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Abstract. The aim of this paper is to deal with Poisson noise in images
arising in electron microscopy. We consider here especially images fea-
turing sharp edges and many relatively large smooth regions together
with smaller strongly anisotropic structures. To deal with the denoising
task, we propose a variational method combining a data fidelity term
that takes into account the Poisson noise model with an anisotropic reg-
ulariser in the spirit of anisotropic diffusion. In order to explore the flex-
ibility of the variational approach also an extension using an additional
total variation regulariser is studied. The arising optimisation problems
can be tackled by efficient recent algorithms. Our experimental results
confirm the high quality obtained by our approach.

Keywords: Poisson denoising · Variational methods · Electron
microscopy

1 Introduction

The aim of this paper is to deal with noise in certain types of images arising in
electron microscopy. A typical example for some of our applications of interest is
depicted in Fig. 1. The displayed test image shows gold sputtered Polytetraflu-
oroethylene (PTFE) particles that were recorded using the secondary electron
detector of a ZEISS DSM 962 scanning electron microscope.

Let us briefly discuss the properties of images we deal with here as exempli-
fied via Fig. 1. Beginning with image content, we observe that there are many
relatively large smooth (and round) regions with strong edges at particle outlines
and particle overlaps. However, there are also relatively thin, elongated struc-
tures. Turning to the image disturbances, the image is characterised by random
electron discharges appearing as bright horizontally striped artefacts. To circum-
vent sample destruction by electron impact at the image acquisition process, we
had to choose a high scanning speed, which further resulted in a grainy texture.

Our Modelling Approach. Variational methods have been very successful for
image denoising and restoration tasks [4]. Their main conceptual advantages are
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Fig. 1. Noisy image from an electron microscope as an example for a typical application
in our lab, image size is M × N = 2048 × 1664. For image acquisition, we used an
accelerating voltage of 20 kV, a working distance of 6 mm and a magnification of 5000
with a ZEISS DSM 962 scanning electron microscope. The marked image region is later
on employed for demonstrating filtering results.

their flexibility with respect to the possible model components and the inherent
robustness due to the use of suitable regularisers. Moreover, the components of a
variational method can often be easily interpreted and fine tuned. As the images
in our applications may show various types of structures of potential interest,
we opt to employ a variational approach because of its flexibility. As a further
benefit we may devise a model for enhancing specific image structures.

Let us now turn to the variational model. The task is to consider the terms in
a corresponding energy functional E(u) that shall be minimised for finding the
optimal solution u∗. The usual design incorporates terms for data fidelity and
regularisation, respectively, so that on a coarse level of abstraction the variational
model reads as:

E(u) := R(u) + τS(u;up). (1)

Thereby, up denotes the given degraded input image, and τ > 0 is a parameter
defining the balance between data term S(u;up) and regulariser R(u).
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Let us first consider the data term S(u;up). We may safely assume that an
adequate model for noise in electron microscopy images up is Poisson noise [18].
For the regulariser R(u) we need to take into account the types of prominent
image structures. We choose here to employ an anisotropic regulariser that is
able to preserve the strong edges and the thin elongated structures that are
prominent in our input images. Furthermore, exploring the flexibility of the
variational approach, we also add a total variation (TV) regulariser in order to
enhance edges and achieve visually more plateau-like structures corresponding
to individual particles in our application.

Related Work. As the subject of this paper touches various aspects of image
processing, we can only attempt to cover here some of the most important works
that influenced the considerations for the construction of our approach.

Several methods and approaches for Poisson denoising (PD) have been pro-
posed in previous literature. Often a variance stabilizing transformation (VST)
is applied to transform Poisson noisy data into data with Gaussian noise. One
such transformation was proposed by Anscombe in [1]. Methods to optimise the
denoising with this transformation were presented by Mäkitalo and Foi in [13]
and by Azzari and Foi in [2]. An extension of the Anscombe transformation and
its application to PD was proposed by Zhang et al. [22]. Also, some methods
from the field of machine learning have been considered, see e.g. Giryes and
Elad [9] and Salmon et al. [17]. Poisson denoising methods based on multiscale
models were studied by Lefkimmiatis et al. [11].

