindle are the unbound ones: the front
facade of hypercube shown in Fig. 2 groups the candidate nodes v ∈ V ′.

We assume that the user formulates dr as an explicit, albeit vague exploration
request, and expects the system to suggest some promising data to explore.
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To this aim, we need a model of relevance to establish what data can be con-
sidered as relevant or interesting. The system uses the model of relevance in
order to restrict the set of nodes from which to start the exploration among
nodes v ∈ V ′, that is, the set of relevant data to be explored. For each node
v = 〈SC(d1, d2, . . . dp)〉 ∈ V, the node is considered as relevant if the clusters
distance with respect to the set of clusters ŜC(d1, d2, . . . dp) overtakes a prede-
fined threshold, that is, Δ(SC(d1, d2, . . . dp), ŜC(d1, d2, . . . dp))≥δ. Such a model
of relevance enables the identification of relevant nodes also when the user does
not specify any constraints in dr, that is, he/she does not have any idea from
which dimensions and data to start the exploration. In the latter case, the same
relevance criteria is used, where the candidate nodes v ∈ V are all the ones in the
hypercube.

How the Exploration Goes On. Starting from nodes selected in the previous
step, exploration goes on through a set of different traversals that the user applies
in order to move from one node to the other ones. We define a traversal as
σ(τσ, vi, vj , ωσ), where: (i) τσ is the kind of traversal (among drill-down, roll-up
and sibling), inspired by OLAP operators, as detailed below; (ii) vi ∈ V is the
starting node; (iii) vj ∈ V is the destination node; (iv) ωσ is a weight assigned to
the traversal, computed according to the model of relevance. By using traversals
it’s possible to move in all directions.
Using a drill-down traversal the user moves towards a node vj ∈ V by special-
ising any of the dimensions in vi ∈ V. An example of drill-down traversal is to
move from a node labeled with 〈t1, fs1, m1, u1, w1〉 towards a node labeled with
〈t1, fs1, c2, u1, w1〉, where c2 (spindle) specialises m1 (machine) in the hierarchy
of monitored system dimension. Note that this means to include the spindle
among the bounded variables and therefore to restrict the exploration space.

The roll-up traversal is similar. Using a roll-up traversal the user moves
towards a node vj ∈ V by generalising any of the dimensions in vi ∈ V. An exam-
ple of roll-up traversal is to move from a node labeled with 〈t1, fs1, c2, u1, w1〉
towards a node labeled with 〈t1, fs1, m1, u1, w1〉. This also means to include the
spindle among the unbounded variables and therefore to expand the exploration
space.

Using a sibling traversal the user moves towards a node vj ∈ V by changing
the value of one of the dimensions in vi ∈ V. An example of sibling traversal
is to move from a node labeled with 〈t1, fs1, m1, u1, w1〉 towards a node labeled
with 〈t1, fs1, m2, u1, w1〉, where m1 and m2 are two machines, that is, values of the
same level in the hierarchy of monitored system dimension. This traversal does
not change the sets of bounded and unbounded variables and therefore does not
change in size the exploration space.

The model of relevance can be used here by the system to suggest more
relevant nodes to move on: in particular, nodes vj ∈ V are suggested such as
Δ(SC(d1, d2, . . . dp), ŜC(d1, d2, . . . dp))≥δ, where vj = 〈SC(d1, d2, . . . dp)〉.
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5 Implementation and Experiments

5.1 Architecture of the BODaI Framework

Figure 4 depicts the functional architecture of the BODaI framework. The frame-
work has been developed in Java as a modular infrastructure composed of:

– BODaI BigData, that is based on NoSQL technology (MongoDB) and stores
records of measures, incrementally provided by monitored physical system;
the composition of a record is defined within a Config file; different records
are processed in parallel;

– BODaI model, that contains all metadata the framework relies on (hierarchies
of dimensions, organisation of features within feature spaces, features meta-
data such as names and unit of measures), as well as cluster sets, syntheses
information and computed distances used in the model of relevance for guid-
ing the exploration; the size of this information is much lower than the total
amount of collected measures and MySQL technology has been used; both
the BODaI BigData, and the BODaI model, are accessed through the BDAO
(BODaI Data Access Objects);

– BSB level (BODaI Service Bus), that manages the interactions between
BDAO and the framework services;

