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Abstract. Gravity tables are important machinery that separate dense
(healthy) grains from lighter (low yielding varieties) aiding in improving
the overall quality of seed and grain processing. This paper aims at eval-
uating the operating states of such tables, which is a critical criterion
required for the design and automation of the next generation of grav-
ity separators. We present a method capable of detecting differences in
grain densities, that as an elementary step forms the basis for a related
optimization of gravity tables. The method is based on a multispec-
tral imaging technology, capable of capturing differences in the surface
chemistry of the kernels. The relevant micro-properties of the grains are
estimated using a Canonical Discriminant Analysis (CDA) that segments
the captured grains into individual kernels and we show that for wheat,
our method correlates well with control measurements (R2 = 0.93).

Keywords: CDA · Gravity tables · Multispectral imaging and state
optimization

1 Introduction

Agriculture has been the key ingredient in the emergence and rise of human
civilization as farming of domesticated plants/crops have fostered the modern
world. Along with the improvement of modern farming techniques, advances
in technology have aided in the growth and development of conventional grain
and seed cleaning practices sch as gravity sorting. This fundamental technique
aids in removing less dense material such as immature, low germination, and
insect damaged seeds from the healthier seed lot. Typically this step is repeat-
edly undertaken in the final grain cleaning stages using equipment referred to as
gravity tables [1]. These tables employ specific weight (measure of buoyancy or
specific density) to separate material. The table has to be adjusted on a regular
basis in order to perform optimally (every 15 min), and whereas gravity tables
have improved in design and increased in capacity, the need for very skilled and
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Fig. 1. The Westrup KA-1200 gravity table (1), and the VideometerLab2.0 (2).

experienced manual labor for the essential task of monitoring and adjustment,
has remained the same. Unfortunately, optimizing the table is difficult, due to
grains being undistinguishable to the naked eye. Only operators with years of
experience are capable of optimizing the settings of the table and maintain opti-
mal operation. Hence, this is the next bottleneck that should be overcome in
order to increase the overall productivity of grain and seed cleaning operations.
So far, automation of these machinery have not been addressed, and this work
represents a nascent foray into this domain by attempting to develop a self regu-
lating gravity table that measures its current operating state using an advanced
vision system. The first step in solving this problem is to prove that cameras are
capable of measuring significant (and relevant) differences in the grain product
profiles, and furthermore show that this difference actually correlates with grain
density. It should be noted that the grains that are fed are pre-cleaned in sev-
eral preceding operations and the final material processed on a gravity table is
(assumed to be) homogeneous in shape,size and distribution. Hence, the table
will sort material according to weight, and consequently the objective of this first
study is to develop a suitable methodology for the estimation of kernel weights
in batches using multispectral image analysis. We further demonstrate the feasi-
bility of such a vision driven process optimization using wheat as a model crop.

In the following, we will introduce the instruments used in the study, followed
by a description of the experimental setup, and the chosen strategy. We finally
show the results, and illustrate how they can be used in the optimization process
of the table parameters.

2 Instrumentation

Before presenting the methods and results, we give a short introduction to the
apparatus used in this study.

2.1 Gravity Tables

Figure 1.(1) shows an industrial gravity table, and Fig. 2 illustrates the working
principle [1]. Feed material, X, is introduced on a perforated deck, through
which air is blowing. The table is tilted along two directions (“lengthwise” and
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“across” in Fig. 2). The deck is placed on springs, vibrating “lengthwise” with
a constant frequency through an eccentric. As soon as material enters the deck,
the air starts stratifying it vertically due to the inherent differences in specific
weight (lighter on top of heavier). The “across”-angle is forces material to flow
off the table during operation while the “lengthwise” tilt forces material to flow
downwards (due to gravity). In addition, the vibrating action throws the bottom
(heavy) material upwards, resulting in a horizontal separation of lower (heavy)
from upper (lighter) material along the deck length. Finally, material exits the
table as segregated fractions, Y .

Fig. 2. Principle of operation of a gravity table.