There also have been some variational methods for PD. Rudin et al. proposed
a model for TV based image denoising in [16]. The basic denoising model was
customised by Le et al. in [10] for PD. As this model is technically relevant for
our approach, let us give some more details. As the data term naturally includes
the formulation for Poisson noise, the data term in [10] resembles the one we will
formulate, as is also the case in [7,8]. However, we will introduce a slight technical
modification enabling better algorithmical treatment. In contrast to our work,
Le et al. consider only TV regularisation. As another major difference we make
use of a modern, non-trivial numerical optimisation approach for the numerical
realisation, whereas Le et al. consider a simple finite difference method solving
the Euler-Lagrange equation for their functional. Figueiredo et al. employ for
the regulariser besides TV also frame-based models. The arising optimisation
problems are tackled with the alternating direction method of multipliers. The
recent variational model of Feng et al. follows the field of experts methodology
for devising the regulariser [7].

In summary, we introduce several alternatives in modeling and numerics com-
pared to the works [7,8,10]. Especially, we consider a novel anisotropic model
for the problem and make use of efficient numerical tools.

Turning to the use of anisotropic diffusion, Weickert presented an extensive
framework in [20]. The anisotropic regulariser we employ here has been proposed
before in the context of diffusion [20]. In [21] accurate numerics, such as a family
of specific finite difference schemes is given. We also take into account these
recent, dedicated approximations within our numerical framework.
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2 Poisson Noise

Suppose we have a Poisson noisy image up ∈ N
MN
0 with N0 := N ∪ {0}, that is

the result of a random experiment with the probability distribution

P(U = up|u0) :=
∏

(i,j)∈I

P (Ui,j = up
i,j |u0

i,j) , (2)

where for every (i, j) ∈ I := {1, . . . , M} × {1, . . . , N} the parameter u0
i,j ≥ 0 is

supplied by the original image u0 and P is the discrete Poisson distribution

P (X = x|y) :=

⎧
⎨

⎩

(y)x

x!
exp (−y) , y > 0,

δ{0}(x) , y = 0.
(3)

Here, δS (z) is the Kronecker delta function that equals 1 if z ∈ S and 0
otherwise.

For any u ∈ R
MN we define sets of indices I+(u) := {(i, j) ∈ I : ui,j > 0},

I0(u) := {(i, j) ∈ I : ui,j = 0} and I−(u) := {(i, j) ∈ I : ui,j < 0}. While P in (2)
is defined only for nonnegative u0, the likelihood of any u ∈ R

MN to be the image
that led to up can be computed by

P(u|up) := δ{∅}(I−(u))
∏

(i,j)∈I\I−(u)

P (Ui,j = up
i,j |ui,j). (4)

With the probability distribution (3) we immediately see that P(u|up) > 0 if and
only if I−(u) = ∅ and ui,j > 0 for all i ∈ I+(up). Because of limx→0 x log x = 0,
the log-likelihood is given by

L (u|up) := log (P(u|up)) =
∑

(i,j)∈I+(u)

(
up

i,j log ui,j − log up
i,j ! − ui,j

)

− γ{∅}(I−(u)) −
∑

(i,j)∈I0(u)

γ{0}(u
p
i,j),

(5)

where γS (z) is the indicator function that equals 0 if z ∈ S and ∞ otherwise.
For a given up, maximizing L (u|up) is equivalent to minimizing

∑

(i,j)∈I+(u)

(
ui,j − up

i,j log ui,j

)
+ γ{∅}(I−(u)) +

∑

(i,j)∈I0(u)

γ{0}(u
p
i,j). (6)

Minimizing a data fidelity in form of (6) is an approach for PD, which was used
e.g. in [7,8,10].

For the noise model sometimes also a mixed Poisson distribution is used,
e.g. in [12]. We assume that the image up has only Poisson noise, for a detailed
overview of noise sources in scanning electron microscopy see [18].
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3 Anisotropic Diffusion

As we rely in this paper on the variational formulation of anisotropic diffusion
in the sense of Weickert [20] let us briefly recall some details.

The anisotropic diffusion flow within the image plane during a given time
can be described by the partial differential equation (PDE) ∂tu = div (D∇u).
Thereby D denotes the diffusion tensor with D = v1v

�
1 + λ2v2v

�
2 , where the

vectors v1 ‖ ∇uσ and v2 ⊥ ∇uσ are of unit length and λ2 = g(‖∇uσ‖2), see
also [20]. The function g(·) denotes the diffusivity function. By uσ we denote
the convolution of u with a Gaussian of standard deviation σ. For the spatial
derivatives in ∇uσ we use here central differences.