– Data Acquisition Service, in charge of collecting records of measures, syn-
chronising timestamps and storing acquired data within the BODaI BigData,
according to feature spaces as specified in BODaI model; during acquisition
data processing is strongly minimised to avoid bottlenecks in data acquisition;
costly data elaboration steps are postponed in a second step, where other ser-
vices (clustering, data control, cluster distance computation) are invoked in
parallel;

– Data Control Service, Clustering Service and Cluster Distance Service, in
charge of performing controls on collected records, clustering and cluster sets
distance computation, respectively;

– Notification Service, in charge of sending a notification when an unexpected
variation between distances of cluster sets has been identified; it also manages
notifications raised when data control is executed.

5.2 Real Use Cases

We applied the approach described in this paper to the Industry 4.0 appli-
cation domain. We considered a factory producing multi-spindle machines for
various industrial sectors: automotive, aviation, water industry, etc. Specifically,
the multi-dimensional model enabled to monitor axle hardening by observing
changes in the values of energy consumption (spindle engine charge coefficient)
for similar rpm, with reference to the tool that has been used. By detecting
energy consumption differences using different tools, we identified spindle hard-
ening as the possible anomaly that increases the energy request to perform the
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Fig. 4. The functional architecture of the BODaI framework.

manufacturing operations. If the increase in energy consumption is related only
to the usage of a particular tool, this has been recognised as a symptom of a
possible excessive tool wear. Next step will focus on monitoring of other variables
like the absorbed electrical current on the axes X, Y, Z. The level of change in
these variables may help in measuring the degree of tool wear and learning the
best moment to change it before suffering a tool break and a machine downtime.

Experiments. We performed experiments in order to demonstrate the feasibil-
ity of our approach in terms of processing time and its effectiveness in providing
summarised data for exploration purposes. Our evaluation focuses mostly on sys-
tem performance. We collected real data from three machines, each one equipped
with three spindles and different tools. On each spindle, we monitored the fea-
tures listed in the motivating example: the velocity of the three axes (X, Y and
Z) and the electrical current absorbed by each of the engines, the value of rpm
for the spindle, the percentage of power absorbed by the spindle engine (charge
coefficient). We collected 140 millions of records from the three machines. All
records present a timestamp, and have been collected every 200 ms (5 records
per second). We run experiments on an Intel Core i7-6700HQ, CPU 2.60 GHz, 4
cores, 8 logical cores, RAM 16 GB. As suggested in [2], during acquisition phase
data processing is strongly minimised to avoid bottlenecks, by delaying clustering
in a second phase. Collected records of measures have been saved within Mon-
goDB as JSON documents grouped into collections. Each document contains
a record X(t) of measures, labeled with the values of dimensions d1, d2, . . . dp.
The structure of documents is maintained very simple, with at most one level of
depth, and collection have been organised considering the time as main dimen-
sion, in order to speed up both data storage and data extraction for clustering,
that is applied to records grouped with respect to the timestamps. This enabled
to storage all 140 millions of records in 1 h and 14 min, with an acquisition rate
of ∼31,531 records per second. Experimental results depicted in Fig. 5(a) show
how these tasks can be addressed given the data acquisition rate. We recall here
that clustering is applied on slots of records on a time internal Δt. We tested
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clustering and hypercube generation on real data considering average values on
2 and 3 features. The worse response time corresponds to the case where we per-
formed clustering and distance computation tasks when no previous syntheses
had been generated. Also in that case, these tasks are able to process ∼15,600
records in 11.5 s, that is able to process ∼1,356 records per second. Through
the tasks of syntheses generation and clustering, the processed set of records is
reduced to 7,2% on average. In Fig. 5(b) we tested the effectiveness of model of
relevance by simulating strong variations in collected measures. We observed an
evident variation in distance between cluster sets at the cost of decreasing the
processing time to ∼255 records per second, that is acceptable.

Fig. 5. Tests on efficiency of clustering and hypercube generation (a) And on the
effectiveness of the model of relevance, introducing a variation in collected records (b).
Number of records on X axis represent different incremental steps.

