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and Henrik Aanæs1

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
mohan@dtu.dk

2 Department of Polymer Engineering, Budapest University of Technology

and Economics, Budapest, Hungary

Abstract. In high volume productions based on casting processes, like
high-pressure die casting (HPDC) or injection moulding, there is a wide
range of variables that affect the end quality of produced parts. These
variables include production parameters (temperature, pressure, mix-
ture), and external factors (humidity, temperature, etc.). With this many
variables it is a challenge to maintain a stable output quality, wherefore
massive amounts of resources are spent on quality assurance (QA) of pro-
duced parts. Currently, this QA is done manually through visual inspec-
tion. We demonstrate how a multispectral imaging system can be used
to automatically rate the quality of a produced part using an autocorre-
lation and a Fourier-based method. These methods are compared with
human rankings and achieve good correlations on a variety of samples.
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1 Introduction

Injection moulding is a versatile manufacturing process, used for producing a
wide range of everyday objects. The process is based on injecting material into
a mould under high pressure and temperature, whereafter the material will cool
and harden, completing the injection moulding cycle. The approach works for a
wide range of materials and is very fast, making it one of the most commonly used
means of manufacturing today. Figure 1 shows a few examples of everyday objects
produced through injection moulding: A computer mouse, a plate, and a pen.

When doing injection moulding it is important to ensure consistent quality of
produced products. This both implies the mechanical properties, such as dimen-
sions, roughness, and strength, and the visual appeal, or surface “appearance”.
For the former, several standards and recommendations exist for ensuring con-
sistent quality objectively, however, for the latter, no guidelines exist and most
quality control is today done by manual visual inspection. This need for manual
visual quality control, which is in addition often repeated multiple times and
averaged for consistency, is a very expensive and slow operation to carry out
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Fig. 1. An example of products manufactured using injection moulding. Left: computer
mouse. Center: plate. Right: pen.

that scales poorly. It is, however, as the consumers value visual quality highly, a
task that can very rarely be neglected. Often today we see a compromise, where
humans periodically assess quality of samples and adjust production parameters
accordingly to maintain a visual quality that is within bounds. This means that
whole batches may be discarded due to late identification of errors. It also often
means that the quality is evaluated subjectively, with the potential of having
varying qualities over time and different production locations.

It is apparent that being able to automatically and objectively quantify the
visual surface quality of produced parts has the potential of saving manufac-
turers many resources in production. In this work, we deal with surface quality
of injection moulded plastic (acrylonitrile butadiene styrene, ABS), where we
demonstrate an objective surface quality measure based on multispectral images
captured in a controlled lighting environment. Here, visual quality is synonymous
with high color homogeneity, i.e. the produced plastic part has the correct color
everywhere, whereas in cases of low quality there may be smaller patches with
discoloring. Our main contributions are: (a) Proposing an approach for strongly
emphasizing surface discolourings using multispectral imaging, and (b) present-
ing a Fourier-based, rotation invariant, quality measure that can potentially be
translated to current human-based scores.

2 Related Work

It is well known that injection moulding parameters have a significant effect on the
visual appearance and quality of moulded parts. Specifically, especially color and
gloss, two of the main contributors to the visual appearance, are highly affected
by production parameters [6]. Especially mould temperature and packing pressure
are identified by Piscotti et al. to have a high impact on color and gloss. Inhomo-
geneity in color across the material surface is often caused by insufficient dispersion
of fillers or colorants, or by injection moulding parameters too [7,8].

The assessment of color quality and consistency itself is a well-addressed
topic and is employed in many very different fields of research [12–14]. The CIE
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calibrated color spaces are a convenient way of obtaining device independent
color measurements [9]. Especially, in relation to quality assurance of color, the
CIELAB color space has been employed as this space corresponds well with
the color perception of humans [4]. Especially, the color distance metric ΔE00

calculated in this space is very convenient, as it mimics how humans perceive
color differences, and threshold values for “hardly perceptible” differences have
been identified [2].

Moving beyond standard three stimulus color measurements, multispectral
imaging approaches, e.g. designed for replacing colorimeters that only rely on
point-samples, have been proposed in the food industry [12]. Unfortunately these
have until now not been ported to the field of quality control in manufacturing.

Recently, convolution based methods have, with some success, been proposed
for estimating color-inhomogeneity of samples scanned in a flatbed scanner [15].
Advancing from this, projector-based approaches trying to identify subsurface
miscolorings using structured light have also been suggested [3].

