
Evaluation of Visual Tracking Algorithms
for Embedded Devices

Ville Lehtola, Heikki Huttunen, Francois Christophe(B), and Tommi Mikkonen

Tampere University of Technology, Tampere, Finland
{ville.lehtola,heikki.huttunen,

francois.christophe,tommi.mikkonen}@tut.fi

Abstract. Today’s embedded platforms enable executing difficult tasks
such as visual tracking. However, such resource-constrained systems are
still facing challenges regarding the performance and accuracy in exe-
cuting these tasks. This paper presents the evaluation of 5 open-source
visual tracking implementations available from the contributions branch
of the Open Computer Vision (OpenCV) library. This evaluation is per-
formed based on the performance and accuracy of these implementations
when embedded in a Raspberry Pi. The algorithms evaluated are On-Line
Boosting, Multiple Instance Learning (MIL), Median Flow, Tracking-
Learning-Detection (TLD), and Kernelized Correlation Filters (KCF).
Even if commercial implementations of these algorithms perform better
than their open-source version, the popularity of OpenCV motivates this
evaluation. Tests are based on a benchmark of 100 video streams from
which the tracking implementations should follow moving objects. The
algorithms are evaluated for accuracy using averaged Jaccard indices
and for performance by measuring their frame rate. We want to find
an open-source implementation that performs well on these two criteria
when tested on an embedded platform. Results show Median Flow being
the fastest but its accuracy is the lowest. We therefore recommend KCF
as it is the second fastest and the most accurate.

Keywords: Tracker algorithms · OpenCV

1 Introduction

Object detection from still images and object tracking in video streams are
important problems in computer vision. During the recent years, there have
been many breakthroughs in object detection and localization exploiting the
advances in deep learning—often surpassing human level accuracy [6,11]. While
it is possible to track objects by re-detecting them in each frame (tracking by
detection), there are several drawbacks to this approach: tracking is limited to
categories used at training time; the detector may lose track of the object in poor
illumination, pose changes, etc.; and most importantly, object detection based
on modern deep learning requires heavy computation usually done on a GPU.

c© Springer International Publishing AG 2017
P. Sharma and F.M. Bianchi (Eds.): SCIA 2017, Part I, LNCS 10269, pp. 88–97, 2017.
DOI: 10.1007/978-3-319-59126-1 8



Evaluation of Visual Trackers 89

Therefore, it is often advantageous to approach the problem from the traditional
angle of generic object tracking.

Tracking algorithms typically differ from detection in that they learn the
changes in object appearance over time. Trackers typically implement two func-
tions: add and update, with the first initialized every time a new object appears
in the scene, and the latter applied subsequently for each frame. The variations
between the algorithms reside in the update step, where each method essentially
learns the most recent appearance of each target. Moreover, some algorithms
may exploit the historical information about motion trajectories of objects, for
example in order to limit the search region. Tracking algorithms tend to have
a lower computational complexity than a full-scale detection approach would
have. Although the accuracy of different tracking algorithms has been widely
studied (see, e.g., [12,13]), the computational load has gained less attention.
The execution speed varies across algorithms, which easily becomes a limitation
when implementing real-time detection in low-resource platforms without any
hardware acceleration (such as a GPU).

From the point of view of embedded systems and the increasing interest in the
Internet of Things (IoT), the accuracy is often secondary to the use of resources:
the burden of both computation and integration tends to dictate the choice of
algorithms. Therefore, we consider five tracking algorithms readily implemented
in OpenCV library, which is used as a component in many open source projects
today. Moreover, we will get an insight into the actual implementations of this
widely used library, which are not exactly the same as used in the original papers
where the algorithms were first proposed.

This paper is structured as follows. Section 2 introduces the trackers avail-
able in the OpenCV library and their original papers. Section 3 introduces the
dataset and equipment used in the experiments and defines the methods used
to determine the quality of the tested trackers. Section 4 presents the results.
Section 5 concludes.

2 Tracking Algorithms

This section presents a brief description of the trackers evaluated in this study.
The algorithms evaluated are available from the contributions branch of the
Open Computer Vision (OpenCV) library [2].

On-Line Boosting. On-line boosting is a tracking algorithm that considers
tracking as a binary classification task [4,5]. At each tracking update step, the
algorithm updates the object model by using AdaBoost for training a collection
of weak classifiers. The training step uses the target region as a positive example
and samples patches from the vicinity of the currently tracked object region.
The object location in the next frame is then estimated by applying the binary
classifier in the next frame, and choosing the most likely location as predicted
by the AdaBoost classifier.



