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Abstract. Simplification of polygonal chains by reducing the number
of vertices becomes challenging when additionally dominant edge expan-
sions of the polygonal chains shall be exposed. Such simplifications are
often sought in order to generalize polygonal chains representing borders
or medial axes of man-made structures such as buildings or road net-
works, observed in aerial images.

In this paper, we present two methods that reduce the number of
vertices in polygonal chains meanwhile featuring additional properties:
First, the resulting polygonal chains are irrespective of coordinate axes
as pixel-based approaches tend to produce. Second, the simplified chains
keep the rough shape of the initial ones and emphasize dominating edge
expansions. Optionally, detected perpendicularities may be enforced.
Third, polygons with holes are supposed to exhibit parallel segments
in interior and exterior polygonal chains. Our methods treat the associ-
ated polygonal chains simultaneously by emphasizing common distinc-
tive directions.

Keywords: Polygonal chain simplification · Generalization · Distinc-
tive/Dominant directions · Expectation maximization

1 Introduction

In object-based image analysis, vectorization of image data is the most essential
concept to compress and abstract image information. It has numerous appli-
cations, e.g., digitizing calligraphy, creating topographic databases, or deriving
semantic representations of image content. An important intermediate step of the
latter application is classification of image regions [11,18]. Our main application
area is creation of virtual cityscapes with buildings and roads as most important
objects of recognition value. Vectorization of outlines or (medial) axes of these
objects is the principal task in urban terrain reconstruction [4].

Preliminaries. A plausible boundary of a classified object would be the pixel
conducted polygonal chain separating all in-object pixels from outside pixels. To
outline exterior and interior contours, we utilize a modification of the Moore
contour-tracing algorithm [14] on the mask of the detected object and on its
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D1: D2:

D3: D4:

Fig. 1. Test data extracted from a test side of Munich, Southern Germany [15]. D1:
single building outline with orthogonal directions. D2: building complex of several
directions. D3: building complex of several directions and multiple atriums (holes).
D4: medial axes of a road segment.

complement. Our methods are designed to generate outlines of buildings and
medial axes of road courses, but all procedures may immediately be applied
to other objects featuring dominating edge expansions. The contours are pre-
simplified by means of Douglas-Peucker [6] with an extremely tight threshold
(1 to 1.5 pixels) to eliminate only the axially parallel stair-shaped polygonal chains
from contour tracing without changing the initial shape. The choice of this tight
threshold avoids topological inconsistencies and dependencies of initial vertices
[16] in closed polygonal chains. To identify the medial axes of objects like roads,
we use thinning of the corresponding classification mask with a following vector-
ization according to [17] instead. This is done to preserve the topology of junctions
and branch points. Nevertheless, the final step is again pre-simplification with a
small threshold value. The outlines of four classified objects – one building, two
building complexes and a road course – are exemplary shown in Fig. 1.

Related Work. Complicated pipelines are designed to obtain polygonal chains
which approximate a classification result, and are robust against data noise and
outliers. Additionally, for many man-made structures, constraints of symmetry
must be imposed. The resulting polygonal chains should capture the object’s
topological properties and have a small number of vertices. It has been pointed
out in [12] that the generic meshes obtained by crust algorithms [1], ball-pivoting
methods [2] or alpha-shapes [7] do not always satisfy these criteria.
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To reduce the number of vertices, one can apply a simplification routine, such
as the one presented in [6]. However, this approach depends on the choice of start-
ing vertex and is liable to noise. Furthermore, decreasing the number of vertices
does not necessarily decrease the number of included edge directions. To com-
pensate this drawback, [10] searched for distinctive directions before polygoniza-
tion. Straight lines within the images are used to add and to remove rectangles
to form polygons [9]. Furthermore, [13] attempts post-processing of the direc-
tions obtained by concave hulls [12]. Given the hull of a building footprint, two
directions should be derived from the histogram formed by edges of the polygo-
nal chain weighted by their lengths. Additionally, it was suggested to work with
orthogonal projections and to limit the search direction for the concave hull to
multiples of π/2. If this range is too coarse, multiples of smaller values that are
typical for man-made objects can be chosen. This approach is also transferable
to one of the standard polygonization algorithms, such as [1] based on medial
axes, or on the Moore neighbor-tracing approach [14].

