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Abstract. This paper presents a novel multi-modal CNN architecture
that exploits complementary input cues in addition to sole color infor-
mation. The joint model implements a mid-level fusion that allows the
network to exploit cross-modal interdependencies already on a medium
feature-level. The benefit of the presented architecture is shown for the
RGB-D image understanding task. So far, state-of-the-art RGB-D CNNs
have used network weights trained on color data. In contrast, a supe-
rior initialization scheme is proposed to pre-train the depth branch of
the multi-modal CNN independently. In an end-to-end training the net-
work parameters are optimized jointly using the challenging Cityscapes
dataset. In thorough experiments, the effectiveness of the proposed model
is shown. Both, the RGB GoogLeNet and further RGB-D baselines are
outperformed with a significant margin on two different task: semantic
segmentation and object detection. For the latter, this paper shows how
to extract object-level groundtruth from the instance level annotations
in Cityscapes in order to train a powerful object detector.

1 Introduction

Semantic interpretation of image content is one of the most fundamental prob-
lems in computer vision and is of highest importance in various applications. The
availability of extremely large datasets has pushed the development of strongly
data-driven machine learning methods. In particular, convolutional neural net-
works (CNNs) have pushed the state of the art in image understanding in vari-
ous different tasks and applications. Simultaneously, the costs for cameras with
increasing resolution have decreased substantially in the last years. We expect
this trend to continue and thus focus on methods that can deal with such high
resolution images. At the same time, we are interested in efficient methods that
can meet high real-time requirements as in e.g. robotics or autonomous driving.
Naturally, the main focus in the computer vision community has been in the
interpretation of color images which neglects the availability of complementary
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Fig. 1. Structure of our mid-level fusion approach. A GoogLeNet is used on top of the
RGB input image and a NiN for the depth information. Alternative processing paths
to fuse both networks are shown grayed.

inputs from other domains, e.g. depth, infrared, or motion. In this work we focus
on depth data as additional input to CNNs. However, the presented approach is
easily adaptable to other modalities.

Only using state-of-the-art CNN approaches for the multi-modal data is not
optimal, since huge datasets such as ImageNet [33], MS COCO [28] or places [40]
only provide color images and do thus not allow the training of large multi modal
CNNs. Two main different approaches have emerged to deal with this problem.
Either, only the small amount of data is used for training while accepting the
resulting degraded performance. Or existing RGB networks are simply applied
to the new domain and fused with those fork responsible for the color domain.

This paper proposes a novel network architecture, c.f. Fig. 1, that implements
a mid-level fusion of features from the individual input domains. This combines
both advantages of the previous approaches: first, the network can exploit highly
complex intra-domain dependencies through the joint feature processing in order
to maximize the semantic accuracy of the network Secondly, it allows the reuse
of the existing initialization on large datasets. Furthermore, we demonstrate
that using a network designed and trained for color inputs is suboptimal in
the depth domain and propose a superior adapted architecture together with
an initialization scheme yielding significant improvements in terms of semantic
accuracy. The experiments show that filters learned on depth data with this
approach differ substantially to those obtained by a training on RGB data.

Overall, this paper presents a simple yet effective novel network architecture
together with an initialization scheme that exploits depth data in addition to
sole color information. This approach leads to a significant improvement on two
different common tasks in computer vision: semantic segmentation and object
detection. It is based on an standard state-of-the-art network architecture and
is easily adaptable to different modalities as well as tasks.
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2 Related Work

The vast amount of relevant literature can be split into three different groups.
The first comprises methods that use CNNs for semantic segmentation and can
be further split into methods using an additional graphical model [2,3] and those
methods without [1,8,19,39]. Due to their computational efficiency we opt for
a purely CNN-based approach. Using an ensemble of CNNs [18,19,38] can lead
to significant performance gains, however, with the cost of high computational
burden. The scope of this paper is to show how to benefit of multi-modal data.
To this end, we don’t use ensembles and restrict ourselves to standard network
architectures and training schemes.

The second line of work is formed by CNN’s for object detection. Current
literature differs between two basic approaches. First, methods such as RCNN
[14], Fast RCNN [13], or R-FCN [23] require a previous hypotheses generation
step and finally classify each hypothesis. As another group of methods there
are e.g. Overfeat [34], YOLO [32] or SSD [29] without extra hypotheses genera-
tion. For a more detailed overview and comparison of multiple state of the art
object detection methods we refer to [22]. Due to the excellent trade off between
computational time and performance, we focus in this work on SSD.