90 V. Lehtola et al.

Multiple Instance Learning (MIL). Similarly to the on-line boosting app-
roach, Multiple Instance Learning algorithm (MILBoost) poses the tracking
problem as a classification task [14]. For classification, the method uses the
multiple instance learning approach, which considers bags of objects by group-
ing similar samples into bags, where each bag is considered an overall positive
sample if at least one of the individual samples it contains is positive, and nega-
tive otherwise. This attempts to avoid confusing the classifier with sub-optimal
samples being labeled as positive, instead giving the classifier a more vague
understanding of what positive samples should be like. More recently, an on-line
modification of the learning method was proposed [1], which is more suitable for
tracking due to lower computational load.

Median Flow. Median Flow is presented in [9]. The authors present a tracking
error measure, where points of each object are tracked both forward and back-
ward in time and the resulting trajectories are compared. By the assumption
that a correct tracking method would yield the same but opposite trajectory
when running on time reversed input, any divergence of the forward and back-
ward tracking trajectories indicates a tracking error. The authors use this error
measure to propose a tracking method where points inside a bounding box are
tracked and measured for error, then classified to inliers and outliers by the
result. Outliers are filtered out and the bounding box motion is estimated based
on the inliers.

Tracking-Learning-Detection (TLD). Tracking-Learning-Detection is a
method for long-term tracking tasks [10]. The authors describe it as a frame-
work rather than a tracking method as the different stages, tracking, learning
and detection, are performed by separate components of the overall system. The
goal of the method is to improve the robustness of tracking by disabling the
on-line learning if the object is out of frame or completely occluded by other
objects, thus avoiding learning from misinformation. The detection component
also allows the method to re-detect the object, should it reappear in the video
later.

Kernelized Correlation Filter (KCF). The Kernelized Correlation Filter
method [8] employs the shift invariance property of Fourier transform for design-
ing a fast algorithm for correlation filter based matching. The Fourier transform
simplifies the correlation computation to make it extremely fast. Further, the
method generalizes by applying the kernel trick to allow nonlinear correlation
measures. The authors note that one of the main challenges in tracking is the
inability of using a large enough number of training data available from each
frame of input due to high computational load. This problem is avoided in KCF
due to its lightweight implementation.

3 Evaluation Method

The primary interest of evaluation was not only to find out how accurate the
trackers are, but also to measure the viability of the OpenCV implementations as



Evaluation of Visual Trackers 91

real-time tracking solutions on hardware with severe memory and performance
constraints. Each algorithm was initialized with the ground-truth bounding box
from the first frame of a sequence and only the default parameters for the tracker
were used.

Dataset Used for Evaluation. The dataset of 100 video sequences used in the
evaluation is from the visual tracking benchmark by Wu and Lim, who originally
ran the benchmark on 29 trackers in [13]. From those trackers, three—MIL, TLD
and Boosting (OAB in original benchmark)—are implemented in OpenCV and
the other two provide completely new benchmarks on the full data, although the
authors of KCF have run their implementation of the algorithm on a 50 sequence
subset of the dataset [8].

Description of Material and Experiment. A Raspberry Pi 3 B v1.2 was
used as the hardware. The board has a 64 bit CPU with 4 cores clocked at
1.2 GHz, and 1 GB RAM memory, with a default of 100 MB of virtual mem-
ory. The RAM is shared with the GPU, leaving 862 MB for general use by the
operating system. The board was installed with a Raspbian GUI-based OS. This
was necessary as the board was intended to be used in various tasks and it also
helped with debugging the tracking programs by allowing the user to see the
input and output of the software.

OpenCV was compiled without OpenMP [3] installed on the Raspberry Pi
and as such the algorithms were tested on single core executions.

Evaluation of Performance. The performance of the algorithms was deter-
mined by measuring the processor time spent in the methods that update the
bounding box of the tracker. The time spent initializing the tracker was not
measured. The number of frames in a sequence was divided by the total time
spent on all frames, producing a measure for frames per second, FPS.