In [21] a discretisation of the term div (D∇u) is obtained by minimizing

R(u) :=
1
2

∫

Ω

∇�uD∇udxdy , (7)

where D is in this notation the time-invariant diffusion tensor

D =
(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
. (8)

Following [21] we remark that (7) can be discretised and written as

R(u) := −1
2
u�Au and ∇R(u) = −Au (9)

with some negative semidefinite matrix A. An explicit time discretisation can
be computed by iterating u(l+1) = u(l) + αA(u(l))u(l), where α is a suitable
step size and A(u(l)) is the matrix A, which stems from the diffusion tensor
using the iterate u(l), see [21] for more details. Similar to that, we employ a
lagged diffusivity approach and evaluate A always at the given iterate in our
optimisation method.

4 Our Variational Approach

As indicated we aim to find a local minimiser u∗ ∈ R
MN of

E(u) := R(u) + τS(u;up), (10)

see (1). By E we want to combine anisotroptic diffusion with data fidelity
S( · ;up) customised for a certain noise model. Among other models that we
also test here, we especially consider the log-likelihood data term as developed
before in (5). In the total, we used for S := S(u;up) the following functions:

S2 :=
1
2

‖u − up‖22 , S1 := ‖u − up‖1 , (11)

S� :=
∑

(i,j)∈I+(u)

(
ui,j − up

i,j log ui,j

)
+ γ{∅}(I−(u)) +

∑

(i,j)∈I0(u)

γ{0}(u
p
j ). (12)
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For the diffusivity g := g(s2), that contributes to R through the eigenvalue λ2,
some possibilities that we consider are

gPM :=
1

1 + s2/λ2
, gePM := exp

(−s2/(2λ2)
)
, (13)

gCh :=
1√

1 + s2/λ2
, gW :=

{
1 , s2 = 0,

1 − exp
(

−3.31488
(s/λ)8

)
, s2 > 0.

(14)

For the Perona-Malik diffusivity gPM and the exponential Perona-Malik diffusiv-
ity gePM see [15], for the Charbonnier diffusivity gCh see [5] and for the Weickert
diffusivity gW see [20]. Each of the diffusivity functions depend on the contrast
parameter λ. While the impact of λ on the diffusion process is different in each
diffusivity, edges with a contrast below λ are smoothed out more than those with
a contrast above λ, generally speaking.

5 A Numerical Solution Strategy

Our variational model E(u) := R(u) + τS (u;up) requires the minimisation of a
non-convex and non-smooth cost function. A common choice to handle the non-
convexity is to embed our method into a lagged diffusivity fixed-point iteration,
thereby fixing the diffusivities at the previous iteration and thus, considering

R
(
u; û(l)

)
:= −1

2
u�A

(
û(l)

)
u. (15)

Now, the minimisation of R ( · ) + τS ( · ; up) comes down to a series of convex
optimisation tasks. R( · ; û(l)) is smooth and convex, although not necessarily
strictly, nor strongly convex. On the other hand, our smoothness term S2 ( · ;up)
is convex and smooth, whereas S1 ( · ;up) and S� ( · ;up) are convex but continu-
ous at the very best. Our convex energies R

( · ; û(l)
)
+τS ( · ; up) also suggest a

natural splitting into a sum of two terms, here R
( · ; û(l)

)
and τS ( · ; up). One

of our goals is to present a single concise but modular framework that is flexible
enough to handle all presented setups efficiently. To this end we propose to use
the inertial proximal algorithm for nonconvex optimization (iPiano) by Ochs et
al. [14]. In its most generic form it considers the minimisation of cost functions
f + g, where g is a convex (possibly non-smooth) and f a smooth (possibly non-
convex) function. Thus, it suits our requirements well. The algorithm, inspired
by the Heavy-ball method of Polyak, combines a forward-backward splitting
scheme with an additional inertial force to improve the convergence properties.
In its generic form it iterates

x(k+1) = proxαkg

(
x(k) − αk∇f

(
x(k)

)
+ βk

(
x(k) − x(k−1)