Finally, we identify those methods basing on CNNs that exploit depth data,
as the most related line of work. Apparently, most works use additional input
features such as height, depth or angle of gradient [4,15,21,26]. Instead, we
simply rely on inverse depth as input in addition to the color image. Some
methods use graphical models to increase the semantic accuracy with the cost
of more computational demands [9,24]. The depth input has been used to select
the scale in a scale pyramid [25]. This way, however, no depth features such
as depth discontinuities can be exploited. This method serves as baseline in
our experimental section, c.f. Section 4. A further distinction between methods
in this group is the level of fusion. Fusing color and depth data at an early
level, i.e. concatenating the inputs directly, has been studied by [4,7,37]. But
[4] report better results with a late fusion. We address this observation to the
little availability of labeled multi-modal data. Most existing works, on the other
hand, opt for a late fusion, i.e. separate network streams for depth and color data.
Either a classifier is applied on the independently trained networks [4,15,16] or
the networks are fused in one of the last layers and a joint training is carried out
[10,17,21,26]. In the spirit of end-to-end learning, we also perform joint training.
In contrast to these methods, this work shows the benefit of a mid-level fusion
of learned features from the depth and color domain.

Most related to this paper is recent work that also implements a mid-level
fusion with RGB-D data [17]. However, some significant differences exist: first,
they use a decoder architecture with unpooling layers based on the SegNet
architecture [1]. Due to the poor reported results on the Cityscapes dataset
[5], we opt for a learned transpose convolutional (also referred to as deconvo-
lutional) decoder instead. It seems that the SegNet architecture suffers from
high-resolution input images. Also [17] use a small resolution of 224 × 224 px as
input although the dataset Sun RGBD [36] provides varying resolutions around
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640 × 480 px. This paper focuses on high resolution images - we use input res-
olutions up to 2048 × 1024 px during both: training and testing. Finally, an
initialization of the depth branch with ImageNet pre-trained weights is needed
in that work. In this paper, we show that this is non-optimal: the parameters
trained for depth data lead to different filters in the CNN and to superior results.
We hope that this paper will stimulate more works that exploit depth data on
the challenging high-resolution dataset Cityscapes [6].

We consider the following as main contributions of this paper: (1) A novel
generic mid-level fusion network architecture is proposed together with an exper-
imentally grounded initialization scheme for the additional modality. This net-
work is simple yet effective and can be easily adapted to different modalities
and tasks. (2) In thorough experiments on the Cityscapes dataset, the effective-
ness of the proposed approach as well as the influence of the important design
choices is demonstrated. Both, the RGB as well as an RGB-D baseline are out-
performed with a significant margin on two different challenging tasks: semantic
segmentation and object detection. (3) Finally, we show how to use the pixel-
level annotations of the Cityscapes dataset to train an powerful neural network
for object detection. To this end, the well-known SSD approach is adapted to
the GoogLeNet and extended to the proposed multi-modal CNN.

3 Method

In this work, we propose a novel deep neural network architecture that can
exploit other modalities such as depth images in addition to sole color infor-
mation. Since in many cases no large datasets like ImageNet exist for the new
modalities, c.f. Sect. 2, simply using an existing state-of-the-art CNN architecture
and performing a training for multi-modal data is unfortunately not possible.
Instead, we adapt the frequently used GoogLeNet [38] and fuse it with a network
branch optimized for depth data. Note that the modifications described in this
work are easily adaptable to other modalities, e.g. optical flow or infrared, as
well as other network architectures, e.g. Network-in-Network (NiN) [27], VGG
[35] or ResNet [18].

Depth Network. For the depth branch, we train and adapt a NiN [27] variant
for sole depth data and use the large semi-supervised part of the Cityscapes
dataset [6] for initialization. A NiN consists of multiple modules, each being
further composed of one convolutional layer with a kernel size larger than one
that captures spatial information and multiple 1× 1 convolutional kernels. Such
a module is equivalent to a multi-layer perceptron (MLP). For classification, a
global average pooling layer yields one score per class. We follow [31] and discard
the global average pooling resulting in a FCN [30] that predicts one score per
pixel and class.