Evaluation of Accuracy with the Jaccard Index of Similarity. The Jac-
card index is a common measure of similarity between two sets A and B. This
index is expressed as follows:

J(A,B) =
A ∩ B

A ∪ B
(1)

When following an object, the Jaccard index presents a good measure of accu-
racy when comparing bounded boxes of the object followed drawn by the tested
algorithm with bounded boxes of reference. When considering n frames of a
video, R as the set of ground-truth bounding boxes in each frame and A the set
of bounding boxes drawn by the tested algorithm, we derive a global similarity
between A and R from Eq. 1 as follows:

JR(A) =

n∑

i=1

J(Ai, Ri)

n
(2)



92 V. Lehtola et al.

Fig. 1. Box plot illustrating averages and distributions of frame rates. Four (4) outliers
above 50 FPS between Median Flow and KCF are missing to make the y axis scale
better.

Fig. 2. Box plot illustrating averages and distributions of Jaccard indices.



Evaluation of Visual Trackers 93

4 Results

This section presents a visualization of results obtained from the benchmark.
The code for the benchmark and the table of results are available from github1.

The tests showed that from the implemented trackers only Median Flow and
TLD were able to adapt to scale changes in the tracked object, that is to the
change of the size and shape of the detected bounding box.

Figure 1 illustrates the typical performance of the trackers in terms of
processed frames per second. Median Flow is typically the fastest and KCF the
second fastest, although KCF reaches very high performance on a few sequences.
The Boosting algorithm sits between the fastest and slowest, and MIL and TLD
are the slowest ones.

Only Median Flow and KCF trackers are able to perform at speeds that
could be considered as real-time. The performance of any of these trackers in
a practical application can be increased by reducing the resolution of the video
feed, so the result can also be interpreted such that Median Flow and KCF allow
for the largest resolution while maintaining real-time performance.

Figure 2 compares the statistics of the trackers with respect to the measured
Jaccard indices. The Median Flow algorithm has a notably low accuracy. The
rest share similar average accuracies, but KCF has the best average and can
reach better accuracy than the others in best cases.

Figures 3(a) to (e) show the Jaccard index as a function of video frame for the
sequence ‘Football1’. The sequence shows players clashing in a game of American
football, with the tracking target as one of the players faces. The images above
the charts show selected frames from the sequence with the same frames shown
for every tracker. The green rectangle in the images is the ground truth and the
yellow rectangle is the tracking result.

Most of the trackers yield good results on this sequence and surpass their
average performance. The boosting tracker (Fig. 3a) comes close to losing the
target around the middle of the sequence, but is able to recover before finally
losing the target at the end. The MIL tracker (Fig. 3b) shows a gradual degra-
dation of tracking accuracy with some sudden jumps and finally loses the target.
Despite being the lowest accuracy tracker, the Median Flow tracker (Fig. 3c)
performs exceptionally well on this sequence; in fact better than any of the oth-
ers. The low overall accuracy of this tracker seems to be caused by its tendency
to completely lose its target and when this occurs, it moves its bounding box to
the upper left corner of the frame and resizes it to zero, giving it no chance to
recover. It seems to be a powerful tracker, if only it could recover from losing
its target by e.g. re-detection. The TLD tracker (Fig. 3d) performs somewhat
poorly on the sequence. The tracking bounding box jumps around erratically in
the middle part of the sequence implying that this implementation of the tracker
is relying mostly on tracking by detection rather than moving the bounding box
in small increments. The KCF tracker (Fig. 3e) shows a mostly reliable tracking

1 https://github.com/lehtolav/tracker-benchmark.

https://github.com/lehtolav/tracker-benchmark


94 V. Lehtola et al.

(a) Tracking with the boosting tracker. (b) Tracking with the MIL tracker.

(c) Tracking with the Median Flow tracker. (d) Tracking with the TLD tracker.

(e) Tracking with the KCF tracker.

Fig. 3. Examples of the evolution of Jaccard index with the 5 implementations on the
football1 video stream

accuracy with some degradation over time until in the end it finally loses the
target and suddenly finds it again.

The success rate is represented as a function of overlap threshold in Fig. 4
similarly to the benchmark in [13]. The overlap threshold is the minimum Jaccard
index required per frame. The success rate is the amount of frames that reached
more than the threshold for all sequences. For example, 51% of the frames tracked
with KCF have a Jaccard index higher than 0.4. The number in square brackets
is the area under curve (AUC) of the tracker. We see that the MIL and TLD



Evaluation of Visual Trackers 95

Fig. 4. Success plots of the five tested trackers showing the fraction of frames success-
fully tracked as a function of required Jaccard index.

implementations in OpenCV are inferior to those used in the benchmark, with
MIL scoring 0.319 versus 0.362 and TLD scoring 0.305 versus 0.437. Notably,
even the best of the OpenCV trackers, KCF, falls short of the performance of the
TLD tracker of the benchmark, although TLD was only the third best scoring
method there, with Struck scoring 0.473 and SCM scoring 0.499. While running
the benchmarks, it became clear that the TLD implementation does not allow
the object detection to fail, but forced it to detect the most likely candidate
from the frame. This led to many false positives that confused the method.

