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Abstract. This work extends the use of the non-parametric dimension-
ality reduction method t-SNE [11] to unseen data. Specifically, we use
retrieval experiments to assess quantitatively the performance of sev-
eral existing methods that enable out-of-sample t-SNE. We also propose
the use of deep learning to construct a multilayer network that approx-
imates the t-SNE mapping function, such that once trained, it can be
applied to unseen data. We conducted experiments on a set of images
showing Maya hieroglyphs. This dataset is specially challenging as it con-
tains multi-label weakly annotated instances. Our results show that deep
learning is suitable for this task in comparison with previous methods.
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1 Introduction

Visualizing high-dimensional data is a challenging problem commonly addressed
by: (1) feature selection [5], where the data is represented using only a subset of
the original feature space, which is defined by the most relevant dimensions of
the high-dimensional data according to certain criteria; or (2) feature extraction
[5], where a low-dimensional representation results from a mapping function able
to retain properties of interest from the high-dimensional representation of the
data. Often, 2 or 3 dimensions are kept for visualization purposes.

Several methods have been proposed merely with the purpose of visualizing
a fixed dataset. Among them, t-distributed Stochastic Neighbor Embedding (t-
SNE) [11] stands out due to the intuitive reasoning behind it and its relative
easy implementation. Another characteristic that makes t-SNE popular is that
it is non-parametric, which makes possible to use it for any type of data includ-
ing instances with no labels [5]. However, it is unclear how to apply it to new
instances that were not seen during the learning stage. To address this issue,
only a few previous works have focused on developing out-of-sample extensions
of t-SNE [4-6,10], obtaining promising results that have been evaluated mainly
subjectively based on their resulting low-dimensional visualization.

Since the preservation of local structure is at the heart of t-SNE, we rely
on retrieval experiments to evaluate the quality of the resulting low-dimensional
representations. This is, we use a quantitative criterion. We also propose the use
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of deep learning methods for learning to replicate a t-SNE mapping function
previously computed. By comparing their retrieval performance, we are able to
assess the mapping quality of several deep learning architectures and functions.
Since we consider no label information for training the deep networks, our app-
roach remains fully unsupervised, and naturally follows t-SNE in this regard.

The experiments on this work were performed on a challenging dataset of
binary images containing Maya hieroglyphs, which are very complex in visual
terms. Specifically, they are compounds of individual signs whose arrangement
varies arbitrarily. Often, this results in partial overlaps of classes, both at the
visual and semantic spaces, i.e., an instance of a weakly annotated scenario.

Our results show that: (1) evaluating the retrieval performance is adequate
for assessing dimensionality reduction techniques; and (2) deep learning can
approximate t-SNE mapping function better that previous methods, such it can
be applied to unseen data, while remaining fully unsupervised.

The remaining of this paper is organized as follows. Section 2 discusses related
work on out-of-sample dimensionality reduction. Section 3 presents our assess-
ment of methods for out-of-sample dimensionality reduction. Section4 details
the experimental protocol we followed for the assessment. Section5 discusses
the results. And Sect. 6 presents our conclusions.

2 Related Work

Only a few attempts have been made to enable t-SNE with out-of-sample exten-
sions, mainly because it was designed for visualization purposes rather than
learning purposes. This is, the interest is only on visualizing the underlying dis-
tribution of points from a fixed dataset. Good review papers, including other
dimensionality reduction techniques besides t-SNE, are found in [1,11].

One of such works [10] consists in learning a parametric model constructed
upon stacked autoencoders, with a latter fine tuning step that takes into account
the divergence between the distribution of point in both the high- and the low-
dimensional representations. This approach is in fact, designed to improve the
use of traditional autoencoders for dimensionality reduction [6,12], where the
optimization was only driven by sparsity constraints. Both of these methods are
of easy implementation and have attained decent results in the MNIST dataset.
However, they seem to fail when dealing with multi-instance images.

Specific works focusing on out-of-sample extension of t-SNE [4,5] rely on
regression approaches, either linear [4] or kernel-based [2]. These methods are
simple and can obtain competitive results when trained with supervision, e.g.,
supervised t-SNE [7]. However, we are interested in an unsupervised scenario.

Therefore, we took a step further and combined intuitions behind these two
types of approaches. Specifically, we use regression function embedded in neural
networks to enable out-of-sample extensions to unsupervised t-SNE. The details
of our approach are presented in Sect. 3.
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3 Owur Approach

This section presents our methodology. First, it provides a brief description of the
t-SNE computation, and then it presents our proposed deep learning approach.