5.3 Considerations

The approach revealed to be useful in order to extract information for supporting
production operator (i.e., the user of our system in this case study) in taking bet-
ter decisions, thus preventing failures or increasing production efficiency. These
observations are performed by operators to provide prompt maintenance ser-
vices, thus avoiding long downtime periods. Using our model the operator is
able to fully explore the multi-dimensional model, i.e., all data nodes can be
explored using the three types of traversals introduced in Sect. 4, and it is possi-
ble to use traversals in any order and in a sequence of any length. The traversals
are also intuitive, since they are inspired by the rollup, drill down and pivot
operations of data cube. In addition here, we exploit the model of relevance
to further reduce the exploration space. Operators can focus their attention on
some relevant measures, explore them, verify the machine working conditions
also according to their experience and decide to activate or not a maintenance
activity. In this way, explorative approach can be used to adjust planning of
maintenance interventions as scheduled through traditional, offline data mining
techniques, that use historical data for their purposes. In fact, several latent
factors might influence manufacturing operations and might have an impact on
maintenance schedule. These factors cannot be easily detected through measured
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variables and the role of human actor is still of paramount importance for avoid-
ing useless maintenance interventions, that are costly both for the OEM and for
the OEM’s client. The data exploration viewpoint enables to improve this task
also for unexperienced maintenance operators through decisions supported by
the system.

6 Related Work

Other approaches have been specifically focused on data exploration and
exploratory computing research fields. Comparison criteria in this case include
data characteristics (structured/semistructured/unstructured data, traditional
vs big data, OLAP vs OLTP), the way data are collected (incrementally or
one-step collection before starting data processing), the adopted exploration
techniques, the model of relevance (if any), application of data mining or
query approximation techniques, technological issues (e.g., the DBMS technol-
ogy among SQL-based, NoSQL, NewSQL). The presentation of Exploratory
Computing as a comprehensive approach that includes the notions of “explo-
ration as a multi-step process”, model of relevance, data summarisation, multi-
dimensional data modeling is given in [3]. In this paper, authors proposed a
model of relevance based on statistical distribution of data. Compared to them,
our approach has a model of relevance based on clustering aimed at detecting
deviations from the normal working conditions of a monitored physical system.
In [9] cube exploration is discussed, in order to give OLAP-based exploration
facilities that help users in navigating multi-dimensional data. No model of rele-
vance is proposed and the aim is at foreseeing user’s explorative actions in order
to properly apply techniques of query approximation. Authors in [15] propose
the application of query approximation techniques to big data that are incremen-
tally collected. Here approximation methods are based on the analysis of user’s
action previously performed and on statistical properties of data, no model of
relevance is proposed and the concept of exploration as a multi-step process has
not been addressed.

In [8] an approach operating on structured data stored within a PostgreSQL
database is proposed. Data are grouped according to specific criteria (e.g., all
data in a given time interval, or all geographical data in the same area). These
groups are referred to as semantic windows. The user is supported in formulating
query where selection criteria and ranges of data are required. Query by sam-
pling is applied and samples are compared against user’s query to check their
compliance. If sampled data are relevant with respect to the query, all data in the
same semantic window are presented to the user and next queries are performed
on the same data. With respect to this approach, we proposed a model of rele-
vance for enabling exploration also when the user is not able to specify his/her
requirements through a query. Moreover, we focused on big data incrementally
collected and summarised.
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7 Concluding Remarks

In this paper, we discussed the ingredients to enable exploration of real time
data in a dynamic context of interconnected systems, where large amounts of
data must be incrementally collected, organized and analysed on-the-fly: (i) a
multi-dimensional model, that is suited for supporting the iterative and multi-
step nature of data exploration; (ii) efficient data summarisation techniques,
based on clustering, in order to simplify overall view over high volumes of data;
(iii) a model of relevance, aimed at focusing the attention of the user on relevant
data only, also when the user is not able to specify his/her requirements through
a query. Given the importance of these research challenges in the Industry 4.0
domain, we applied our approach in the smart factory as a case study. Future
development efforts will be devoted to a parallelisation of data clustering, in
order to further speed up data elaboration in the multi-dimensional model, the
study of data visualisation techniques, automate and operationalise knowledge
extracted from data produced by the system and the development of a GUI
specifically meant for data exploration. With reference to the case study, the
migration of the BODaI infrastructure onto the Niagara IoT framework1 is being
implemented.
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