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Abstract. The study of visual attention in humans relates to a wide
range of areas such as: psychology, cognition, usability, and marketing.
These studies have been limited to fixed setups with respondents sitting
in front of a monitor mounted with a gaze tracking device. The introduc-
tion of wearable mobile gaze trackers allows respondents to move freely in
any real world 3D environment, removing the previous restrictions.

In this paper we propose a novel approach for processing visual atten-
tion of respondents using mobile wearable gaze trackers in a 3D environ-
ment. The pipeline consists of 3 steps: modeling the 3D area-of-interest,
positioning the gaze tracker in 3D space, and 3D mapping of visual
attention.

The approach is general, but as a case study we created 3D heat maps of
respondents visiting supermarket shelves as well as finding their in-store
movement relative to these shelves. The method allows for analysis across
multiple respondents and to distinguish between phases of in-store orien-
tation (far away) and product recognition/selection (up close) based on
distance to shelves.

1 Introduction

The study of human visual attention relates to a wide range of areas such as:
psychology, cognition, useability, and marketing. In order to directly study this
in various settings, eye tracking has become a standard method. A common
way of visualizing and analysing gaze data is using Areas Of Interest (AOI) and
attentional heat maps [13]. The heat maps represent the spatial distribution
of eye movement throughout the AOI and can often be used for quantitative
analysis. The most common method of visualizing heat maps is using a Gaussian
based solution. Here, four parameters are used to determine the appearance of
the heat map: the width of the basic construct, the use of fixations vs. raw data,
whether accounting for duration of fixation and the mapping color altitude form
[3]. For many years, mapping visual attention as heat maps has been limited
to static setups with respondents sitting in front of a screen mounted with a
stationary calibrated gaze tracker. Such a setup can accurately map the visual
attention as a heat map of what is projected on the screen, but obviously limits
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Fig. 1. Supermarket vegetables shown as a 3D model with heatmap and respondent
viewing points.

the visual attention to a 2D surface. The recent introduction of mobile wearable
gaze trackers (Fig. 2) enables data collection in about any real-world environ-
ment. On mobile wearable eye-trackers, the scene is recorded using a front facing
camera, and gaze data collected from eye tracking cameras can be projected onto
this video. Despite the potential of introducing recordings of three dimensional
scenes, common for both the stationary and mobile wearable eye-tracker is that
ultimately the data is still recorded and analysed in 2D.

Fig. 2. Tobii Pro Glasses 2 [12]. A wear-
able gaze tracker that tracks a respondents
eye movements using IR cameras, while
also recording the environment with a front
facing video camera.

Mapping visual attention data
recorded in a 3D space to a 2D
heatmap is not straightforward. A sim-
ple approach is to find the best homo-
graphic correspondence between a ref-
erence image and a given frame from
the eye-tracker, and then map the gaze
according to this homography [4,12].
Figure 3 shows common errors in map-
ping using a homography relative to
the actual mapping onto a 3D AOI.
We argue that gaze collected in 3D
mapped onto a 2D reference image
using a homography will always be
limited as a result of incorrect map-
pings.
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Fig. 3. This figure shows the common errors relating to mapping gaze. The top row
shows a respondents viewpoint of an AOI with the gaze point in green, while the second
row shows a reference view of an AOI with gaze mapped as homography mapping in red
and mapping according to 3D structure in blue. First column shows mapping, when the
viewpoint of the respondent and reference coincide. In this case, homography mapping
and mapping according to 3D structure will be identical and perfectly overlapping.
Column 2 and 3 show the mapping, when respondent is closer to or further from
the AOI. Using homography mapping, the gaze point does not change along with the
movement of the respondent. Row 4 and 5 show how the mapped gaze changes shape
according to changes in viewpoint for the 3D mapping, while homography mapping
does not change accordingly. The final column shows the error, when the homography
is offset from the plane of the actual viewpoint, which introduces parallax error. (Color
figure online)