Contribution. For a variety of reasons, segmentation results may be noisy or
flawed. Hence, the pre-simplified polygonal chains may wriggle with many ver-
tices and directions; e.g., straight segments of building outlines are not obtained
properly. The task of this paper is to explicate methods to reduce the number
of vertices in a polygonal chain while simultaneously enforcing dominant direc-
tions of the polygonal chain’s edge expansion. These dominant directions are
also called distinctive directions.

Although man-made objects feature curvy structures, too, we will focus on
(complexes of) buildings and roads in metropolises, where streets are roughly laid
out in piecewise straight-lined segments and where building outlines are mostly
characterized by orthogonality or parallelism to several distinctive directions.
Segments of distinctive directions distinguish themselves by multiple occur-
rences. To extract them we present and compare two approaches: The former,
an intuitive way to solve the problem is to transfer the observed edge directions
into a histogram weighted by the edges’ lengths followed by analysis of his-
togram peaks and non-maxima suppression. Alternatively, distinctive directions
can be determined by fitting parametric distributions to the edge directions.
The latter can be done effectively by applying the expectation-maximization
(EM) algorithm for mixture models with a usually a priori unknown number of
components, i.e., distinctive directions.

We apply our methods also to a special issue: Some polygons formed by
closed polygonal chains contain empty areas, called holes, which are for their
part limited by an interior polygonal chain. Some holes are difficult to detect
from image data or could be represented by noisy or imprecise observations.
A simultaneous treatment of interior and exterior polygonal chains, on the one
hand, stabilizes the detection of holes and, on the other hand, guarantees the
outlines to be of similar or parallel shape. Furthermore, this method enforces
parallelism of segments in exterior and interior polygonal chains.
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We will show the usability of our procedures exemplary for outlines of build-
ings (or building complexes) and a road course.

2 Distinctive Directions and Simplification

Our task is to reduce the number of vertices in a polygonal chain while keeping
the most prevalent directions of its edges. In case of building outlines, most
European buildings feature two distinctive rectangular directions; however, there
are many exceptions. Nevertheless, these man-made structures include just a few
distinctive directions. Likewise, roads often feature few distinctive directions and
sometimes even rectangular structures. There are definitions for what a road
course is in [5]. For our purpose, it is sufficient to consider a road course as a
connected sequence of road segments. An example is shown in Fig. 1(D4).

In this section, we present two different approaches for selecting distinctive
directions in a polygonal chain with n vertices {v1,v2, . . . ,vn}, vi = (xi, yi)�

and corresponding edges vectors ei = vi+1−vi. All methods rely on the enclosed
counterclockwise angles αi of the positive x-axis and ei assessed by the edges’
lengths �i. Each αi represents an edge direction. Parallel edges in the polygonal
chain are supposed to enhance the appearance of the same direction but are –
due to polygonal sequence – often oriented oppositely. Hence, the edge direction
αi is set irrespectively of the orientation of ei to αi ← αi mod π.

2.1 Hill-and-Valley Decomposition

Similarly to [13], we create a length-weighted histogram for each polygonal chain
with π/180 bin discretization for αi (abscissa) and qj =

∑
s �s for all es assigned

to bin j (ordinate). If the polygon contains holes, values of αi and �i are collected
over all polygonal chains.

Extracting Distinctive Directions. We assume a distinctive direction to
occur often in the polygonal chain and therewith to correspond to a local max-
imum of the histogram. A local maximum, is either a histogram bin of larger
value than the incident bins to both sides, or the medial bin of a maximum
plateau that is a set of successive bins of equal and larger value than the closest
different valued bins to both sides. If the number of bins belonging to a plateau
is even, we chose the bin of smaller angle. (Accordingly, local minima are defined
the other way around.)

