
Automatic Segmentation of Abdominal Fat
in MRI-Scans, Using Graph-Cuts and Image

Derived Energies

Anders Nymark Christensen1(B), Christian Thode Larsen1,
Camilla Maria Mandrup2, Martin Bæk Petersen2, Rasmus Larsen1,

Knut Conradsen1, and Vedrana Andersen Dahl1

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

anym@dtu.dk
2 Section of Systems Biology Research, Copenhagen University,

Copenhagen, Denmark

Abstract. For many clinical studies changes in the abdominal distri-
bution of fat is an important measure. However, the segmentation of
abdominal fat in MRI scans is both difficult and time consuming using
manual methods. We present here an automatic and flexible software
package, that performs both bias field correction and segmentation of
the fat into superficial and deep subcutaneous fat as well as visceral fat
with the spinal compartment removed. Assessment when comparing to
the gold standard - CT-scans - shows a correlation and bias comparable
to manual segmentation. The method is flexible by tuning the image-
derived energies used for the segmentation, allowing the method to be
applied to other body parts, such as the thighs.

1 Introduction

A large number of studies have investigated the importance of abdominal fat
to health, or used it as a co-variate to other factors. A correlation between
abdominal fat, insulin resistance and other metabolic risk factors [5,14,16] has
been shown. The longitudinal changes has also been studied, in e.g. children [18]
and pre-/post menopausal women [4].

The gold standard for quantifying abdominal fat is Computed Tomography
(CT) scanning [17]. The modality yields absolute values on the Hounsfiled Unit
(HU) scale, which makes quantification relatively easy and the image acquisi-
tion is fast, which minimises effects of organ movement. However, CT has the
drawback of ionising radiation which limits its use in healthy subjects. Another
modality is Dual X-ray Absorptiometry (DEXA) [6], which is fast and cheap,
but does not allow for differentiation of subcutaneous and visceral fat. Finally
Magnetic Resonance Imaging (MRI) can be used. MRI allows not only for the
differentiation of the subcutaneous and visceral fat, but also for splitting the
subcutaneous fat into a superficial and deep compartment. The main drawbacks
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are that MRI is costly, scanning is time consuming and segmentation of the fat
is difficult. The latter point is mainly due to the bias field image artefact, a
consequence of magnetic field inhomogeneities, and the fact that the values in
an anatomic MRI scan are not quantitative like CT.

For the task of segmentation several options exist. There is the option of man-
ual segmentation, which is known to produce good results. However, it suffers
from being time consuming and is subject to inter- and intra-observer variance.
As an alternative automatic methods are attractive. Commercial software exist
in the form of sliceOmatic (Tomovision, Inc., Magog, Canada) which handles
the segmentation in a semi-supervised fashion. For the fully automatic case, sev-
eral approaches have been tried. Zhou et al. [19], used chain-coding, a heuristic
method that requires the scan to be centred on the L4-L5 vertebra. Leinhard
et al. [11] proposed binary operations with some heuristics for the final segmen-
tation. Knutsson et al. [9] used a morphon based approach, that – while yeilding
good results – is very sparsely described with regards to implementation. Finally,
Mosbech et al. [15] used active contours for automatic segmentation, and – as
the only method – described a way to find the fascia of Scarpa, which divides
the subcutaneous fat, using dynamic programming.

We present here a flexible package, available for download at GitHub1, that
can be used to segment a variety of MRI data. The initial step - bias field cor-
rection - uses the method presented by [10]. The segmentation is based on the
graph-cut method proposed by Li et al. [12]. We have found a number of image
based energies that can be combined to suit the problem at hand. A preliminary
study of the method can be found here [2]. We compare the automatic segmenta-
tion against the gold standard CT [17], and obtain correlations and bias between
the two modalities comparable to manual segmentation [8].

2 Materials and Methods

All code was written in MATLAB (The MathWorks Inc., Natick, Massachusetts,
USA).

