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Av. Juan de Dios Batiz, S/N, Col. Nva. Industrial Vallejo,

07738 Mexico City, Mexico
svaladezg@gmail.com, xvrgonzalez21@gmail.com, hsossa@cic.ipn.mx

Abstract. In previous works, a successful scheme using a single Spik-
ing Neuron (SN) to solve complex problems in pattern recognition has
been proposed. This consists in using the firing frequency response to
classify a given input pattern, which is multiplied by a weight vector to
produce a constant stimulation current. The weight vector is adjusted
by an evolutionary strategy where the objective is to obtain an optimal
frequency separation. The problem is that the SN has to be numerically
simulated several times when the weight vector is being adjusted. In this
work, we propose fitting the SN frequency response curve to a piecewise
linear function to be used instead of the costly SN simulation. A high
fitting degree was found, but, more importantly, the computational cost
of the training and testing phases was drastically reduced.
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1 Introduction

In [1–8], a successful scheme using a single SN to solve complex pattern recog-
nition problems has been proposed. This scheme consists in using the firing rate
codification to classify a given input pattern. The SN is stimulated by a con-
stant input current to obtain the firing frequency. The frequency represents the
class to which the pattern is associated. The necessary current is obtained by
applying the dot product between the input and a weight vectors, as is normally
done when using the Perceptron [9]. The weight vector is adjusted by an evolu-
tionary strategy to generate the optimal firing rates maximizing the separation
among the classes. The problem is that the SN has to be numerically simulated
many times while the weight vector is being adjusted. Therefore, depending on
the number of individuals and generations in the evolutionary strategy and on
the numerical method, integration step and the time window of the SN simula-
tion, the computational cost during training is highly expensive. Although the
authors previously obtained a comparable computational cost to other method-
ologies, such as the Support Vector Machines or Artificial Neural Networks of
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the second generation, their analysis was performed for the testing phase and
not for the training one [8]. In the testing phase, only a single SN simulation is
utilized whereas, as previously mentioned, the training stage needs several SN
simulations.

As the mentioned methodology uses a constant input current and a firing
rate encoding, the firing frequency in function of the current, so-called Frequency
Response Curve (FRC), can be obtained. Since the influential work of the Nobel
laureate E. D. Adrian, the FRC of a sensory nerve ending to an applied stimulus
is well known [10]. In the case of SNs, the FRC can be analytically obtained for
the Leaky Integrate-and-Fire (LIF) [11,12]. However, that is more complicated
for the Izhikevich (IZH) [13] and Hodgkin-Huxley (HH) [14] models. Moreover,
the FRC for the HH can be fitted to a logarithmic function [15]. For the case of
the IZH, no fitting is known, but its FRC is highly linear and, hence, this can be
accurately fitted to a piecewise linear function using the Least Squares Method
(LSM). The IZH is prevalently utilized in the previous works [2–8].

In this paper, we propose fitting the FRC of the IZH to a piecewise linear
function to be used instead of the costly SN simulation. A high fitting degree was
found, but, more importantly, the computational cost in the training and testing
phases was drastically reduced. The Differential Evolution (DE) algorithm was
selected as the evolutionary strategy [16,17].

The remainder of the paper is organized as follows. Section 2 focuses on the
SN scheme to solve complex problems in pattern recognition. Section 3 describes
the IZH model. Section 4 shows the fitting procedure. Section 5, gives the results
and Sect. 6 presents the conclusions and future work.

2 Pattern Recognition Using a Single Spiking Neuron

In general, the scheme presented in [1–8] is stated as follows: it is supposed
SN groups input patterns producing similar firing rates; once this is made, it
allows discriminating input patterns giving different firing rates. So, the SN
functions as a pattern classifier. A n-dimension input pattern can be represented
as x = (x1, x2, · · · , xn)T ∈ X ⊂ R

n where x1, x2, x3, · · · , xn are the pattern
features and X is the dimensional features domain. A set of K input patterns
is defined as

{
xk ∈ Xn

} ∀k = {1, 2, · · · ,K} where k is an index and K is the
cardinality of the pattern set. A class to which a pattern belongs is defined as
c ∈ {1, 2, · · · ,m} where m is the number of classes. Consequently, it is expected
that the SN generates m different firing frequencies, each representing a class.
For a specific input pattern xk, there is a class ck∀k = {1, 2, · · · ,K}. Thus, the
set A of associations is defined as A =

{(
xk, ck

)} ∀k = {1, 2, · · · ,K}. As the SN
is not directly stimulated by an input pattern, the input pattern xk is multiplied
by a weight vector w ∈ R

n to obtain a constant stimulation current I = xk·w
to the SN. For example, the LIF is employed in [1] and the IZH in [2–8].