We propose a solution to these problems and limitations by modelling an
AOI in 3D as a reference for mapping gaze data. The reference model is recon-
structed from photographs of the AOI to establish a good base for image feature
matching and a high quality model mesh. We demonstrate a fully automatic
pipeline for generating a 3D attention heat map, and furthermore the possibil-
ity of calculating the respondent viewing points as shown in Fig. 1. Our pipeline
enables spatial filtering, positioning and orientation relative to the selected AOI,
as well as correlation of multi-respondent data. We use supermarket shelves as
a case study, but our pipeline is not limited to this setup. Our method requires
a standard digital camera to capture images of the reference model, and a wear-
able gaze tracker with a front facing camera, such as the one shown in Fig. 2, for
recording the scene and gaze data.

There are a number of recent studies that addresses the need to move map-
ping of visual attention to 3D. [11] introduces the potential of measuring 3D gaze
coordinates from head-mounted gaze trackers, and [9] proposes visualisation of
3D gaze data on to virtual computer generated models. A method similar to our
pipeline is described in [10], which demonstrates the use of a Microsoft Kinect
to create a 3D reference model. Our method differs by using images to create a
more dense point cloud, which also enables us to backproject the heat map to a
traditional 2D visualization for comparison.
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2 Data

We have collected data in both a real world supermarket and using a mock-up
supermarket shelf in our lab. Reference data of the AOIs have been captured
using a digital mirrorless camera: a Panasonic GH4 with a 12 mm lens (24 mm
in 35 mm equivalent). To collect respondent data we have used the Tobii Pro
Glasses 2 wearable gaze tracker [12] (Fig. 2), which collects the respondents view
using a front facing video camera, while also recording the respondent gaze
direction using 4 infrared cameras facing the eyes. Both cameras were calibrated
using a standard checkerboard approach [16]. Data was collected of four in-store
product sections in a supermarket: wine, vegetables, flour and cereal, as well as
a mock-up of the cereal section in our lab. We used the digital camera to capture
sets of reference images to cover the desired AOIs (12–20 images of each AOI).
Gaze and video data were collected of respondents visiting the given sections (16
sets), visiting the store but acquired to get cereal (4 sets), and finally, presented
for a mock-up of the cereal section in the lab (6 sets). All gaze data samples are
raw, so no fixation filtering has been applied [3].

Fig. 4. The 3 steps in our proposed pipeline to construct 3D gaze mapping: Modelling
of an Area-Of-Interest, Eye-tracker frame positioning, and finally the gaze mapping.
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3 Method

In order to map gaze data onto a 3D AOI, we propose a pipeline consisting of
three parts (Fig. 4): construction of the 3D AOI reference model, localization of
the wearable gaze tracker frames relative to the reference model, and finally gaze
mapping onto the AOI as a heat map.

3.1 Modelling a 3D Area-Of-Interest

The 3D AOI reference model is built using a series of images of the AOI. This task
is divided further into three steps (Fig. 4). First, we use structure from motion
to find the spatial camera positions and a sparse point cloud representation. We
have opted for a structure from motion (SfM) [6] implementation, which requires
a sequence of images followed by an image rectification based on the parameters
obtained from the camera calibration. SIFT descriptors [7,15] are found in each
image and sequentially matched across the sequence of images in an iterative
fashion. Images with sufficient feature matches are included, while the extrinsic
camera parameters are estimated and refined using bundle adjustment [14].

Given the estimated extrinsic camera parameters, we move onto dense point
cloud estimation using the patch-expansion approach to multiview stereopsis
proposed by Furukawa and Ponce [2]. This method robustly produces dense
representations from which a surfaces are reconstructed using Poisson surface
reconstruction by Kazhdan et al. [5]. A 3D modelled AOI from the cereal section
in a supermarket is shown in Fig. 5(a).