We argue that depth data requires filters that differ significantly from those
obtained via training on RGB data. For instance, we expect edge and blob filters
to be wider in order to be robust to the noisy depth estimates. For this reason
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we use random initialization for training and reduce the channel count in each
layer to 1

3 considering that depth yields only one instead of the three color input
channels.

RGBD Network. The GoogLeNet consists of a first part with convolutional
and max pooling layers that quickly reduce the spatial resolution. This part is
followed by nine inception modules including further pooling layers each halving
the spatial dimension as illustrated in Fig. 1. We identify different points for
joining the depth and RGB network. First, the RGB and depth input can be
concatenated directly resulting in a new first convolutional layer. We will refer
to this model as early fusion. Second, the scores of the RGB network and depth
branch can be concatenated at the end, followed by a 1× 1 convolutional as
classifier. We will refer to this as late fusion. Finally, scores of the depth branch
can be merged in the RGB network before one of it’s max-pooling layer, again
followed by a 1× 1 convolutional layer. The number of NiN modules used in this
mid-level fusion approach is determined by the required spatial dimensional in
the RGB network. Thus, we call these models according to the number of NiN
modules, e.g.NiN 1.

In theory, a multi-modal CNN with an early fusion as described above can
develop independent network streams by learning features that only take one
input modality into account. Thus, an early fusion is generally more expressive
then a mid-level fusion, it can exploit correlations between the modalities already
on a low-level of CNN computation. However, the higher expressivity comes with
the price that larger amounts of data might be required for training. The benefit
of a later fusion is that most of the network initialization can be reused directly
without the necessity to adapt the network weights to the additional input cue.
Unfortunately, it does not allow the network to learn this high-level interdepen-
dencies between the individual input modalities, since only the resulting scores
on classification level are fused.

4 Experiments

We evaluate our proposed model on two different tasks: semantic segmentation,
the task to assign a semantic label to each pixel in an image c.f. Sect. 4.2, and
object detection, c.f. Sect. 4.3. The initialization of the depth network branch is
described and evaluated in Sect. 4.1.

Dataset. Throughout our experiments, we use the Cityscapes dataset that
provides a high number of pixel-level semantic annotations with 19 classes,
e.g. person, car, road etc., in challenging inner city traffic scenarios. In addi-
tion to this fine annotations, 20 000 coarsely annotated images are provided.
The coarse labels are more quickly and thus more cheaply annotated images
where objects are labeled via polygons. Although this way many pixels remain
unlabeled, each annotated pixel is defined to be correct.
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4.1 Depth Network

Evaluation and Training Details. We use the 20 000 coarsely annotated
images to train a NiN for scene labeling c.f. Sect. 3, consisting of three NiN
modules with two 1 × 1 convolutional layers each. We follow [30] and add two
skip layers in order to exploit low-level image features for the expanding part of
the network. We opt for a batch size of ten and use random crops during training
to account the GPU memory limitations. As depth input, the publicly available
stereo data obtained via semi-global matching [20] is used. More precisely, we
follow [31] and encode depth as disparities, i.e. inverse depth. Missing measure-
ments are encoded as −1, the mean value is subtracted. After this initialization
phase, the network is fine-tuned on the 2975 finely annotated training image
of Cityscapes. For evaluation, we use the 500 validation images. As evaluation
metric, we use Intersection-over-Union (IoU) [6] defined as IoU = TP

TP+FP+FN ,
where TP, FP, and FN are the numbers of true positive, false positive and false
negative pixels determined over the whole dataset.

The 19 Cityscapes classes are grouped to seven categories: flat, construction,
nature, vehicle, sky, object, and human. In addition to the IoU on the 19 classes
(IoU class), we measure the performance in terms of IoU on this seven categories.

Table 1. Impact of the initialization scheme for the disparity network on the semantic
segmentation performance. The upper part of the table shows results with random
weight initialization. The high amount of channels in the original NiN prevents a suc-
cessful training. The influence of different initialization schemes is shown in the lower
part. The proposed initialization on the coarsely annotated images yields significantly
improved results compared to a variant initialized on ImageNet [33].

