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Abstract. Quality assurance of dry cleaned industrial textiles is still a
mostly manually operated task. In this paper, we present how computer
vision and machine learning can be used for the purpose of automating
defect detection in this application. Most existing systems require tex-
tiles to be spread flat, in order to detect defects. In contrast, we present
a novel classification method that can be used when textiles are in inho-
mogeneous, voluminous shape. Normalization and classification methods
are combined in a decision-tree model, in order to detect different kinds
of textile defects. We evaluate the performance of our system in real-
world settings with images of piles of textiles, taken using stereo vision.
Our results show, that our novel classification method using key point
pre-selection and convolutional neural networks outperform competitive
methods in classification accuracy.

1 Introduction

In recent years environmental awareness and need for cost reduction has increas-
ingly influenced the use of reusable industrial-textiles. Nowadays more than one
billion cleaning textiles in Europe are being leased and reused per year. Besides
the big volume of processed pieces, quality assurance of used industrial textiles
has remained a mostly manually operated task. Compared to humans automated
systems can have several advantages, such as lower costs, higher reliability and
accuracy. Quality assurance after dry cleaning is one of the most cost intensive
operating processes. Lowering its costs will lead to an overall cost reduction
and therefore may encourage more customers to start using reusable industrial
textiles. With increasing performance of artificial intelligence, automatic fabric
defect detection has become one of the most relevant areas in this domain. So
far, recent work in the field of textile inspection deals mostly with continuous
2D textures. This is because fabric inspection algorithms are mostly used dur-
ing furling in the production process. Compared to that we present a solution
intended to be used by the cleaning industry, that handles textiles individually
in an assembly-line work flow. Due to high flow rates of textiles, an automatized
mechanism to spread out textiles mechanically while in movement has not yet
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been invented. In this paper we focus on an inspection of defects in a pile-like
arrangement, where every item is still dealt with separately, on an assembly-line.
The uneven surface, varying colors of sewing pattern and weaving of different
textile fibers are some of the challenges in this task. Textiles furthermore differ
in the composition of fibers which include cotton, linen, polyester or compo-
sitions. Previous research on outspread fabrics achieve high recognition rates
but are not resistant against some effects caused by voluminous shapes. Shape,
folds, edges, borders, overlapping edges and ambient occlusion are some of these
effects. They have a negative impact on correct detection of fiber-defects using
known methods. The voluminous shape of textiles also results in loss of focus.
The here presented method can therefore be seen as a baseline for fiber defects
recognition on uniform textured textiles in voluminous shape. There are fur-
thermore differences in fiber-defects as shown in Fig. 5a. Our database contains
most of the defects as they are defined by the textile industry [1]. This includes:
stains, bonding, silicon relics, holes, enclosures, dropped stitches, press-offs or
others. After washing a textile multiple times, fibers may have changed color and
appearance (see Fig. 5b). Several relevant steps like preprocessing and classifi-
cation are shown in our inspection pipeline in Sect. 3. In view of addressing the
mentioned problems of voluminous shape, we present a novel approach for fiber
defect recognition in Sect. 4.1. In our experiments we implemented and evaluated
this method in comparison with other known methods as described in Sect. 4.3.
Our approach is invariant to different fiber-weavings and fulfills the requirements
of compatibility with different uniform colored textiles. The effectiveness of our
method is shown in experiments at Sect. 5.

2 Related Work

Web inspection is a common application of automatized textile defects inspec-
tion. It is mostly performed on spread fabrics, which are carried out during their
manufacturing process. Most recent work focused on defect detection and clas-
sification. Mishra [2] distinguishes woven, knitted and dyeing/finishing defects
which occur during spooning or weaving. Textiles can be categorized generally
into uniform and different kinds of textured materials (uniform, random or pat-
terned) [3]. For detection of defects on uniform textured fabrics, three defect-
detection techniques exist: statistical, spectral and model-based [4]. Defect detec-
tion on (un-spread) textiles in voluminous shape is a relatively new field. Our
work focuses on the inspection of textured material which has an almost homo-
geneous color and uses a combination of a statistical and model based approach.