3 Data

For the experiments carried out in this paper, a collection of injection moulded
unfilled acrylonitrile butadiene styrene (ABS) samples was produced. To add
coloring, a 4% by weight of masterbatch (MB) was dry mixed into the matrix.
The samples were injection moulded on an Arburg Allrounder Advance 370 S
700-290 machine, using a screw diameter of 30 mm. To obtain varying color
homogeneity, i.e. appearance quality, a range of relevant production parameters
were varied. We chose to reuse the parameters identified by Zśıros et al. [15].
In Fig. 2, the mould used for producing samples is presented to the left. To the
right in the figure, en example of a produced sample, using dark-blue coloring, is
shown. Notice that small but distinct color inhomogeneities exist on the sample
surface.

Fig. 2. (a): Mould used for producing the plastic samples that are analyzed in this
paper. (b): A plastic sample from the dark blue material. Notice that this sample has
many visible inhomogeneities on the surface. (Color figure online)
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In total 100 samples were created. The collection covers ten different and
commonly used colors, each with ten samples of varying quality. Unfortunately,
absolute quality scores obtained by human quality inspectors were not available
in this experiment. Instead, an assessment panel was instructed to produce a
relative ranking, by ordering samples from the smallest visual error (1) to the
largest visual error (10). This was done both for the ten samples within every
color, and across all colors using one sample of each color.

For analyzing the produced samples, we utilize a multi-spectral imaging
device called VideometerLab 4 to obtain high resolution (2192 × 2192 pixels)
images captured at 19 different wavelengths [1]. It captures band-sequential
images by diffusely illuminating the sample using LEDs operating in 19 different
wavelengths ranging from 365 nm to 970 nm.

As the typical human eye is only sensitive to wavelengths from 390 nm to
700 nm [10], we only use the thirteen bands that fall within this spectrum. Table 1
lists all available wavelengths from the VideometerLab 4, and the ones empha-
sized in bold writing are the ones used for analysis. This is done because we are
in this study not interested in imperfections that are not visible to the human
eye. An example of the multi-spectral image of the material sample presented
in Fig. 2 can be seen in Fig. 3, where each wavelength is shown as a grayscale
image. Note here that the last five bands (near infrared), which fall outside the

Table 1. The wavelengths at which we have acquired images of our samples using the
VideometerLab. Due to the limited sensitivity of the human eye, we only use bands
two to fourteen. The bands used are highlighted with bold.

Band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

λ [nm] 365 405 430 450 470 490 515 540 570 590 630 645 660 690 780 850 880 940 970

Fig. 3. Raw spectral images acquired of the sample presented in Figure 2. The wave-
lengths are in an increasing order from left to right and top to bottom. These corre-
spond to the wavelengths mentioned in Table 1. In the five longest wavelengths (near
infrared), there can be seen a faint bright rectangle near the middle of the sample. This
is because the sample is slightly transparent at these wavelengths and there is a sticker
on the opposite side of the sample.
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human visual spectrum, renders the sample slightly transparent as it is possible
to faintly see a sticker that is located on the other side of the sample. This shows
up as a bright rectangular shape slightly left of the center.

The dark circles seen in the center of each image in Fig. 3 are a result of
the samples being very specular and are in fact a reflection of the camera hole
itself in the VideometerLab 4 device. This is an unwanted artifact and as a
final processing step we therefore produce a mask that masks out this center
circle as well as the edge of the samples. This mask ensures that no false color
inhomogeneities are introduced during data-processing.

4 Method

The 13 color bands within the human visible spectrum, that were acquired with
the multispectral camera, are initially filtered with a 3 × 3 median kernel to
reduce sensor noise and small dust particles that were present on the sample at
the time of image acquisition. This is done as dust particles introduce unwanted
high frequent noise in the signal, which would complicate later analyses. After-
wards, the mask created during data acquisition, identifying valid pixels in the
images, is applied to the images to extract only valid information. After mask-
ing, the 1 percentile brightest and darkest pixels are clipped. This clipping is an
additional way to reduce the effect of tiny dust particles, as they make up less
than 1% of the area in the image.