Initialization IoU class [%] IoU category[%]

Original NiN [27] Random < 5.0 < 10.0

NiN (ours) Random 30.5 61.3

Original NiN [27] ImageNet 35.0 64.0

Original NiN [27] Cityscapes coarse < 5.0 < 10.0

NiN (ours) Cityscapes coarse 37.3 66.5

Initialization Method. In Sect. 3, we argued that a CNN for depth data
should significantly differ from a CNN on RGB data. First, we train a CNN
solely on depth data discarding the available RGB input. The results of this
proposed model in comparison to the original NiN are given in Table 1. The first
observation from the upper half of the table is that we were not able to train the
original NiN on the cityscapes dataset only. The proposed variant with 1

3 of the
channels, however, yields surprisingly good results. Second, initialization with
the weights trained on the RGB ImageNet data guides the learning process and
yields an improvement of 4.5%. Nevertheless, an initialization on actual depth
data leads to significant improvements. Overall, the number of parameters of
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(a) Our model (b) ImageNet finetuned (c) ImageNet initialization

Fig. 2. Filters of the first convolutional layer in the NiN architecture. The filters ini-
tialized randomly and trained on Cityscapes coarse labels (left) differ significantly of
those trained on color data (right). Mainly gradient, mean and blob filters are devel-
oped during training. Fine-tuning of the color filters on depth data (middle) yields
smaller amount of sharp filters.

the network was reduced to 1
3 leading to 1

3 of the computational costs. On the
other hand the results were improved significantly. The resulting filters in the
first convolutional layer differ substantially between the depth and color input
respectively, c.f. Fig. 2. Observably, the amount of meaningful filters is higher in
our model which we address to the reduced number of filters in the network.

4.2 RGBD Semantic Segmentation

Evaluation and Training Details. We leverage the 5000 finely annotated
images, i.e. 2975 for training, the 500 validation images for testing, of the
Cityscapes dataset and IoU as evaluation metric as before, c.f. Sect. 4.1. We
do not use the images in the validation set for training. A batch-size of two
and the maximal learning rate were used. After convergence, we decrease the
learning rate step by step with a factor of 1

10 until no further improvements
on the validation set are observed. For each method, we report the best results
according to the IoU on the validation set. The results of best model according
to the following experiments is submitted to the Cityscapes benchmark server
for evaluation on the remaining ∼1500 test images.

Level of Fusion. First, the optimal level for fusing the color and depth branch
is determined. To this end, we train and evaluate the early-fusion, late-fusion
and all five mid-level fusion models NiN-1 to NiN-7 and compare it to the RGB
baseline. The results in Fig. 3 first show that the additional depth input helps
in all fusion variants significantly. The RGB baseline achieves 63.9% IoU (class
wise) compared to the 69.1% of the NiN-2 model. This is a considerable relative
improvement of about 10%. Furthermore, it becomes apparent that a mid-level
fusion after 2 NiN modules leads to the best results, the most frequently used
late fusion only yields 67.1% IoU. Surprisingly, the NiN-1 and NiN-7 variants
perform worst. The feature concatenation in the NiN-1 model takes place directly
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Table 2. Comparison to baselines on the Cityscapes dataset [5]. Both: the RGB base-
line as well as an external RGB-D baseline (with and without additional CRF) are
outperformed by the proposed model without the need for a CRF in terms of semantic
accuracy on all 19 classes respectively the seven categories.

Method Input IoU class [%] IoU category[%]

[25] w/o CRF RGB-D 62.5 N/A

[25] with CRF RGB-D 66.3 85.0

GoogleNet RGB 63.0 85.8

Ours RGB-D 67.4 87.5

after a local-response-normalization that might harm the interplay with the non-
normalized features of the depth branch (Fig. 3).

Comparison to Baselines. So far, all experiments have been carried out on
the validation set, for the comparison with external baselines, the test set is used.
On the Cityscapes dataset, the results of only one work has been reported that
exploits depth information: [25], c.f. Sect. 2. We report the results according to
the Cityscapes benchmark server [5]. Secondly, the GoogLeNet trained with the
same scheme naturally serves as additional baseline.

Visually, the proposed RGB-D model outperforms the RGB baseline partic-
ularly at objects in farther distance, e.g. the car in the left image as well as the
pedestrian and traffic sign in the right image of Fig. 5. Although the detection
of these objects can be of highest important for e.g. autonomous vehicles, the
influence on the pixel-level IoU score is rather low.