Neural Networks (NN), AdaBoost [5] and Support Vector Machines (SVM)
[6] are notable machine learning techniques that were used in a number of arti-
cles in this field. Some approaches on flat, and spread-out 2D surface achieve
success rates in fabric defects detection higher than 90% [4,7]. Compared to
that, humans achieve detection rates of only 60–75% [8]. Supervised learning
strategies achieved good performance using a counter-propagation NN, trained
by a resilient back-propagation algorithm [9]. As several NN suffer from a high
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sensibility regarding changes in orientation and lightning, we decided to use
other machine learning techniques. In case of un-spread (inhomogeneous) tex-
tile classification, we proposed a system for classification of textile fibers using
LBP-features and local-interest points in our recent work [10]. The process was
evaluated by the use of preselected image patches in order to reduce computa-
tional costs in the textile classification using SVM and AdaBoost. The most time
consuming processes when using these supervised machine learning methods are
the acquisition and labeling processes. Thousands of patches have to be acquired
and labeled manually. In contrast our novel method reduces the required effort
to be spent in labeling of the data and combines it with convolutional neural
network classification. Two of the most challenging problems in fabric classifica-
tion are ambient occlusion and folds. These effects are caused by the shape of the
textile and the influence of illumination. In our recent work [11] a normalization
method was introduced that reduces these effects, paid by a loss of information.
This method, based on stereo-imaging is used in our work for preprocessing of
the acquired images.

3 Methodology

We present an inspection system pipeline (see Fig. 1) that classifies dry-washed
textiles in pile-like arrangement into the classes ‘fiber defect’ and ‘no defect’.
The system is intended to be used in an assembly line like environment, where
every item is served individually. It is built on a hierarchical decision tree model
in which a first classifier determines stain defects and excludes them from further
classification (see Fig. 1c. A second, in Sect. 4.1 presented classifier (see Fig. 1e)
recognizes fiber defects and makes the final decision on whether an image shows a
defect textile. The parts: Fig. (1a) Image Acquisition and Fig. (1b) Preprocessing
follow the stereo-normalization approach presented in [11], in order to reduce the
effect of shading in the captured images. A disparity map is used to exclude areas
showing folds or shadows. Other areas classified as ‘stain defect’ are also excluded
from the image as shown in step (see Fig. 1d).

3.1 Capturing Environment and Database

Our approach is evaluated on an image database of dry cleaned woven cot-
ton cleaning textiles as they are used in many different industrial applications.
We use a soft-box with homogeneous illumination in the image acquisition,
to guarantee a controlled capturing process with even lighting. Two synchro-
nized CMOS color cameras with a CMOS 1/1.8” sensor and a resolution of
1280 × 1003 pixels are used for image acquisition. The database contains 910
images of 258 different textiles with and without fiber defects (see Table 1).
Fiber-defects are defects that can originate through the manufacturing/furling
process (e.g. dropped stitches, press-offs or broken ends) or intensive stress. Most
defects of that defect category were caused by intensive use of these textiles in
industrial environments and show mostly holes and cut like defects (see Fig. 5).
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Fig. 1. Pipeline showing a combination of the proposed preprocessing steps (b) and
(d) and the classification decision tree steps (c) and (e).

Because of diverse uses, the fibers also often show different levels of shading.
Images are captured from a top-down perspective, therefore, some defects might
be hidden (e.g. if they are in a fold or on the bottom side). Iterations in which
the textile is physically reoriented and then classified could solve this problem.

Table 1. Quantities of textiles images.

Defect Images Depth Maps Textiles

Fiber 310 155 98

Stain and fiber 300 150 88

None 300 150 72

4 Fiber Defect Recognition

In this Chapter we introduce a novel method for classification of fiber-defects
in images of textiles in voluminous shape. As discussed in the state of the art,
other methods perform well on fiber-defect recognition of outspread fabric. On
textiles in inhomogeneous shape, most of these methods fail, as shadow and stain
elements influence the classification negatively [11]. We propose a novel method
using a combination of SURF key points and convolution neural network clas-
sification (see Sect. 4.1). This method requires images whereas areas of shadow
and stain defects are normalized, as described in [11]. In Sect. 4.3, adoptions of
competitive methods are presented, that have shown their effectiveness in sim-
ilar classification tasks [10]. Furthermore an experiment, using an illumination
normalization technique is presented.