2.1 Bias Field Correction

The bias field is an image artefact present in all MRI-scans, and can be described
as a low frequent noise over the image. To correct for the bias field, the method
by Larsen et al. [10] was used, which assumes that the observed image origi-
nates from a generative model. The underlying ‘true’ and uncorrupted image is
described using a mixture of Gaussians, and the bias field artifact, assumed to
be multiplicative and smooth, is modeled using a linear combination of cubic
b-splines with regularization on the bending energy. Model parameters are esti-
mated using generalized expectation maximization (GEM). When model para-
meters have been estimated, the bias field can be computed and divided into the

1 https://github.com/AndersNymarkChristensen/FatSegmentationInMRI.

https://github.com/AndersNymarkChristensen/FatSegmentationInMRI
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observed image in order to obtain its correction. The hyper parameters used as
default in our package have been determined by testing on T1, T1 with water
suppression and DIXON [13] sequences. For the first two on both the abdomen
and the thigh, while the latter has only been tested on the abdomen.

2.2 Segmentation

Li et al. [12] formulated the segmentation of layers in volumetric data as a
graph-problem. Representing the data as (x,y,z) where x and y are the horizontal
plane and z the height, each terrain-like layer can only pass through each (x,y)-
column once. For connectivity and to incorporate smoothness constraints, intra-
column displacement of the layers is limited. The framework generalises easily for
multiple layers, which can the be constrained with a min/max distance between
them. The energy used (i.e. the vertex weights) are set depending on the problem.
To solve the graph-cut problem, we use the solver implemented by Boykov and
Kolmogorov [1].

To represent the MRI-scan in this fashion we start by unrolling the images
using radial sampling, centred on the centroid of the slice. The abdomen is not
round but elongated, and the subcutaneous layer of fat changes distance from the
centroid rapidly in the lateral direction. We thus sample more densely in these
regions, see Fig. 1a. This unrolling yields an image - Fig. 1b that can segmented
by the framework of Li et al. [12].

Subcutaneous Fat. The first step in the actual segmentation is the subcuta-
neous fat, defined by the inner and the outer surface. Those surfaces are found
simultaneously, using a constraint imposed on the distance between the two layer.
For thighs or other structures these settings can be varied. The segmentation
employs a variety of image derived energies, that can be grouped in two cost-
classes: gradient-based surface cost, and surface cost based on cumulative sums.

Fig. 1. Radial sampling and the resulting unrolled image
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With the slices along the z-direction, the surfaces are lying in the angular
direction θ while the radial direction r takes the role of the height. The gradient-
based surface energy is defined as

G = sign
(
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∂r

)
·
(∣∣∣∣∂I

∂r

∣∣∣∣ +
∣∣∣∣∂I
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where ∂I
∂r and ∂I

∂θ are the gradients in the radial and angular direction.
We further define Gm the gradient applied to the median filtered image, Gg

as applied to the Gaussian filtered image. For the outer surface we have Go as the
negative gradient and Gos as the negative gradient applied to the median and
then Gaussian smoothed image. The costs for the inner surface are illustrated
in Fig. 2, and the outer in Fig. 3.

Fig. 2. The three gradient-based contributions to the cost of the inner surface. The
cost is constructed such that it has low (dark) values where the surface is to be detected

The surface cost S1 is derived by taking the G image and setting all values
below zero to zero. A cumulative sum is then taken in the radial direction.
For S2 a cumulative sum is taken on the unfolded image. We define S3 as the
element wise product of S1 and S2 filtered with a median filter. For the outer
layer we define a single energy So, which is the same as S1 but applied to Go.
As illustrated by Fig. 4 these costs regulates how deep the layer can go in the
segmentation.

The two surfaces can then be found by weighting these energies depending
on the anatomical region and sequence used to record the images. A median
filter is applied to the inner surface to get a smooth segmentation, see Fig. 5.
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Fig. 3. The two gradient-based contributions to the cost of the outer surface

Fig. 4. The four surface costs based on cumulative sums

Fig. 5. Segmentation of the subcutaneous fat
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Fascia of Scarpa. The fascia of Scarpa divides the subcutaneous fat into a
deep and superficial part. In metabolic studies it is of interest, as the deep
compartment may behave as visceral fat [3]. An advantage of MRI compared
to CT is that the fascia is often visible and a segmentation thus possible. The
identification of the fascia of Scarpa is optional, and would e.g. not be used on
the thigh. The fascia is very fickle and is not always visible, in which case the
segmentation is not meaningful.

When the subcutaneous layer has been found, we need only consider that
part of the image. We use 3 energies: FSr the raw image normalised, FSl the
raw image filtered with a Laplacian Of Gaussian (LOG) filter, and the surface
cost S1. These energies are then weighted depending on the anatomical position.
Examples can be seen in Fig. 6 and more details can be found in the code.