As a preparation step for the localization of the wearable gaze tracker later
in the pipeline, we use backprojection with depth management of the 3D AOI
to project the model into each reference image. This is done in order to project
2D SIFT descriptors [7] into the 3D space, allowing the 2D descriptors between
each frame from the gaze tracker and 3D AOI to be compared.

(a) 3D Area-Of-Interrest reference model.

AccX :  0.3

AccY :-13.2

AccZ: -3.8

||Acc||: 13.8m/s 2

GyroX : -2.0

GyroY : 24.4

GyroZ:  5.0

||R||: 25.0 o /s

Total inliers: 32
Current time:  8.00

(b) 3D AOI backprojected onto a gaze
tracker frame.

Fig. 5. The 3D AOI in (a) is backprojected onto an undistorted gaze tracker frame
and the gaze point with trace from previous frames (b). The frame is shown in black
and white, while the projection is shown in color.
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3.2 Wearable Gaze Tracker Frame Localization

In order to correctly map gaze data on the 3D AOI, each frame from the gaze
tracker has to be positioned relative to the AOI (if visible). The SIFT descriptors
in each frame are matched with the reference 2D descriptors projected into
3D space, when constructing the 3D AOI. These correspondences are sent to a
2D to 3D pose solver, which finds the best fit camera pose using a RANSAC
approach discarding outliers [1]. Given sufficient corresponding points, the solver
will return the correct camera pose relative to the AOI. Without sufficient good
matches the solver either fails or returns a false camera pose. Since a given frame
might not cover any part of the AOI, the resulting matching consists of either
a lot of true positive or a few false positive matches. Figure 5(b) shows the 3D
AOI backprojected into a frame from the wearable tracker using the estimated
camera pose. This backprojection is an immediate sanity check, showing the
correctness of the pose estimation. Incorrect pose estimates tends to be very
inconsistent from one frame to the next. To speed things up we have used the
above approach to find the pose in keyframes, which are followed by frames,
where the correspondence points are tracked using optical flow [8] (1 keyframe
followed by 5 optical flow frames). This is substantially faster than finding and
matching features in each frame. The pose solver is initialized with the pose from
the previous frame, which along with the optical flow gives timewise consistency
in the pose estimation.
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(a) Cereal shelves
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(b) Flour shelves

Fig. 6. Estimated respondent poses from visits to the cereal and flour shelves with
timestamp. First row of plot: the framewise number of inliers (y-axis) in the camera
positioning solver. Green points are included as reliable and red points are considered
noise. Noise points are filtered out based on spatial and rotational inconsitency. Second
and third row of plots are the rotation and translation with inliers shown as a connected
graph and the few outliers as single points. (Color figure online)
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(a) Estimated poses (b) 3D gaze points

(c) Cereal heatmap (d) Flour heatmap

(e) Wine heatmap (f) Mock-up heatmap

Fig. 7. Poses, gaze points and heatmaps obtained from the data of the 5 sections
included in our study.

3.3 Mapping Gaze Data

The pose estimation is unbiased and may results in a few faulty poses. We
consider these noise and use the following approach to filter them from the good
poses. Correct pose estimates between consecutive frames is assumed to have
small variation, while incorrect poses are very inconsistent. This inconsistency
is used to identify and discard faulty poses. In Fig. 6 the good pose estimates
is shown as a connected graphs with discarded poses as outlying points. The
number of inliers returned from the 2D to 3D pose solver is a good estimator of
correctness, but thresholding this number is not as robust as filtering the pose.
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A respondent moving in front of the AOI is shown in Fig. 7(a). Using the
good poses, the gaze can be mapped onto the 3D AOI model creating a 3D
heat map as seen in Fig. 7(b). The gaze intersection with the 3D model is found
using backprojection with depth management into the current frame, which is
significantly faster than calculating the intersection between the line of sight and
the 3D model.