282 D. Siegmund et al.

4.1 CNN Classification Based on Keypoint Preselection

In conventional supervised machine learning methods, the labeling of data is
a costly process. In order to reduce the effort to be spent, we use a SURF
detector with a minimum Hessian threshold of 500 to determine key points on
distinctive areas of the textile. We generate partially overlapping patches of
32× 32 pixels in size, centered at each key point. These patches are then used to
train a slightly modified LeNet-5 CNN [12] classifier. As a consequence patches
of low dimensional data are generated, to be used in training of the CNN to
recognize patterns. Instead of requiring an enormous amount of high dimensional
data, we direct the network to key points of distinct areas of the image using
SURF key points.

We labeled our database manually by defining a mask on regions with fiber-
defects (see Fig. 2). If a feature is inside the masked defect-region, its correspond-
ing patches are classified as a defect patch. Patches outside that masked region
are classified as a non defect patch.

Fig. 2. Pipeline of micro-patch-based classification using CNN.

We use two convolution layers which are combined with a max-pooling layer
(see Fig. 3 for a visualization of the customized network). After the inner-product
layer we receive a fully connected layer to score our data. The loss layer is built
using the soft-max function. To implement the network we use the caffe libraries
from BVLC [13].

The so created database consists of approx. 58000 image patches and is
divided in a training (80%) and testing set (20%). The data is separated and
shuffled taking into account the individual images in such a way that no image is
simultaneously present in the test and training set. It is trained with 1500 itera-
tions and a batch size of 1000 features, which results in approx. 30 epochs. The
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Fig. 3. Our adjusted LeNet-5 CNN.

classifier predicts whether a patch belongs to a region showing some fiber-defect
or not. For each textile we receive as many predictions as there are key points.

4.2 Fusion

To make a final decision for each textile, we use the weighted sum combination
rule to calculate a fused unified decision. It is based on two features, the first
one is the number of key points detected. The second feature the difference
between positive and negative decisions. We represent both values as scores and
normalized them to a comparable range using min-max normalization, which
can be formulated as:

S′ =
S −min{Sk}

max{Sk} −min{Sk} (1)

where min{Sk} and max{Sk} are the minimum and maximum values of
existing scores in the data of the corresponding sources and S′ is the normalized
score. We used the weighted sum score fusion, where for each score source a
weight is defined that indicates its relevance on the fused decision. The weight is
calculated by 1-EER and fused by the weighted sum rule F for N score sources.

F =
N∑

k=1

wkSk, k = {1, . . . , N} (2)

4.3 Competitive Methods

Non-overlapping patches of 128× 128 Pixel are used to reduce the complexity of
the analyzed pattern. Two different sets of features were selected from related
work and examined as fiber defect classification step (see Fig. 4). As in the nor-
malization step only ambient occlusion and stains were removed from the input
image, another illumination normalization method is applied to the image to
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enhance the contrast between fibers and exclude differences in shading. We used
a technique introduced by Tan and Triggs [14] which is based on a series of steps
to counter the effects of illumination variation, local shadowing and highlights.
The preprocessing chain consists of: gamma correction, which uses differences of
Gaussian filtering, masking and contrast equalization (see Fig. 4a for an example
of a normalized image).

Fig. 4. Pipeline of patch-based classification methods.

The extracted patches contain all kind of different texture properties such as:
seams, diverse edges and defects like cuts, open ends, holes, stains and others.
During extraction, we used the Shannon-Entropy-Value to determine the amount
of information in a patch. Our evaluation showed that patches with an entropy-
value below 2000 do not contain enough information to be classified and are
therefore rejected. Every patch is labeled manually by assigning them the class
fiber-defect (see Fig. 5a) or none-defect (see Fig. 5b).

The local interest point descriptor SURF [15] has shown its effectiveness in
many applications as local feature detectors and descriptors for non-rigid 3D
objects [16]. They are scale-invariant and robust against rotation, translation
and changing light conditions. A set of interest points is extracted into a 64-
dimensional feature-vector, following a Bag of Words (BOW) approach [10].