T-SNE [11] estimates a mapping function that provides low-dimensional rep-
resentations, such that, for a given point of interest x;, the probability p;; of its
neighbors (z;,Vj # 4) in the high-dimensional space is the same as the probabil-
ity g;; of its neighbors in the low-dimensional space. This mapping is obtained by
minimizing the Kullback-Leibler divergence Dk, (p||q) between the probabilities
across both spaces.

Here, probabilities in the original high-dimensional space are estimated by,

Pijj + Pjli
pij = %’ (1)

where, n is the number of points in the full set, and
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where, x; denotes the i-th high-dimensional vector, and o7 is the variance of a
Gaussian centered at x;.

Complementary, the probabilities in the low-dimensional space are estimated
using the Student t-distribution,
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where, y; is the expected low-dimensional representation of point z;.

As previously mentioned, this approach provides low-dimensional represen-
tations distributed similarly to their high-dimensional counterparts, thus it is
suitable for unlabeled data. However, it is not suitable for replicating such trans-
formation for unseen data.

3)

qij

Deep Learning approaches are able to approximate arbitrary complex trans-
formation functions with high degree of precision [8]. The reason for their success
in such complex tasks results from their multilayer arrange that process multiple
non-linear transformations, which properly designed and trained, might achieve
high levels of abstraction.

Here, we propose to exploit this characteristic to replicate t-SNE map-
ping function for unseen data. Mathematically, we optimize a loss function
L (fo(x),y), where the loss £ could refer to the mean square error (mse), or
any other error, between the high-dimensional input vector x and the low-
dimensional expected vector y; and the function f(-) corresponds to a deep
neural network, such that,

fﬂ T =Y, (4)
and it is parametrized by a set of weights 2.
In Sect. 4 we detail several neural networks evaluated as the function fo,.
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4 Experiments

This section details the procedure followed to validate our approach. First, it
introduces the dataset used for experiments, and then the experimental protocol.

4.1 Dataset

The data used for our experiments is a collection of binary images containing
Maya hieroglyphs. Specifically, Maya glyph-blocks, which correspond to com-
pounds of individual glyph-signs visually arranged together to express full sen-
tences. These images were generated by our team by applying binarization to a
subset of glyph-blocks from the collection of the Maaya project [3]'. Currently,
we are working towards the release of this collection for research purposes.

In particular, our dataset consists of 155 classes, which correspond to 155 dif-
ferent types of glyph-blocks. More precisely, each class is defined by the sequence
of names of its individual glyph-signs. Here the Thompson catalog [9] is used
as naming convention, e.g., T0759b-T0025-T0181 refers to a glyph-block with
three individual signs: 759b, 25, and 181; and the prefix ‘T’, for Thompson, is
always used. These annotations were defined by expert epigraphers following a
reading convention for Maya hieroglyphs. Note that following this definition of
a class, two classes might partially overlap, i.e., two glyph-blocks might contain
the same individual signs one or several times, or they might have the same set
of signs but on different arrangement.

The 155 selected classes correspond to those glyph-blocks with at least 20
instances in the original Maaya corpus, from which we randomly picked exactly
20. Later, we generated 20 more instances by applying erosion, and 20 more
with dilation, both convolving with filter of size fixed to 9 x 9 pixels. Therefore,
our datasets contains 9300 instances, thus 60 per class. Furthermore, the 40
synthetically generated instances are always used as training set in our experi-
ments, and the original 20 instances as test set. Figure 1 shows some examples
of glyph-blocks.

Fig. 1. Examples of Maya glyph-blocks. Each image exemplifies a specific class.

Representation. We used the VGGnet [8] as feature extractor, which has
been previously trained on the ImageNet dataset. More precisely, we fed the
images of the glyph-blocks to the VGGnet, and recorded the output of the last
convolutional layer (convb). This representations is a 4096-dimensional vector,
which for our specific dataset of binary images, happens to be a very sparse
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vector as only those units processing edge information are activated through the
network. We use this representation as the input for all of our experiments.

Note that this corresponds to an instance of a transfer learning scenario. Or
in other words, the pipeline for feature extraction is fully unsupervised since the
VGGnet was trained on a totally different dataset.

4.2 Protocol

We used 6200 instances of glyph-blocks (40 per class) as training set, and the
remaining 3100 instances (20 per class) for testing. Specifically, we computed
an initial t-SNE dimensionality reduction on the training set, and then used
the proposed approach (or the baseline methods) to estimate the corresponding
mapping function that could replicate the initial t-SNE reduction. Finally, we
evaluated its performance on unseen data, i.e., test set.

The Matlab implementation of t-SNE [11] that we used outputs
2-dimensional representations whose values are zero-centered and between -150
and 150. We scaled these representations to be between -1 and 1 before feeding
them to the neural network. And we used hyperbolic tangent and rectified linear
transfer functions as the units of the hidden layers in the network.