In the initial histogram, many local maxima are present. In order to extract
distinctive directions representing the shape of polygonal chains with adequate
accuracy and to suppress weak local maxima, we smooth the initial circular
histogram. As a Gaussian filter lends itself to (histogram) smoothing, we use
the composition of its simplest approximation, the binomial filter 1/4

[
1 2 1

]
,

several times. If we know the number of smoothing steps #S, the filter might
be pre-calculated as an autonomous approximation for a Gaussian filter. Hence,
smoothing could take place in one step. Note, that bin width and amount of
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Fig. 2. Amount of local maxima of the length-weighted histogram during smoothing
process (data set D4 in Fig. 1).

observations influences #S. We found a bin discretization of π/180 useful for
simplification of polygonal chains of roads or buildings. But in general, the bin
width might be adapted according to the task of application and accuracy.

The challenge is to estimate #S to get the optimal result. It is hard to guess
the ideal number of desired local maxima in the histogram without knowing the
true number of distinctive directions in the polygonal chain. Since the binning
is quite fine #S should be bounded away from zero (#S ≥ 30) but far less than
100. Plotting the number of local maxima as a function of smoothing steps, we
obtain a decreasing graph with many plateaus as shown in Fig. 2a. There are
some strategies to determine #S optimally, such as taking the closest point from
all coordinate tuples initiating a plateau to the point of origin. But to the best
of our knowledge, the optimal number is chosen best heuristically by taking all
available prior information into account.

Following the assumption above, after smoothing, the remaining local max-
ima correspond to distinctive directions of the polygonal chain. This strategy is
plausible and useful. To make the procedure more robust against the choice of
bin width, we recommend a small modification. Enlarging the bin width may
cause shifted local maxima because of coinciding bins. To compensate this effect,
the distinctive directions ϕf are extracted from the centroid of a histogram hill
– that means from all bins between two successive local minima (the valleys) –
to cover most αi, instead of its local maximum.

Elimination of Shallow Extrema. The certainty of distinctive directions
depends on the varying severity of the max-to-min ratio including the distances
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of positions between pairs of neighboring local maxima (and minima) as well as
the distances between successive local maxima and minima values. Irrespectively
of extracting distinctive directions from local maxima or centroids of hills, these
directions are of larger certainty if they feature a steep ascend and sharp figure.
Despite smoothing to eliminate side maxima, shallow extrema of an unfavorable
max-to-min ratio may be obtained. To get rid of them without further smoothing,
we apply a post-processing step: If two successive minima are too close and
both absolute differences between their values and the value of the enclosed
maximum are too low, the maximum will be removed. The same is done the
other way around with too close successive maxima. It becomes apparent that
critical values for too close and too low may be determined by one third of all
present valley position distances as well as local maximum to local minimum
value distances in the histogram.

Extrema that are part of an oscillation in the bottommost 10% of the data
of the smoothed histogram are removed as well.

Removing the extrema may cause immediately consecutive maxima or min-
ima. We summarize each tuple of these extrema to an extremum plateau and
compute from this set the medial bin as extremum.

Working with the modification, the distinctive directions can afterwards be
extracted from the centroids of the remaining hills.

2.2 Parametric Distribution Analysis

A disadvantage of hill-and-valley decomposition is the large number of degrees
of freedom. Varying the bin size influences #S. The choice of this number is
rather heuristic and per-object. The more prior knowledge about the underlying
object is available the more robust the simplification of the polygonal chain
works. But since we expect a few distinctive directions and since the shape
of the smoothed histogram indicates the presence of an underlying compound
distribution, we pursue a statistical approach. The following method models
distinctive directions and background noise with parametric distributions by
means of expectation maximization.