During training, the weight vector is adjusted by using an evolutionary algo-
rithm with the idea of producing the optimal firing rates that allow maximizing
separation between classes. For example, Differential Evolution [16,17] is used
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in [1–3,6], Cuckoo Search [18] in [4], Particle Swarm Optimization [19] in [5,8]
and Artificial Bee Colony [20] in [7]. The firing rate frk produced by I for
a particular input pattern xk is calculated as frk = Nsp/T where Nsp is the
number of spikes that occur in the time span T . Later, the Average Firing
Rate AFR ∈ R

m of all firing rates frk produced by the patterns belonging to
the same class is estimated. The class to which an input pattern xk is classi-
fied is c̃ = arg minm

c=1

(∣∣AFRc − frk
∣
∣). The evolutionary algorithm minimizes

the fitness function f (w, A) = 1 − Pcc/P where Pcc is the number of input
patterns being correctly classified (i.e. c̃ = ck) and P the number of patterns
that actually belong to the given class ck. This way, the evolutionary algorithm
automatically determines the optimal frequencies that maximize the separation
among the classes. During testing, once the weight vector w was adjusted and
the AFR calculated, the estimulation current to the SN for a unknown pat-
tern x̃ is determined by I = x̃·w, the firing rate by f̃ r = Nsp/T where Nsp is
the number of spikes that occur in the time span T and the classification by
c̃ = arg minm

c=1

(∣
∣
∣AFRc − f̃ r

∣
∣
∣
)
.

3 The Izhikevich Model

This SN is a successful dimensional reduction of the HH [14]. In fact, once the
HH was reduced to a two-dimensional system [21,22], Izhikevich analyzed the
dynamics in the phase plane [23] to propose a new description [13]. This is

dV
dt = 0.04V 2 + 5V + 140 − n + I

dn
dt = a (bV − n)

(1)

where V is the trans-membrane potential, I is the stimulation current, n is a
recovery variable representing the potassium activation and sodium inactivation,
a is a time scale and b the sensitivity of n to the sub-threshold fluctuations of
the trans-membrane potential. When the trans-membrane potential reaches a
maximum of 30 mV the voltage V and the recovery variable n are restarted, i.e.

If V ≥ 30 mV, then

{
V ← c

n ← n + d
(2)

where c is the restarting potential and d is the restarting of n.
As in [13], the constants were a = 0.02, b = 0.2, c = −65 and d = 8 for

generating a regular spiking. Figure 1 shows an example of a spike train produced
by a constant input current I = 31 µA/cm2.

4 Obtaining and Fitting the Frequency Response Curve

As in [2–5,7,8], the IZH was simulated with the Forward Euler method [24] but
with a step size of 0.05 ms to produce an adecuate simulation due to the IZH
not being as efficient as it was thought (see [25,26] for details). To obtain the
FRC, the IZH was stimulated with various constant input currents I ranging
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Fig. 1. Spike train generated by the Izhikevich (IZH) model.
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Fig. 2. Linear fitting (dashed line) of the Frequency Response Curve (FRC) (gray
continuos line) of the Izhikevich (IZH) model.

from 0 µA/cm2 to 100 µA/cm2 across a current step of 0.1 µA/cm2 and a time span
of 1000 ms. The FRC can be seen in Fig. 2 as a gray continuous line.