5 Conclusion

In this paper, we presented an evaluation of 5 tracker implementations. These 5
trackers are Median Flow, MIL, On-line Boosting, TLD, and KCF all of which are
available from the contributions branch of th OpenCV library. This evaluation
is based on two performance criteria. The first criterion is related to the rapidity
of execution of implementations when embedded on a Raspberry Pi. The second
criterion evaluates the accuracy in tracking with an averaged Jaccard index.
According to this criterion, KCF scores highest. This quick evaluation method
by averaged Jaccard indices (Fig. 2) gives the same ranking as the area under
curve (Fig. 4) so it can be used as a fast approximation for selecting a tracking
implementation.

It appears that Median Flow presents a high frame rate and is the fastest of
the 5 implementations. Despite this rapidity of execution, it shows a low accuracy



96 V. Lehtola et al.

scoring the lowest averaged Jaccard index when considering the mean accuracy
score on all the video sequences. In fact, this method has often high tracking
scores but is not able to detect the target again once lost. Therefore, KCF
presents in our opinion a better compromise for visual tracking on embedded
devices as it has a more robust tracking accuracy while keeping the second
highest frame rate.

The trackers were benchmarked using only one core. The parallelized versions
of these trackers could lead up to four times speedup on the used hardware (4
cores). This acceleration on TLD and MIL would still not beat the sequential
performance of KCF and Median Flow.

The GOTURN Tracker [7] was recently introduced to the library. The authors
results show the tracker running at 165 FPS on a GPU, but only 2.7 FPS on
CPU. Thus it is very unlikely to be a candidate for use on low performance
hardware. Moreover the tracker runs out of memory during initialization on the
Raspberry Pi. Adding it to this benchmark in future would require adjusting the
memory allocated for the GPU or adding extra virtual memory. For future work
it would be interesting to benchmark the trackers on video from the Raspberry
Pi camera either on a live feed or a pre-recorded video. Also, as an addition
to the results in this paper it would be possible to measure the accuracy and
performance of the trackers as a function of video resolution by using several
downsized versions of the sequences.

Acknowledgement. This research is funded by the Academy of Finland under
project named “Bio-integrated Software Development for Adaptive Sensor Networks”,
project number 278882. The work presented in this article is part of Ville Lehtola’s
Master thesis. The authors also thank Jani Boutellier for his valuable comments to this
article.

References

1. Babenko, B., Belongie, S.: Visual tracking with online Multiple Instance Learning.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 983–
990 (2009)

2. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25(11), 122–125
(2000). http://www.drdobbs.com/open-source/the-opencv-library/184404319

3. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

4. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol.
1, pp. 260–267 (2006)

5. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In:
Proceedings of the British Machine Vision Conference, vol. 1, pp. 1–10 (2006)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, Las Vegas (2016). http://ieeexplore.ieee.org/document/7780459/

7. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression
networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9905, pp. 749–765. Springer, Cham (2016). doi:10.1007/978-3-319-46448-0 45

http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://ieeexplore.ieee.org/document/7780459/
http://dx.doi.org/10.1007/978-3-319-46448-0_45


Evaluation of Visual Trackers 97

8. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–
596 (2015)

9. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detec-
tion of tracking failures. In: Proceedings - International Conference on Pattern
Recognition, pp. 2756–2759 (2010)

10. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans.
Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

11. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified
real-time object detection. In: CVPR 2016, pp. 779–788 (2016)

12. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah,
M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach.
Intell. 36(7), 1442–1468 (2014)

13. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 2411–2418 (2013)

14. Zhang, C., Platt, J.C., Viola, P.A.: Multiple instance boosting for object detec-
tion. Neural Inf. Process. Syst. 74, 1769–1775 (2005). http://papers.nips.cc/paper/
2926-multiple-instance-boosting-for-object-detection.pdf

http://papers.nips.cc/paper/2926-multiple-instance-boosting-for-object-detection.pdf
http://papers.nips.cc/paper/2926-multiple-instance-boosting-for-object-detection.pdf

	Evaluation of Visual Tracking Algorithms for Embedded Devices
	1 Introduction
	2 Tracking Algorithms
	3 Evaluation Method
	4 Results
	5 Conclusion
	References