Fig. 6. Examples of the segmentation of the fascia of Scarpa

Spine Extraction. The spinal compartment needs to be removed for accurate
results. The marrow in the vertebra has comparable intensities to fat and is thus
classified as such if not removed. The identification and removal of the spinal
compartment is optional and would e.g. not be used on the thigh. The method is
based on a new unfolding centred on the spine, with heuristic constraints added
on the image derived energies. See the code for more details. An example is
shown in Fig. 7.

Visceral Fat. The visceral compartment is defined by the inner layer, except
for the compartment around the spinal column. The spinal compartment is
removed - if available - before the segmentation of the fat. A k-means clustering
using 5 groups is run and the median value is used as a threshold. Everything
with a higher intensity is defined as fat.
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Fig. 7. Spinal compartment

2.3 Test Subjects

Data were acquired in connection with Copenhagen Women Study http://cws.
ku.dk. All participants received written and oral information about the study,
including risks and discomforts associated with participation, before they gave
their written consent to participate. The study was conducted according to the
Helsinki Declaration and approved by the ethical committee in the capital region
of Denmark, protocol nr. H-1-2012-150.

6 subjects - 3 overweight (ID 1 to 3) and 3 normal weight (ID 4 to 6) - were
chosen randomly among their weight groups. All subjects had a CT-scan per-
formed on the abdomen. Within a mean/maximum of 11.7/24 days the subjects
also had a MRI scan of the abdomen. The CT were acquired on a Siemens
SOMATOM Definition scanner (Siemens, Erlangen, Germany) with settings
100 kVp and 60 mAs - the slice thickness 2 mm was and the pixel size was
1.5234 mm × 1.5234 mm. The MRI scans were acquired on a Siemens Avanto
1.5 T scanner (Siemens, Erlangen, Germany) using a T1 sequence with water
suppression - the slice thickness was 7.2 mm and the pixel size was 1.1719 mm
× 1.1719 mm. Before the MRI scan 20 mg of Hyoscinbutylbromide (Buscopan)
were administered intramuscular to minimise organ movements.

To compare consistent regions, slices were included from the first caudal slice
were the iliac crest were not visible, moving in the cranial direction until the last
slice before the liver becomes visible.

CT Segmentation. The CT scans were segmented using the method by Kim
et al. [7] with the modification that diagonal directions were included in the step
to find the visceral mask. All voxels with values between −150 HU and −50 HU
were classified as fat. All slices were inspected for major errors.

MRI Segmentation. The images were bias field corrected using the follow-
ing settings: ‘stepSize’ was set to the voxel size, the ‘desiredStepSize’ was set

http://cws.ku.dk
http://cws.ku.dk


116 A.N. Christensen et al.

to 4, ‘numberOfGaussians’ 8, ‘smoothingDistance’ 25, ‘smoothingRegularization’
5e-1, and ‘mask’ was an image of all positive voxels.

The subcutaneous fat was found with

Energyinner = 0.5 · G + 0.1 · Gg + 0.1 · Gm + 0.05 · S1 + 0.25 · S3 (2)
Energyouter = 0.5 · Gos + 0.5 · So (3)

for the inner and outer layer respectively.
The spinal compartment was removed, and 5 clusters used for determination

of the visceral fat threshold. All slices were inspected for major errors.

3 Results

The obtained volumes are given in Table 1 for the total volume i.e. the entire
body, for the subcutaneous fat and for the visceral fat.

Table 1. Segmentation Volumes

Subject ID Total volume Subcutaneous fat Visceral fat

CT MRI Diff. (%) CT MRI Diff. (%) CT MRI Diff. (%)

1 6277 6986 −709 (−11 ) 2992 3401 −409 (−14) 683 856 −173 (−25)

2 2835 3189 −354 (−12 ) 1038 1223 −185 (−18 ) 296 425 −129 (−44)

3 5662 3990 1672 (30 ) 1990 1413 576 (29) 1080 795 285 (26)

4 2737 2038 699 (26) 718 549 169 (24) 275 211 64 (23)

5 1653 1616 36 (2) 409 419 −10 (−3) 234 243 −10 (−4)

6 2183 2315 −132 (−6) 575 570 6 (1) 287 339 −53 (−18)

Average 3558 3356 202 (5.7) 1287 1262 24 (1.9) 476 478 −2 (−0.5)

Further, as the total volume deviates between the two modalities we nor-
malise the subcutaneous and visceral with the total volume, to get the two
fat measures as a fractional fat content. These are given in Table 2. The mean
difference±standard deviation between CT and MRI was −0.005±0.0122 for the
subcutaneous fat and −0.013±0.0088 for the visceral fat.