2.2 Camera System

Images were captured using a VideometerLab vision system. The instrument
captures images at 19 different wavelengths (from UV (365 nm) to NIR (970 nm))
with an image resolution of 2056 × 2056 pixels (44.5µm per pixel and ≈306 Mb
per image). The original technology behind the instrument was concieved at the
Technical University of Denmark (DTU) and this system is now being developed
and commercialized by Videometer A/S [2,4] (Fig. 1.(2)). The camera acquires
images in which pixels contain a spectrum of (reflectance) values obtained at the
different wavelengths. This information, is representative of the chemistry of an
area above (and below) the surface. The slightest differences can be captured,
through the use of multivariate statistical methods, capable of outperforming the
human eye in both sensitivity, specificity and consistency. In this study, we use
a VideometerLab (3.0) and the latest version of the accompanying software [2].

3 Materials and Methods

3.1 Gravity Table Setup

The table used in this study is a Westrup KA-1200 (Fig. 1.(1), having N = 4
outlets (labelled a, b, c, and d in Fig. 2). To simulate a production line,
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a hopper is placed next to the table, feeding the deck with material, recycled
through a conveyor belt collecting (separated) material that leaves the table.
This material is further transported to the side of the table, where a vacuum
pump lifts the seeds back into the hopper. A 100 kilos of wheat from a grain
cleaning plant is filled into the hopper and the table is started. We invited
an expert to set the table, making sure it was running in an optimal state:
P opt = [F opt, Γ opt, θoptL , θoptT ] = [85, 40, 15, 8] (see Sect. 1). The parameter values
are entered as percentage-of-maximum on the machine.

3.2 Image Acquisition and Analysis

All images are acquired the same way using a VideometerLab (v.3.0). For equal
volumes (cups) of grain, images are acquired sequentially using the hopper, feeder
and conveyor system described earlier. First, the instrument is calibrated for
intensity and geometric distortions and these settings are kept constant for all
subsequent acquisitions. Images of the reflectance are captured at 19 different
wavelengths (from UV, through visual, to NIR), into one single high-resolution
spectral image (2056 × 2056 × 19 pixels). A canonical discriminant analysis
(CDA) model [5,6] is created to detect wheat kernels in the images. Pixel regions
are labelled in the background and foreground (kernels), after which the between-
and within covariance matrices, SB and SW, are calculated for the two classes
and used to minimize the Rayleigh quotient

min
w

J(w) =
wTSBw

wTSWw
.

The solution, w, is a new projection (score) with maximum separation
between foreground and background pixels. This is used in the segmentation
that is done in two steps: (1) a pre-segmentation, where a threshold is applied
to the score image, returning regions containing the kernels, (2) a watershed
segmentation [7] is applied to the segmented regions in order to secure separate
objects (if they are touching each other). From each kernel features are extracted
relating to shape, intensity and texture, for each of the wavelengths. A total of
54 features were extracted from all kernel images.

3.3 Data Sampling

Two sets of samples were taken from the table: for the single kernel analysis, and
for the density profiling (see Fig. 3). Few estimates of specific weight are generally
accepted: The cup-method, measuring the weight of a fixed volume, recalculated
to kg/m2, and 2) The 1000 kernel weight, calculating the average weight per
kernel × 1000. Both methods give the same result, but during the course of
development, we found that the cup-method was sensitive to variations in grain
compaction within the cup (less important for increasing volumes). Therefore,
we chose the 1000 kernel weight as the relevant metric, as it was robust and less
sensitive towards sampling variation.
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Fig. 3. Processing “pathway” of the analysis.

Single Kernel Modelling. A total of 4 × 48 = 192 wheat kernels were sam-
pled randomly from the outlets of the table, and their weight found on an A&D
HR-100AZ (102g/0.1 mg) scale, M = {m1, . . . ,m192}T . Images of the single
kernels, were acquired on both sides (i.e. ventral and dorsal) using the Videome-
terLab and key features extracted. In the analysis, when creating a data set,
we randomly select one side and use the representative features, such that we
obtain a matrix of independent variables, XM ∈ R

192×54. Next, kernel weight
was modelled using

M = f(XM , β̂∗)

assumed to be linear, for simplicity. We applied stepwise regression [3] combined
with a scoring schema. The scoring is done based on counting the number of times
a feature has been selected, and for different models this is created randomly by
picking kernel sides randomly (randomly picking only 90% of the kernels). We
repeated this 1000 times, and choose the features that were selected for more
than 30% of the times. The final generated regression model is used to estimate
β̂∗ and this is further used in modelling the table density.