Table 1 shows the list of neural architectures and transfer functions that we
evaluated for the replication of the t-SNE dimensionality reduction.

Table 1. Architectures and transfer functions evaluated for replicating t-SNE dimen-
sionality reduction. Logistic and ReLu transfer functions where used with different
combinations of hidden layers and units.

Network | Number of units in the hidden layers
200 tanh | 100 tanh | 50 tanh

200 tanh | 100 tanh | 100 tanh

100 tanh | 100 tanh | 100 tanh

200 tanh | 100 tanh | -

200 relu | 100 relu |50 relu

200 relu | 100 relu | 100 relu

200 relu | 100 relu |-

200 tanh | 100 relu | 100 tanh

T QE-™ O Q mE e

We used gradient descent for all of our experiments and mean square error
(mse) as loss function. Also, we used the following fixed hyperparameters: learn-
ing rate equals to 0.01; momentum rate of 0.9. We ran our experiments for 1000
epochs, and relied on early stopping if the optimization reached 10 iterations
without improvement, or if the gradient reached a value of 10710,

We compared our results using retrieval experiments as evaluation of perfor-
mance. We report the mean Average Precision (mAP) obtained for the first 10
and the first 20 retrieved elements, mAP@10 and mAP@Q20 respectively.
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5 Results

Our first experiment, which later we use as baseline, is an initial comparison
of the retrieval performance achieved by the output of the VGGnet before and
after applying t-SNE in the traditional sense. Table2 shows the mean Average
Precision (mAP) obtained for the first 10 and the first 20 retrieved elements,
mAPQ10 and mAPQ20 respectively.

Table 2. mAP obtained on the training set alone and the training set combined with
the test set. For both cases using the 4096-D vector provided by the VGGnet, and a
2-D vector after applying t-SNE.

Set Dimensionality | mAP

@10 |@20
Training 4096-D 0.9591 | 0.9258
Training (t-SNE) 2-D 0.9509 | 0.9311
Training & Test | 4096-D 0.9578 | 0.9245
Training & Test | (t-SNE) 2-D 0.9455 | 0.9287

The first observation is that squeezing the output of 4096 dimensions of
the VGGnet into only 2 dimensions, results in a slight decrease in the retrieval
performance (i.e., discriminative potential) for the first 10 retrieved elements.
This behavior was already expected since, intuitively, 2 dimensions might be
insufficient for discriminative representations of the very complex shapes in our
dataset. However, it is interesting to notice that this drop is almost negligible.
Furthermore, the retrieval performance shows a slight increment for the first 20
retrieved elements, i.e., from 0.9258 to 0.9311 when using only the training set,
and from 0.9245 to 0.9287 when the training and test sets are merged. Another
observation is that the retrieval performance decreases by adding the test set in
the experiments. This is a consequence of the addition of noisy instances.

Since a new mapping function is obtained every time t-SNE is computed,
results obtained using only the training set are, with high probability, different
from those obtained using both the training and test sets together. This is to
say, the retrieval performance is barely impacted when the test set is added to
the training set, as t-SNE effectively estimates a mapping function considering
all the elements in its input. However, such mapping function is different from
that estimated only for the test set. Figure 2 shows two different point-clouds of
2-D coordinates for the training set only and the training and test sets together.
It is clear that the location of colored clusters, which indicate different classes,
is different in the two images.

In Table 3, we show the retrieval performance obtained with the several archi-
tectures described in Table 1. Compared to the baseline presented in Table 2, all
of these approaches result in certain amount of loss of the discriminative capa-
bilities of the vectors. Concretely, the best performing approach (B in Table 3)
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(a) Training set only. (b) Training and test set together.

Fig. 2. Point-clouds showing different 2-D representations obtained after dimensional-
ity reduction of the VGGnet outputs using t-SNE.

shows about 23% lower retrieval performance. This is the result of compressing
4096 dimensions into only 2 dimensions, which corresponds to a very aggressive
transformation. Although we notice that using only 12 dimensions is still enough
to achieve results above 90% in retrieval precision, in this work we are interested
in generating representations of only 2 dimensions for visualization purposes.

Table 3. mAP obtained for different architectures of deep neural networks.

mAP | A B C D E F G H
@10 |0.674/0.719|0.552|0.718 | 0.692 | 0.702 | 0.326 | 0.706
@20 |0.655|0.706 | 0.551 | 0.700 | 0.690 | 0.689 | 0.211 | 0.702

From Table 3, it is clear that approach B produces results whose performance
is above all the others. In general terms, the use of the hyperbolic tangent func-
tion (tanh) attained better results in comparison to the rectified linear function
(relu). Comparing approach B with the other approaches that also use the hyper-
bolic tangent function (i.e., A, C, D), one can notice that decreasing the number
of units in the first layer, as done in approach C, has a larger impact on the
retrieval performance than decreasing it in the last layer, as done in approach
A. Surprisingly, removing one layer, as in approach D, has little effect as long as
the number of units in the last layer remains the same. Intuitively, this happens
because the number of parameters decreases, thus making the model easier to
train although slightly less robust.