Modeling. The statistical theory of directional data usually considers distrib-
utions on the unit circle. For the statistical analysis, we transform the observed
chain directions αi mod π by doubling them, estimate distinctive directions ϕf

among other distribution parameters, and back-transform the results.
Besides the distinctive directions ϕf , we expect background clutter due to

imperfect data. The parametric approach allows to model the background explic-
itly by means of the uniform distribution p(α) = 1/(2π), 0 ≤ α ≤ 2π. Thus, all
directions α between 0 and 2π are equally likely. For the dominant directions, we
utilize the von Mises distribution which is in many respect the “natural” ana-
logue on the circle of the normal distribution on the real line [8]. The probability
density function reads

p(α|ϕ, κ) =
1

2πI0(κ)
exp {κ cos(α − ϕ)} , 0 ≤ ϕ ≤ 2π, 0 ≤ κ ≤ ∞ (1)
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where I0(κ) is the modified Bessel function of order zero, ϕ is the mean direc-
tion, and κ is the so-called concentration parameter. As κ → 0, the distribution
converges to the uniform distribution; as κ → ∞, it tends to the point distribu-
tion concentrated in the direction ϕ. The maximum likelihood estimate κ̂ for the
concentration parameter κ can be seriously biased when the sample size n and
R/n are small, whereas R is the length of the resultant

(∑
i cos αi,

∑
i sin αi

)

[8]. In that case, κ̂ can substantially over-estimate the true value of κ. Correction
formulas are provided in [3].

For uncertainty analysis of each estimated mean direction ϕf , two measures
are essential: Given the concentration κf for a direction ϕf , the circular standard
deviation σf =

√−2 log ρf , ρf = I1(κf )/I0(κf ) can be computed, to measure
the spread of data. For distinctive directions, we expect circular standard devi-
ations of less than say 20◦. For testing the potential orthogonality of distinctive
directions ϕf , we utilize the precision σϕ̂f

= 1/
√

Rκ̂f for each ϕf .
For the application at hand, we expect several distinctive directions and

background clutter, modeled by a mixture of F von Mises distributions and a
uniform distribution, whereas the number of components F is unknown a priori.
For fitting this mixture, we apply the EM algorithm and determine the number
of components by considering information theoretic criteria such as the Bayesian
Information Criterion.

For the outlines of buildings, we expect the distinctive directions not to vary
too much, i.e., the dispersion σf should be small for each direction ϕf . Thus,
dominance is not only defined by frequently occurring directions, but also by
directions featuring a small variation.

Enforcing Orthogonal Directions. To detect orthogonality, we perform sta-
tistical parametric tests for all pairs of estimated distinctive directions. The
corresponding test statistic for a pair of distinctive directions (ϕg, ϕh) is

Tgh =
sin (|ϕ̂g − ϕ̂h| − π)

σϕ̂gϕ̂h

∼ N(0, 1) (2)

with the standard deviation σϕ̂gϕ̂h
=

√
σ2

ϕ̂g
+ σ2

ϕ̂h
of the estimated difference

ϕ̂g − ϕ̂h. The values of the test statistic Tgh are standard normal distributed.
Once a pair of distinctive directions are in line for orthogonality, it can be

enforced by applying the EM algorithm again with a bimodal von Mises distri-
bution featuring the three parameters ϕg, κg and κh, whereby the second mean
direction is given by ϕh = ϕg + π

2 . Alternatively, the estimated directions ϕ̂g

and ϕ̂h can be adjusted according to their uncertainty provided by the estimated
variances σ2

ϕ̂g
and σ2

ϕ̂h
. The statistical optimal corrections for the directions ϕg

and ϕh are (
Δ̂ϕg

Δ̂ϕh

)

=
ϕ̂g − ϕ̂h + π/2

σ2
ϕ̂g

+ σ2
ϕ̂h

(−σ2
ϕ̂g

σ2
ϕ̂h

)

(3)

i.e., uncertain distinctive directions will be shifted more than certain directions
to fulfill the orthogonality constraint.
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2.3 Simplification of Polygonal Chains

The extracted distinctive directions are now used to simplify the initial polygonal
chain as described in [13]. The polygon simplification is divided into two steps:
The assignment of edges and their adjustment.