As can be seen, the FRC is in agreement with a high linear relationship when
the IZH produces a firing response for I ≥ 3.8 µA/cm2 (see the arrow in Fig. 2).
A strong positive-linear correlation was obtained from the correlation coefficient
analysis performed in MATLAB R©[27]. The correlation matrix was

(
1.000 0.999
0.999 1.000

)

for the two variables (current and frequency).
The Curve Fitting Toolbox R© software of MATLAB R©[27] was employed to

fit the FRC from I ≥ 3.8 µA/cm2 to a linear function. As the LSM is sensitive to
extreme values in the FRC, the Robust Least Squares was utilized. The Least
Absolute Residuals (LAR) method was selected to minimize the influence of such
extreme values. With this, a piecewise linear function was obtained

frk =
{

2.324I − 1.898 I ≥ 3.8 µA/cm2

0 otherwise
(3)

where frk is the frequency and I = xk·w the input current that depends on the
k-th pattern.
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To prove the validity of (3), the Sum of Squares due to Error (SSE), the
Root Mean Square Error (RMSE) and the ratio (R2) of the Sum of Regression
Squares and the Total Sum of Squares were obtained. With 95% of confidence,
the values were SSE = 735.572, RMSE = 0.875 and R2 = 1.000. In general, the
fitting accuracy gives a good level of confidence due to the ratio R2 indicating
that the variance in the frequency is low. Equation (3) for I ≥ 3.8 µA/cm2 is
depicted in Fig. 2 as a dashed line and the residual errors are shown in Fig. 3.
Thus, the frequency to perform the pattern classification task can be obtained
from (3) instead of the IZH numerical simulation.
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Fig. 3. Residual errors of the linear fitting for the Frequency Response Curve (FRC)
of the Izhikevich (IZH) model.

5 Results

Two sets of experiments were carried out to verify that using the piecewise linear
function described in (3) is more efficient than using the IZH simulation. See the
Appendix for the technical specifications.

The first set of experiments was to obtain a single frequency value. A current
I = 31 µA/cm2 was employed in (3) and in (1-2). This experiment was repeated
20 times and the average of the CPU time execution was determined. The IZH
was numerically simulated using a time span T = 1000 ms and the parameters
described in Sects. 3 and 4. The frequencies from (3) and (1-2) were 70.15 and 70
spikes per second. The calculus using (3) consumed on average 2.45 µs (± 0.51)
and the IZH simulation 147.15 ms (± 3.26). The frequencies are practically the
same, but the difference in the computational cost was four orders of magnitude.
The calculus of a single frequency value using (3) is the 0.0017% of the CPU
time consumed by the IZH simulation, or, in other words, the computational
cost using the IZH simulation is 6, 000, 000% higher than using the piecewise
linear function.

The second set of experiments consisted in solving the well-kown Iris dataset
problem [28] by using the methodology described in Sect. 2. To obtain the fre-
quency, in one set of experiments the IZH simulation was employed and in the
other, the piecewise linear function in (3). The parameters for the DE [16,17]
algorithm were the same as in [2]: NP = 40, MAXGEN = 1000, F = 0.9,
XMAX = 10, XMIN = −10 and CR = 0.8. Where NP is the number of
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Table 1. Average classification accuracy (± Standard deviation) using the simulation
and the piecewise linear function of the Izhikevich (IZH) Frequency Response Curve
(FRC).

Dataset IZH simulation Piecewise FRC

Training Testing Training Testing

Iris 0.9933 (± 0.0023) 0.9867 (± 0.0281) 0.9933 (± 0.0023) 0.9800 (± 0.0322)

Table 2. Average CPU time (± Standard deviation) (h = hours, s = seconds, µs =
microseconds) using the simulation and the piecewise linear function of the Izhikevich
(IZH) Frequency Response Curve (FRC).

Dataset IZH simulation Piecewise FRC

Training Testing Training Testing

Iris 1.61 h (± 0.02) 93.48 ms (± 1.95) 46.41 s (± 0.52) 297.60 µs (± 155.87)