RGB early NiN1 NiN2 NiN3 NiN7 late

Architecture

60

62

64

66

68

70

Io
U

in
%

(a) class-wise IoU

RGB early NiN1 NiN2 NiN3 NiN7 late

Architecture

80

82

84

86

88

90

Io
U

in
%

(b) category-wise IoU

Fig. 3. Where is the optimal level for modal fusion? The semantic accuracy for different
levels of fusion of RGB and depth data with the proposed CNN.

4.3 RGBD Object Detection

Dataset, Evaluation, and Training Details. For object detection, we also
use the Cityscapes dataset [6]. Due to the highly accurately labeled instances
of all object types, bounding boxes can simply be extracted from the pixel-wise
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Fig. 4. Precision-recall curves for all object classes as well as the mean precision-recall
curve for both: the RGB only baseline and our approach.

annotation. For training, we use the publicly available training data set with
2975 fully annotated images. Since the groundtruth for the test data is not
publicly available, we test on the 500 images of the validation data set. Since
not all classes are “object-like”, we only use a subset of Cityscapes: vehicle (in
Cityscapes: car, truck, bus), bike (in Cityscapes: motorcycle, bicycle), traffic sign,
traffic light, human (in Cityscapes: person, rider).

For evaluation, the overlap of the groundtruth and the predicted bounding
box must be larger than 0.5 for a true positive detection (TP), otherwise the
prediction counts as false positive (FP). If more than one predicted bounding
box overlaps with the same groundtruth box, each additional box will be counted
as FP. Each missed groundtruth box is called false negative (FN). Due to the
nature of bounding box detection, there are no true negatives (TN). Therefore,
we follow Geiger et al. [12] and use the Pascal VOC measures recall, precision,
and average precision (AP) [11]. The recall is the class-wise average of TP

TP+FN

and the precision TP
TP+FP . The average precision is the area under the precision-

recall curve, whereby a piecewise constant interpolation was used.
For our experiments, we use the state of the art “Single Shot Multibox detec-

tor” frame work (SSD) [29]. Following our experiments from Sect. 4.2, we use a
fully convolutional approach based on GoogLeNet and extend the RGB frame-
work with the proposed and pre-trained NiN architecture for depth images.

Results. First, we adapt SSD to the GoogLeNet architecture with RGB input
only and second, we add a depth branch as proposed in Sect. 3. Both the class-
wise and the mean precision-recall curves are shown in Fig. 4. The classification of
all classes benefits in similar fashion from depth data. Especially the performance



Multimodal Neural Networks 107

input

RGB

RGB-D

RGB

RGB-D

sidewalk building vegetation traffic light traffic sign bicycle motorcycle

terrain road wall pole rider truck bus train fence person sky car

Fig. 5. Incorporating depth information (RGB-D, third line for semantic segmentation
and fifth line for detection) leads to better segmentation of small objects, more details
in the classification results, and tighter bounding boxes.

for the classes human and bike increases significantly. As shown in Fig. 5 objects
in far distances are detected more robustly and more accurately by using our
approach in comparison to the traditional RGB only approach.

5 Conclusion

This paper presented a novel generic CNN architecture that exploits input cues
from other modalities in addition to sole color information. To this end, the
GoogLeNet was extended with a branch specifically adapted to depth as com-
plementary input. Together, the joint network implemented a mid-level fusion
that allowed the network to exploit cross-modal interdependencies already on a
medium feature-level. So far, state-of-the-art RGB-D CNNs have used network
weights pre-trained on color data. In contrast, a superior initialization scheme
was proposed to pre-train the depth branch of the multi-modal CNN indepen-
dently. In an end-to-end training the network parameters were optimized jointly
using the challenging Cityscapes dataset. The evaluation is carried on two dif-
ferent common computer vision tasks namely semantic segmentation and object
detection. For the latter this paper furthermore showed how to extract object-
level groundtruth from the instance level annotations in Cityscapes in order to
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train a powerful SSD object detector. In thorough experiments, the effectiveness
of the proposed multi-modal CNN was shown. Both, the RGB GoogLeNet and
further RGB-D baselines were outperformed significantly.
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