Every valid pixel in the thirteen channel multispectral image may be treated
as an n = 13 dimensional observation, x ∈ R

n. As 3,246,212 pixels in every
channel were identified as being valid using the predefined mask, a total of
m = 3246212 n-dimensional points have been observed. As the distribution of
these points is currently not centered, the mean from each channel is subtracted
from the respective channel to ensure proper centering of the distribution:

x̃i = xi − μi = xi −
∑m

k=1 xik

m
∀i ∈ [1;n] (1)

and the centered observations may be gathered in an m × n sized observation
matrix, X ∈ R

m×n:
X = [x̃1, . . . , x̃m]T (2)

Based on this observation matrix, the maximum autocorrelation factor
(MAF) transformation can be performed [11]. This is very similar to doing prin-
cipal component analysis (PCA), but yields results that are in some ways more
interpretable in the context of images, as it uses the spatial information.

The autocorrelation-based variance-covariance matrix ΣΔ is defined as:

ΣΔ = 2Σ − Γ(Δ) − Γ(−Δ), (3)

where Σ is the covariance matrix of X and Γ(Δ) is the autocorrelation of the
image using a specified spatial shift, Δ, usually 1 pixel both horizontally and
vertically.
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Fig. 4. The first five MAF components of the masked and transformed image before and
after high pass filtering the images. The high pass filtering is performed by subtracting
a highly blurred version of each image from the image.

The MAF components correspond to the eigenvectors, W = [w1 . . . ,wn], of
ΣΔ with respect to Σ.

The resulting components of the MAF transformation can be seen in Fig. 4.
Note that there is a low frequency component visible in the first channel. This
is because the sample has not been perfectly evenly lit. As we are not interested
in this bias, we subtract a highly blurred version of each channel as a means of
applying a high pass filter. We use a Gaussian kernel with σ = 30 to blur the
image. The image after this operation can be seen in Fig. 4b. The value of σ has
been chosen empirically to reproduce the impurities as perceived by looking at
the sample.

Clearly, as can be seen in Fig. 4, both with and without highpass filtering,
the first MAF component clearly emphasizes the inhomogeneities that are only
faintly visible in the reference image shown in Fig. 2.

4.1 Feature Extraction

At this step we discard everything but the most significant component, i.e. the
first, identified by the MAF, as it captures the inhomogeneities in the material
sample very well.

Using this single grayscale image we propose two approaches of extracting
information about the surface quality: two Fourier-based methods and one auto-
correlation based method.
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Fourier-based method: Here, we compute the 2D Fourier transform of the image
which yields the complex-valued 2D Fourier spectrum,

F (u, v) =
M∑

m=0

N∑

n=0

f [m,n]e−j2π(um
M + vn

N ). (4)

To obtain rotational invariance, we compute the radial average, A(r), of the
amplitude in the Fourier domain, to get something similar to a one-dimensional
power spectrum of the image:

A(r) =
1
2π

2π∫

0

|F (r sinφ, r cos φ)| dφ. (5)

This power spectrum is shown in Fig. 5. We discard the phase information. From
the power spectrum, A(r), we can compute the average radial amplitude.

Aavg =

min(M,N)∫

0

A(r)dr (6)

The upper limit in the integral is chosen so the Aavg is finite because the Fourier
transform is cyclic.

Second Fourier-based method: Using the above defined A(r) we compute only
the average radial amplitude from r = 20 to r = 80. This range has been chosen
as the ordering of the lines in Fig. 5 in this range visually correlates well with
the human based quality ordering. This can be interpreted as a mid-pass filter.
The range is depicted by the dashed red vertical lines in Fig. 5.

Amid =

80∫

20

A(r)dr (7)

Autocorrelation-based method: Here, we compute the correlation length of the
1st MAF component using its weighted autocorrelation. The weighted autocor-
relation is given by:

Γweighted(Δ) =
Γ(Δ)

N − |Δ| , (8)

where N is the length of the discrete signal. The correlation length, l, is then
defined as the distance at which the autocorrelation drops below the value 1/e
for the first time [5]:

Γweighted(l) =
1
e

(first occurrence) (9)
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Fig. 5. Radially averaged Fourier transform of the first MAF component. This is shown
for one sample of each color. (Color figure online)

5 Results

In the following we summarize the results obtained by the proposed quality
features compared to the results obtained by the human quality assessment
panel. For compactness, we only summarize the rankings of a subset of the
samples, as these were deemed to span variation of our method’s performance
well. This subset includes the samples “dark blue”, “yellow”, “dark grey”, “light
grey”, “dark brown”, and “one of each color”.