A correlation and a Bland-Altman (Tukey mean-difference) plot for the rel-
ative volumes are shown in Fig. 8.

Subject 3 has the largest deviation from CT. All the slices from the subject
are shown in Fig. 9.
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Table 2. Relative fat Volumes

Subject ID Subcutaneous fat Visceral fat

CT MRI Diff. (%) CT MRI Diff. (%)

1 0.477 0.487 −0.010 (−2.134) 0.109 0.122 −0.014 (−12.545)

2 0.366 0.383 −0.017 (−4.712) 0.104 0.133 −0.029 (−27.582)

3 0.351 0.354 −0.003 (−0.809) 0.191 0.199 −0.008 (−4.426)

4 0.262 0.269 −0.007 (−2.701) 0.100 0.104 −0.003 (−3.280)

5 0.247 0.259 −0.012 (−4.854) 0.141 0.150 −0.009 (−6.544)

6 0.264 0.246 0.018 (6.676) 0.131 0.147 −0.015 (−11.606)

Average 0.328 0.333 −0.005 (−1.614) 0.130 0.143 −0.013 (−10.121)

Fig. 8. Correlation and Bland-Altman plot for subcutaneous and visceral fat

4 Discussion

A software package for segmentation of abdominal fat in MRI has been imple-
mented and validated by comparison with CT.
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Fig. 9. All slices for subject 3. Blue is the outer layer, green the fascia of Scarpa, red
the inner layer of the subcutaneous fat, and yellow the visceral fat (Color figure online)

Even though the same anatomical regions have been selected, we do not
obtain the same volume, with a difference of 5.7%. This might be due to partial
volume effects, as the voxel size in the MRI is more than twice the size of what
it is in the CT images. Further, there exist an uncertainty on the automatic
segmentation of the CT data, and because the CT does not have the spinal
compartment excluded we cannot expect the visceral data to match exactly.
The main uncertainty, however, stems from subject placement and movement.
Breath cycle affects the position of the abdominal organs and thus visceral fat,
and to a lesser degree the subcutaneous fat. The placement on the table may
push the buttocks more caudal or cranial, which affects the measurement of
subcutaneous fat. Both resulting in a high variance, which can be minimised
by following a strict protocol for subject placement. If not reduced in this way,
a larger sample size is needed to detect any changes. The data used here were
acquired with different aims, and do not follow the same protocol. With these
caveats the mean difference of 1.9% for subcutaneous and −0.5% for visceral fat
is acceptable.

When comparing the relative amount of fat present in each modality, we
get very good correlations, better than with manual segmentation. For vis-
ceral fat manual/automatic r=0.89/r=0.97, subcutaneous fat manual/automatic
r=0.92/r=0.99 [8]. This may partly be caused by the fewer number of subjects
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(6 vs. 27) included in our study. Our bias is also comparable to or better than
for manual segmentation. For visceral fat we get −0.013 ± 0.0088 compared to
−0.029 ± 0.019, and for subcutaneous fat −0.005±0.0122 compared to 0.004 ±
0.026 [8]. This is further confirmed by the Bland-Altman plots where all points
are within the limits of agreement. The subject with the largest absolute error
is shown. When inspected by an experienced medical doctor only minor errors
were found.

Although not tried here, examples of the method applied to other sequences
can be found in [2], where it also performed good as judged by inspections.
The package is thus flexible across T1, T1 with water suppression and DIXON
sequences. It should be noted that the data quality is very important to the
quality of the segmentations. Artefacts from organ or breathing motion can easily
lead to incorrect segmentations. Further, parameter tuning is often necessary, as
the images can vary widely depending on the field strength of the MR-scanner
and the sequence employed.

5 Conclusion

A flexible software package for automatic segmentation of abdominal fat has
been implemented. Both the bias and variance is comparable to or smaller than
for manual segmentation.
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