individuals in the population, MAXGEN is the maximum number of genera-
tions, F is a scaling factor that controls the rate at which the population evolves,
XMAX is the lower bound of weights, XMIN is the upper bound of weights
and CR is the crossover probability [17]. To validate these experiments, 10-Folds
Cross-Validation was used [29]. This kind of validation splits the data into ten
subsets; each is employed once for the testing and the remaining for the train-
ing. The patterns for each subset were arbitrarily selected. Those patterns were
presented to both experiments using the IZH simulation and the piecewise lin-
ear function. We obtained the average accuracy from the ten experiments of the
10-Folds Cross-Validation. Also, the average of the CPU elapsed time was deter-
mined. The classification accuracy and the CPU time execution are shown in
Tables 1 and 2, respectively. It can be observed that the classification accuracy
in the training stage is the same for both using (3) and using the IZH simulation.
Nevertheless, during testing, the accuracy using the piecewise linear function is
slightly less. The CPU elapsed time or computational cost using (3) is drastically
reduced in both phases. The CPU time execution using the IZH simulation is
roughly 12, 000% higher than using the piecewise linear function in the training
phase. In the testing phase, the percentage is roughly 31, 000%.

Figures 4 and 5 show the distribution of a set of training patterns using the
IZH simulation and the piecewise linear function of the FRC. As can be seen,
the pattern distribution is very similar. The distribution corresponds to the first
test in the 10-Folds Cross-Validation. The weight vectors for the IZH simulation
and the piecewise linear function were (−2.79, −2.76 10.00, 8.35)T and (−1.92,
−4.10, 10.00, 10.00)T .

It can be observed that this scheme is different from that of the traditional
Perceptron. The Perceptron distributes the patterns in two regions separated
by a hyperplane (see [9]) whereas this proposal distributes the patterns on the



Efficient Pattern Recognition Using the Frequency Response 59

−20 0 20 40 60 80 100

0

100

200

µA/cm2

Fig. 4. Pattern distribution using the Frequency Response Curve (FRC) (continuous
gray line) obtained from the Izhikevich (IZH) simulation.
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Fig. 5. Pattern distribution using the piecewise linear function (continuous gray line).

FRC. This permits the proposed scheme to solve non-linear problems using a
single computational unit. However, as is well-known with a Perceptron, the
XOR problem cannot be resolved.

6 Conclusions and Future Work

The single SN scheme consists in using the SN response to group a given input
pattern, which is multiplied by a weight vector to produce a constant stimu-
lation current. Depending on the number of individuals and generations in the
evolutionary strategy, but also on the numerical method, integration step and
the time span of the SN simulation, the computational cost in the training phase
is extremely expensive.
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The FRC is the relationship between the constant stimulus and the firing
frequency emitted by a given SN. The FRC for the IZH model is highly linear.
Thus, a piecewise linear function can be fitted to be used instead of the expensive
SN simulation. This practically obtains the same accuracy results. Moreover, the
computational cost in the training and testing phases was drastically reduced. In
the training phase, the CPU time execution using the IZH simulation is roughly
12, 000% higher than using the piecewise linear function. In the testing phase,
that percentage is approximately 31, 000%. The computational cost to obtain
a single frequency value using the IZH simulation is 6, 000, 000% higher than
using the piecewise linear function. We drastically reduced the computational
cost making the scheme very efficient. As the computational cost to simulate the
IZH depends on several factors, further research in this respect is needed.

Simulating a SN to solve pattern recognition problems is not recommended
when the two following conditions are satisfied: (1) the stimulation current is
constant during the entire simulation, and (2) the output signal encoding is the
firing rate. SNs are useful for problems where the input pattern is precise in
timing, or the output signal encoding is temporal. It is important to highlight
that the single SN scheme is interesting due to its capacity to solve complex
problems through the optimal classes (frequencies) distribution over the FRC.
We believe that in future this scheme will bring new proposals in the research
areas of Artificial Neural Networks and Pattern Recognition.

As a future work, we propose extending the experiments to other datasets,
SNs, and training algorithms. A gradient descendant algorithm could be imple-
mented due to the piecewise linear function being derivable. Also, this work
could represent a first step in linking Deep and Spiking Neural Networks via
the Rectified Linear Unit (ReLU) and the FRC linear fitting. Both functions are
piecewise linear.
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Appendix

All tests carried out on a computer running the Linux Mint 17.3 64 bits operating
system on an Intel Core i7-2600 (3.4 GHz with eight cores) processor. The mem-
ory of the computer was 8 GB. All software was implemented in MATLAB R©.
The tic and toc functions were utilized to calculate the elapsed time of the
experiments described in Sect. 5.
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