We employ each of the three quality measures presented in the previous
section and rank the samples according to those. Figures 6, 7, 8 and 9 visualize
these rankings, where the first MAF component is overlaid with the human-
assigned rank (10 being the worst). The samples are ordered from left to right
according to the respective method’s ranking. Note that the extremes of the
rankings generally conform well with the ones ranked by a human assessment
panel. Around the middle of the rankings, we observe a little more variation in
the assignments, which would be expected.

For a quantitative evaluation of our method’s performance, we employ
Spearman’s and Kendall rank correlation coefficients to compare our rankings to
the human rankings. These correlation coefficients are summarized in Tables 2
and 3. As may be seen from the table all quality features perform decently with
an average Spearman’s rank correlation coefficient above 0.5 and Kendall rank
correlation coefficient slightly above 0.4. What is noteworthy is that the features
perform well with different samples, indicating that they may be able to compli-
ment one another. We have not investigated this further but will look into this
in future work.
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Fig. 6. Comparison of how the dark blue samples were ranked by the human panel
and our proposed quality features. The numbers shown in the center of each sample
are the ranks assigned by the human assessment panel. The ordering from left to right
corresponds to the method’s ranking.

Fig. 7. Comparison of how the light grey samples were ranked by the human panel
and our proposed quality features. The numbers shown in the center of each sample
are the ranks assigned by the human assessment panel. The ordering from left to right
corresponds to the method’s ranking.
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Fig. 8. Comparison of how the dark brown samples were ranked by the human panel
and our proposed quality features. The numbers shown in the center of each sample
are the ranks assigned by the human assessment panel. The ordering from left to right
corresponds to the method’s ranking.

Fig. 9. Comparison of how one sample of each color were ranked by the human panel
and our proposed quality features. The numbers shown in the center of each sample
are the ranks assigned by the human assessment panel. The ordering from left to right
corresponds to the method’s ranking.
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Table 2. This shows the Spearman’s rank correlation coefficient of each method com-
pared with the human panels sort order, for the six sorts that the panel did. Higher
values are better.

Method Dark
blue

Yellow Dark
grey

Light
grey

Dark brown One of
each color

Average

Aavg 0.67† 0.15 0.75† 0.48 0.90† 0.60 0.59

Amid 0.54 −0.24 0.85† 0.43 0.90† 0.66† 0.53

Correlation length 0.53 0.33 0.91† 0.94† 0.47 0.22 0.57
†Significant at p < 0.05.

Table 3. This shows the Kendall rank correlation coefficient of each method compared
with the human panels sort order, for the six sorts that the panel did. Higher values
are better.

Method Dark
blue

Yellow Dark
grey

Light
grey

Dark brown One of
each color

All

Aavg 0.47 0.07 0.60† 0.38 0.78† 0.38 0.44

Amid 0.38 −0.16 0.69† 0.33 0.78† 0.42 0.41

Correlation length 0.42 0.29 0.78† 0.87† 0.33 0.20 0.48
†Significant at p < 0.05.

6 Discussion and Conclusion

We have in this paper demonstrated a method for automatically assessing the
visual quality of injection moulded plastic surfaces. The approach is based on
multispectral imaging in conjunction with MAF dimensionality reduction and
proposes three different inhomogeneity measures for quantifying surface quality.
All three methods are capable of correctly ranking according to a human panel
with Spearman’s rank correlation coefficient above 0.5 on average and Kendall
rank correlation above 0.4 on average. Generally the methods robustly identify
the best and worst samples, whereas medium-range quality estimates are more
uncertain. If only one of our variants should be picked we propose Aavg, as this
has the most, and highest, statistically significant rank correlation coefficients.

For future work, we will try to obtain absolute values for sample quality
scores, in order to find a direct mapping from our feature scores to the current
standard in human visual quality control.

Currently, our method only looks at inhomogeneities and does not consider
whether the base color of the sample is within specifications. Future work could
incorporate this nuance as well, as this too is an important part of the quality.

An interesting observation is that the proposed features work well on different
material samples. This could indicate that even better overall ranking perfor-
mance may be obtained by concatenating the features before predicting material
quality. In addition using additional MAF components and/or extracting more
than one range from the Fourier spectrum is subject for future research.
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