For assignment, we label each edge ei according to f̂i = arg min
f

(|ϕf − αi|).
For adjustment, all vertices belonging to successive edges of same label f are

replaced by a line through the centroid of this group of vertices along the vector(
cos ϕf , sin ϕf

)
. Each line is limited by intersection with neighboring lines. First

and last line in open polygonal chains are limited to the “open” side by projecting
the first vertex v1 as well as the last vertex vn onto the line.

3 Results and Discussion

We demonstrate the usability of our methods by means of four data sets D1
to D4, extracted from a test side of Munich, Southern Germany (Fig. 1, [15]).
As closed polygonal chains we chose three building structures D1 to D3 and
as an open polygonal chain a road example D4. One can see that D1 and D4
have a quite simple shape with only two perpendicular directions. To show the
behavior of our algorithm on polygonal chains with multiple directions, we chose
complexes of buildings D2 and D3. Note that D3 also highlights the usability on
polygons with holes. All bordering polygonal chains have some influence in the
computation of distinctive directions.

Results. The color coding of the edge labels of D1’s outline resulting from hill-
and-valley decomposition (Sect. 2.1) is shown in Fig. 3a. The initial polygonal
chain includes 88 different edge directions and may be assigned to only two
resulting distinctive directions (Table 1). Hence, it is possible to simplify the
polygonal chain only with edges of these two directions. Using the parametric
approach (Sect. 2.2), we obtain the estimates ϕ̂1 = 108.9◦(30.9% proportion)
and ϕ̂2 = 21.0◦(69.1%) which enclose an angle of 87.9◦. The circular standard
deviations of the directions are in an expected magnitude of approximately 22◦.

(a) results of (D1) (b) results of (D4)

Fig. 3. Color coding and polygonal chain simplification (black underlay). The color
coding results from both algorithms.
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(a) Color coding of labeled
edges; black: original polygo-
nal chain; pink: hill-and-dale;
blue: EM

(b) Top: smoothed hill-and-valley
histogram with orange marked dis-
tinctive directions; bottom: his-
togram with EM components

Fig. 4. Color coding of edge labels and extraction of distinctive directions visualized
on the histogram for test set D2. (Color figure online)

The hypothesis of a present right angle is not rejected, thus the distinctive
directions can be adjusted proportionally to their estimated standard deviations
according to (3), which are almost equal for this data.

The adapted boundaries of D2 are depicted in Fig. 4a. Both, hill-and-valley
decomposition and EM-based algorithm lead to four extracted directions as can
be seen in Fig. 4b and Table 1. The results of both approaches do not differ
very much (Fig. 4b) but the determined directions vary enough to result in a
different edge labeling and therewith a slightly differing fitting to the original
outline (Fig. 4a). Three directions obtained by hill-and-valley decomposition are
outlined as sharp hills in the upper histogram of Fig. 4b. The fourth maximum
is blurred and of much lower value compared to the other ones. This indicates
higher uncertainty. A harder constraint concerning the value differences between
local maxima and minima as well as their positions (Sect. 2.1) could eliminate the
intuitively redundant appearing maximum. However, the algorithms are devel-
oped to work on large data sets with hundreds of buildings for instance. The
calculation rule for a constraint needs to be global enough to work for every
building in the data set.

The polygon D3 includes holes. The color coding in Fig. 5a shows the assign-
ment of hole edges parallel to the exterior polygonal chain and therewith enforc-
ing the simplification to parallel edges. Beside some isolated “wrong labeled”
edges in between, all main edge expansions in the polygonal chain are exposed:
The green and gray edges coding for the nearly rectangular parts in the outline
(green: “side” parts, gray: “bottom/top” parts) as well as the orange colored
non-rectangular walls in the upper part of the building outline. By hill-and-
valley decomposition we reduce the initial number of 251 edge directions to four
(Fig. 5a). With the EM-based algorithm, it is even possible to reduce the number
of main directions to three (Fig. 5b, Table 1).
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(a) Hill-and-valley: labeled
edges and simplified outline

(b) Estimated compo-
nents by EM

Fig. 5. Results for a data set of a building outline containing atriums (D3). The cor-
responding polygonal chains enclose a polygon with holes. (Color figure online)

Table 1. Numbers of directions present in the polygonal chains of D1–D4.