Table Density Profiling. Table parameters are varied individually, and 5
points are sampled ±5% around the optimal setting, P opt. A total of 80 samples
are taken (4 parameters × 5 parameter values × 4 outlets). We keep the load
fixed (typically for production). Samples are collected in 0.147 L cups, taken at
four positions equally distributed along the output side of the table. The weight
of each sample (minus cup) is measured, W = {w1, . . . , w80}T , and images of
the kernels in each cup are acquired using the VideometerLab, with an attached
feeder. Figures 4 and 7 show the resulting output for the varying parameters and
the profile across the table.

4 Results

The kernels were analyzed as illustrated in Fig. 3. After the image analysis,
features were exported as a comma separated (CSV) file into Matlab c© (R2014a),



476 M.A.E. Hansen et al.

Fig. 4. The sampled wheat kernels and their measured weight.

from where the analysis was done. First, we create a model capable of estimating
the weight of single kernels, based on visual characteristics only. Next, we use
this model to estimate the weight of batches of kernels based on images of the
individual kernels.

4.1 Single Kernel Modelling

Figures 4.(1) and 4.(2) shows the kernels picked for the single kernel weight
model generation, and their measured weight. The average kernel weight was
45.15(±11.90) mg. And although the kernels were sampled equally from each of
the four outlets of the gravity table, no significant (p = 0.05) difference between

Fig. 5. Result after model generation and feature selection by stepwise regression (only
5 features).
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Fig. 6. Samples from the gravity table, and their measured weight. The difference
between light (Outlet a) and heavy (Outlet d) material is 7% (if volume is assumed to
be constant).

the weight of kernels could be detected (a and d are different at p = 0.11). In addi-
tion, no significant difference could be observed in the features from the different
sides. A total of five out of 54 features were selected (with score): Area(70%),
Roundness(37%), Mean890nm(75%), Mean940nm(90%), Volume(85%). Figure 5
shows the final result, with the predicted weight as function of the real kernel
weight (R2 = 0.91). The remaining features all were chosen less than 10% of the
times.

4.2 Table Density Profiling

A total of 4964 images (1595 GB) were acquired (≈20 images per cup) and 364
389 kernels were detected (≈73 per image). Using the weight model, β̂∗, we
estimated the average weight of the kernels in each cup and multiplied it with a
1000 to obtain the thousand kernel weight. As a reference we calculated the 1000
kernel weight based on the measured cup weights. Figure 7 shows the correlation
between measurements and the estimates based on image features alone, showing
a high correlation (R2 = 0.93). A slight bias (difference in the means) can be
observed, coming from an inexact number of kernels. Some kernels were not
visible in the camera field of view, or removed (half kernels at the border) during
the segmentation process. A decrease in detected kernels relative to the actual,
causes the estimated weight of the kernels to be less than the actual weight and
the measured weight to be slightly higher. Figure 6 shows that we can use the
estimated weight to optimize the process. If we had increased the fluidization
conditions slightly, we would have obtained a much better separation between the
ends (Outlets a and d) of the table. A similar trend is noted for the vibrational
conditions as well, while changing the two angles would have had lower impacts.
Figure 8 show the resulting output profiles from the table for the varying table
settings. Figure 9 show the output profile for the four different sample points
along the table.
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Fig. 7. Plot of the estimated 1000 kernel weight as function of the measured 1000
kernel weight.

Fig. 8. Variation in the density output for varying parameters.
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Fig. 9. Profile of density on the output.

5 Discussion

We have shown that the density profile of the output of gravity tables can be
estimated using a multispectral camera setup coupled with simple CDA and
regression modelling. As can be seen, there is a bias in the estimate of the
weight due to missing seeds in the images that are outside the optical field of
the camera (kernels being positioned at the edges of the image). This bias was
noted to be constant and the measured metric can hence be utilized to quantify
the relevant grain micro-properties (specific gravity). Such an analysis could be
extended to other crop types such as maize, barley etc.
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