A similar approach is taken, when creating the heatmap. Here a predeter-
mined symmetric 2D Gaussian function with center at the gaze coordinate is
added to a sum map of Gaussians in 3D space. Using a Gaussian serves both
the fact that sight is not an infinitely small point, while also incorporating some
uncertainty in the gaze estimates. Discussions about the size of the Gaussian,
and whether the raw gaze data or fixation filtered data should be used is beyond
the scope of this work. The resulting heatmaps visualized on the 3D AOIs can
be seen in Figs. 1 and 7(c) to (e).

One benefit worth noticing is, that the approach of mapping Gaussian to
the backprojection of the AOI allows for a normalization of the contribution
from each gaze point. It also addresses the problems shown in Fig. 3. When a
respondent is close, the covering of the Gaussian gaze point of the 3D AOI will
be small with a locally high intensity. Respondents far away will cover a larger
area in the 3D AOI, which will result in less locally intensive mapping. It also
handles change in perspective, while effectively shaping the Gaussian according
to the viewpoint without introducing parallax error. Since the sum of Gaussian
gaze points is done on a 3D model, the heatmap can be projected into any frame
or reference image. The backprojection of the a heatmap is shown in Fig. 8(a)
as an overlay to the original image.

(a) 3D heatmap backprojected into refer-
ence image

(b) 2D heatmap from iMotions software

Fig. 8. Heatmaps based on 3D gaze mapping and 2D gaze mapping. For the 3D
mapping the heatmap has been backprojected into the DSLR frame used for the 2D
mapping.
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4 Results

The core of our presented pipeline is the ability to correctly find the pose of the
wearable gaze tracker relative to the 3D AOI in a given frame. Validating this
after filtering puts each frame in one of four categories:

True positive correctly detecting the AOI.
True negative correctly not detecting the AOI.
False positive incorrect detection of the AOI.
False negative incorrectly not detecting the AOI.

Reviewing the output videos with 3D AOI overlay backprojected as presented
in Fig. 5(b) is an easy way to quickly asses the quality of the AOI detection. Such
a review shows non or only a very few false positives, but some false negatives.
Since the gaze tracker has a very small sensor, the sensor struggles with low
indoor light, which results in both frames with motion blur from head move-
ment and rolling shutter. In the supermarket setting, these frames provide the
vast majority of false negatives and one could debate, whether they are actually
false negatives. Occlusion from people or other shelves can also cause false neg-
atives. Reviewing both the frame positions as a graph in Fig. 6 or the resulting
spatial positions in Fig. 7(a) are can also provide quick qualitative verifications
in addition to reviewing a video with backprojected 3D AOI.

We have reprojected the heatmap into a reference image, which has also been
applied homography gaze mapping using the iMotions 6.2 software [4] and the
results are shown in Fig. 8. The heatmaps are both based on raw data samples
but using different techniques: 3D mapping and homography mapping respec-
tively. This means they cannot be compared directly, however there have clear
similarities of the path pattern and duration of attention.

5 Conclusion

We have successfully created 3D AOIs and heat maps for respondents visiting
the five sections in our data set: vegetables, cereal, flour, wine, and cereal mock-
up. Our proposed pipeline does away with the problems relating to mapping
gaze using a homography. The proposed pipeline is fully automatic and runs at
∼2 fps using a combination of Matlab, mex, vlfeat and OpenCV. A full C++
implementation will provide further speed up, but the scope was to demonstrate
a feasible pipeline, which allows researchers to spend time only on the results,
once processed. Concerns such as visual attention mapped based on fixation vs.
raw data, size of the Gaussian gaze point, and cross respondent analysis has
not been evaluated. We found that our pipeline works well in in-store settings,
since store products tend to have very distinct image features. However, settings
with only repeating image features, such as frames with only the same prod-
uct present, complicates the feature matching. This is often the case, when the
respondent is very near a product shelf. On the other hand, detection works
well in the case where the respondent is inspecting the shelves at an arm length
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distance, which in many cases is the important frames for generating heat maps.
Our approach provides a fully automatic method of mapping gaze data and posi-
tioning of the respondent relative to the AOI, thus adding another dimension to
the resulting data.
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