D1 D2 D3 D4

Initial number of directions 88 165 251 61

Initial amount of local maxima 16 37 40 9

Number of hill-and-valley directions 2 4 4 2

Number of EM directions 2 4 3 2

As example for an open polygonal chain we consider the course of the road
D4. The resulting labeling and simplified polygonal chain of the road course are
shown in Fig. 3b. The results of both, hill-and-valley decomposition and EM, are
very similar. Both approaches are able to detect both distinctive directions (out
of initial 61, see Table 1) one intuitively assumes.

Discussion. Both introduced methods for detecting distinctive directions have
different advantages over each other. Contrary to the EM-based algorithm, hill-
and-valley decomposition is rather robust. It always results in at least one result-
ing direction even if the histogram is sparse or equally distributed. Prior knowl-
edge about the number of distinctive directions supports the procedure and
makes it quite robust. Otherwise, the approach has several important thresholds:
It yields unsatisfactory results if the bin size or #S are chosen inappropriately
or if the thresholds to eliminate shallow extrema (Sect. 2.1) do not fit the distri-
bution. Enlarging the bin width may result in coincidence of neighboring bins
and therewith a possibly tilted result. For compensation, we chose the average
direction of hill as main direction instead of the local maximum. The EM-based
approach works directly with the polygonal edges. Beside predefining the num-
ber of components no other parameters are required. The algorithm requires
a clear mixed distribution. It is preferred if no or just few prior knowledge is
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available. But it has problems with lack of observations or major outliers, as well
as nearly uniform distributions. So, the decision which algorithm is “best” for
computation of distinctive directions depends on the background information,
i.e., how many different observations are present, whether the number of free
parameters can be decreased by prior knowledge, or whether the manifestation
of several distinctive directions can be assumed.

Please note that the extraction of distinctive directions lying close to each
other may lead to extrapolations in the simplification step if these directions are
assigned to incident edges of the polygonal chain. Elimination of “isolated” edge
labels will not solve that problem because it may lead to collapsing parts in the
polygonal chain. This deficit should be avoided initially by adapting the number
of smoothing steps (Sect. 2.1) or components (Sect. 2.2).

4 Conclusion and Future Work

In this article, we presented two methods to extract distinctive directions in
order to simplify polygonal chains. The number of edges and their correspond-
ing directions can be reduced as shown, i.e., for the example of road courses.
Simultaneous evaluation of exterior and interior polygonal chains of building
outlines lead to a simplification with the same determined directions for both,
polygonal outline and hole outlines, and therewith to a parallelization of edges
in segments of interior and exterior polygonal chains.

Simplified polygonal chains feature few distinctive directions and depict a
shape similar to the initial polygonal chain. This has advantages in reducing
data for memory reasons but also provides a more intuitively outline if it comes
to man-made structures, e.g., straight walls or straight courses. Hence, both
methods generate polygonal chains with less vertices but an appropriate fitting
to the underlying classified image object. The choice of method depends on the
number of edges in the polygonal chain and whether more background infor-
mation about the underlying object is available. If 90◦ angles are expected, the
detected directions may be shifted according to their certainty afterwards.

Our aspiration was to keep the algorithm flexible for any type of cityscape. If
data sets are laid out in a grid pattern, it would be recommended to include the
data of, e.g., all buildings at once into the procedure. Alternatively, determined
distinctive directions may successively be included into a maximum a posteriori
optimization.

For future work, the (un)certainty of distinctive directions may be used to
suppress unnecessary directions. Further, the assignment of polygonal edges to
a distinctive direction can be changed from a winner-takes-all strategy to a
probability-based method. The assignment of edges close to multiple distinctive
directions should be influenced by incident edge labels in order to advance edge
propagation.

Acknowledgment. We want to thank Christian Böge for coming up always with
helpful ideas.
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