Local binary patterns (LBP) features are a known technique, when dealing
with textile fiber classification tasks [11]. The used LBP type [17] is invariant
against rotation and pixel intensity variations and shows a relationship between
a pixel and its neighborhood. It fulfills the requirements in regard to compu-
tational cost compared to other scale-invariant LBP approaches [18]. An eval-
uation on a subset of the database showed that a radius of 3 and a block size
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Fig. 5. Examples of the different extracted features.

of 32 pixels is optimal for the given pictures. Histograms of rotation-invariant
binary patterns are calculated and concatenated to a feature vector. To reduce
the dimensionality of the feature vector, Principal Component Analysis (PCA),
trained on a subset of the data set, is performed. Experiments showed that a
reduction to 300 components gives best results.

An AdaBoost based machine-learning classifier is used for classification of the
extracted feature vectors, using the REAL boosting method with confidence-
rated predictions. Our evaluations showed that this classifier performed best
among different evaluated classifiers (SVM, Random Forrest, AdaBoost and
JRIP). All features are evaluated with- and without using the illumination nor-
malization method.

5 Results and Discussion

We evaluated our proposed method shown in Sect. 4 on our novel database (see
Sect. 3) with different preconditions. The given ‘Accuracy after Stain Filtering’
column describes the detection of fiber-defects on textiles of the defect cate-
gories: Fiber, Fiber and Stain and None (see Table 1). Patches showing other
defects were excluded from the database using the first (stain-defect) classifier
in the inspection process. The achieved accuracy (TP+TN/

∑
Total population)

was calculated on the full-image-level, which concludes to the final decision on
whether a textile contains a fiber defect or not. In the calculation of that accu-
racy value the results of the first (stain-) detection classifier is not considered
(see Sect. 3.4) (Table 2).

The results using the SURF BOW approach in combination with the
AdaBoost classifier showed an accuracy of 87.99%. Though using TanTriggs illu-
mination normalization, appeared to us to be promising, the results showed to
be less accurate than without using it over all tested methods. Rotation invari-
ant unified Local Binary Patterns showed overall less accurate results than the
bag of words approach. We suspect the reason for the bad results to be the
rotational invariant variant which is less information conserving then the SURF
BOW approach. Our approach using a combination of key point pre-selection
and convolutional neural networks (CNN) classification achieved best results
on the database. We found that the defined CNN is especially suitable to this
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Table 2. Achieved Accuracy Rates of Fiber-Defect Detection Methods.

Methodology Patchsize Pre-processing Classifier Accuracy after
stain filtering

SURF BoW 128× 128 – AdaBoost 87.99 ± 2.2%

SURF BoW 128× 128 TanTriggs AdaBoost 77.81 ± 2.7%

RI unified LBP 128× 128 – AdaBoost 84.94 ± 3.7%

RI unified LBP 128× 128 TanTriggs AdaBoost 72,31 ± 2.7%

SURF+CNN Full Image + 32× 32 – CNN 90.15 ± 1.4%

recognition task. One reason might be the combination of dominant structural
characteristics from a number of extracted patches that fit well to the NN charac-
teristics, and the pre-selection of distinct regions in the image. Based on the huge
amount of found SURF feature points, we were able to generate a huge data set
used to train a deeper network. The best total rejection accuracy was achieved
by that method gaining an accuracy of 90.15%. All approaches were evaluated
using 4-fold cross validation with a regular distribution of defect-classes in each
fold.

6 Conclusion

We presented a novel method for detection of fiber defects in textiles, that can be
used when textiles are in an inhomogeneous, voluminous shape. Well performing
aspects of the established methods: SURF key points, LBP, AdaBoost and CNNs
were combined for an evaluation of this novel computer vision application. Our
database showed textiles with different kind of fiber-defects such as holes and
cuts in a pile-like arrangement, recorded with a stereo vision camera setup. Best
results were achieved by the novel method using key points and CNN, which out-
performed other recent methods used in the classification of voluminous textile
fibers [10]. We described and proved in Sect. 4.1 how CNNs in combination with
SURF-features were combined to effectively recognize and classify distinctive
features by using low dimensional data as an input. A brief description of the
performance of all proposed methods is given in Sect. 5. The future work may
include a new normalization of image areas showing ambient occlusion, which
will improve the performance of our system.
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