This behavior is consistent with the results obtained using the rectified linear
function, where approach F, which is similar to B in the number of layers and
units, achieves higher performance with respect to other approaches using relu
transfer functions (i.e., E, G). Finally, combining tanh and relu function has no



144 E. Roman-Rangel and S. Marchand-Maillet

effect in the performance, as seen by the fact that approach F and H provide
almost the same retrieval performance.

Figure3 shows the point-clouds obtained after using the dimensionality
reduction approach B. To facilitate reading, Fig. 3a shows again the point-cloud
resulting from applying traditional t-SNE on the training set (i.e., this is the
same point-cloud as shown in Fig.2a). However, different from Fig.2b, which
shows a full t-SNE dimensionality reduction applied on both the training and
test sets, and which is very different from the point-cloud in Fig. 2a, the point-
cloud presented in Fig. 3b shows the 2-D reduction of the training and test sets
together after using approach B. Note that in this case, the color structure is
conserved, i.e., the rough location of each class remains constant when applied to
unseen data, with a regular distribution spread around their original locations.
This is, the proposed method is able to generalize the use of t-SNE for unseen
data up to certain degree.

150 1501
100 100
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50F

=50
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(a) Training set only. (b) Training and test set together.

Fig. 3. Point-clouds showing the 2-D representations resulting from applying the pro-
posed dimensionality reduction approach, i.e., approach B.

Specifically, the spreading in the location of the 2-dimensional representa-
tions, which results from using the proposed approach, and which is shown in
Fig. 3b, is the reason for the drop in retrieval performance reported in Table 3.

For further validation of the proposed approach, we compared it against other
methods previously reported in the literature. Table 4 shows the retrieval perfor-
mance obtained from this comparison. In particular, the two autoencoder-based
methods, autoencoder and parametric t-SNE, both obtained retrieval perfor-
mance slightly below 70%. The ideas behind autoencoders and parametric t-SNE
are very similar to each other, with the main difference that the fine tunning
step of parametric t-SNE focuses on the optimization of the Kullback-Leibler
divergence, whereas autoencoders are only constrained by a sparsity prior. How-
ever, this difference seems to be negligible, as suggested by the very similar
performance obtained by these two methods.

From Table 4, one can also see that it is possible to achieve more than 50%
retrieval precision by solving a simple linear regression formulation. Furthermore,
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Table 4. mAP obtained for the best performing architecture according to Table 3, and
other approaches for regression.

Method mAPQ10 | mAPQ20
[6] Autoencoder 0.668 0.695
[10] Parametric t-SNE | 0.677 0.667
Linear regression 0.569 0.545
[4] MSI 0.615 0.609
[4] Kernel t-SNE 0.654 0.648
Our approach 0.719 0.706

the two methods presented in [4], which are kernel-based variations of linear
regression, and that are referred to as MSI and kernel t-SNE, both obtained
slightly improved retrieval precision with respect to the use of simple linear
regression. However, all these three methods performs slightly worse than the
autoencoder-based methods.

Finally, the proposed approach based upon the use of deep networks achieves
about 72% of retrieval precision, which corresponds to a rough 23% of drop in
performance when compared to traditional t-SNE. However, this high perfor-
mance of t-SNE remains true as long as it is computed using the test set as part
of the training set. In contrast, our approach enables the ability to generalize for
unseen data within a range of acceptable loss in the discriminative potential of
the resulting 2-dimensional representations.

6 Conclusions

We proposed the use of retrieval experiments for assessing the quality of unsu-
pervised and non-parametric dimensionality reduction techniques. Specifically,
for methods that replicate the mapping function of t-SNE for unseen data. We
conducted experiments on a dataset of Maya hieroglyphs, whose main challenge
lies on the visual complexity of its instances and the fact that they are weakly
annotated. We also proposed an unsupervised method for estimating 2-D rep-
resentations of very complex shapes, which can be readily applied to unseen
data. More specifically, a deep network architecture able to approximate t-SNE
mapping functions up to certain degree.

Our results show that using retrieval experiments is an adequate criteria
for evaluation of non-parametric dimensionality reduction methods, and that
the proposed approach performs better than previous methods. Furthermore,
2-dimensional representation is adequate for visualization purposes of complex
shapes at the cost of lower retrieval performance.

For future work, more complex architectures and combinations of transfer
functions, which could yield improved results should be evaluated. Also, it is
expected that the evaluation of our approach on a supervised scenario will result
in improved performance.
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