))
, (16)

where αk and βk are parameters that stem from the numerical scheme. Here,
the function proxαg denotes the proximal operator given by

proxαg (y) := arg min
x

(
1
2

‖x − y‖2 + αg (x)
)

. (17)
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Algorithm 1. Poisson Image denoising via iPiano
Choose σ = 3

4
, a diffusivity g(·), a diffusivity parameter λ > 0, a data fidelity

S(· ; up), τ > 0, c = 1
1000

, β = 4
5

Initialise û(1) = up

repeat

Compute D for û(l) and the matrix A(û(l)) = Al that realises (9)
Estimate Lipschitz constant Ll by Geršgorin circle theorem

Compute αl = 2(1−β)
Ll+c

Initialise u(0) = u(1) = û(l)

repeat

u(k+1) = proxαlτS( · ,up)

(
u(k) + αlAlu

(k) + βk

(
u(k) − u(k−1)

))

until convergence of the iPiano scheme towards u(∞)

Set û(l+1) = u(∞)

until convergence of the lagged diffusivity scheme

Applying the iPiano formalism to our setup in (10) yields the following iterative
strategy:

u(k+1) = proxαkτS( · ;up)

(
u(k) − αk∇R

(
u(k); û(l)

)
+ βk

(
u(k) − u(k−1)

))
(18)

with initial values u(0) = u(1) and certain parameters αk and βk.
Whether the iPiano algorithm is fast hinges on an effective evaluation of the

proximal mapping. For our choices of S1, S2, and S� the corresponding proximal
mappings are well known and can be expressed in closed form. The proximal
mapping of S1 is given by the soft shrinkage operation, while it corresponds to a
simple averaging for S2. Finally, the proximal mapping for S� is easily found by
setting the first derivative to 0. We also remark in this context that it suffices
in each case to consider the 1D formulation. The computation of the proximal
mapping decouples for all our choices of S.

Besides the computation of the proximal mapping we must also specify an
update strategy for the free parameters αk and βk in (18) (resp. (17)). Here,
we follow the recommendations found in [14] and set βk = 4

5 and αk = 2(1−βk)
L+c ,

where c = 1
1000 and L being an upper bound of the spectral norm of A(û(l)),

that is, the Lipschitz constant of ∇R( · ; û(l)). For performance reasons we opt
to estimate L by means of the Geršgorin circle theorem. A detailed listing of our
approach is given in Algorithm 1.

We also use the following stopping criteria in our implementation. The outer
iteration stops when û(l+1) fulfils either

|El+1(û(l+1)) − El(û(l))|
|El+1(û(l+1)) + El(û(l))| < 5 · 10−7 (19)

or
1

MN

∥∥∥û(l+1) − û(l)
∥∥∥
1

< 10−6 ‖up‖∞ , (20)
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where El denotes the function E with the diffusion tensor fixed with the iterate
û(l). For the iPiano algorithm we use nearly the same break criteria, we substitute
û(l+1) with u(k+1), û(l) with u(k) and El+1 with El.

6 Additional Model Improvements

Even though our approach already delivers convincing results, we investigate
further means to improve the quality of our findings. Our real world data is
assumed to have hard edges with almost constant regions in between in the ideal
case. Such results can, for example, be obtained by adding a second regulariser
in form of a TV term. Thus, we must minimise the following energy.

F (u) := R(u) + τS(u ; up) + κTV(u) (21)

Algorithm 2. Poisson Image denoising via three-operator splitting
Choose σ = 3

4
, a diffusivity g(·), a diffusivity parameter λ > 0, a data fidelity

S(· ; up), τ > 0, c = 1
1000

, κ > 0

Initialise û(1) = up

repeat

Compute D for û(l) and the matrix A(û(l)) = Al that realises (9)
Estimate Lipschitz constant Ll by Geršgorin circle theorem
Compute αl = 2

Ll+c

Initialise u(1) = û(l)

repeat

x(k) = proxαlκT

(
u(k)
)

y(k) = proxαlτS( · ; up)

(
2x(k) − u(k) + αlAlx

(k)
)

u(k+1) = u(k) + y(k) − x(k)

until convergence of the three-operator splitting scheme towards y(∞)

Set û(l+1) = y(∞)

until convergence of the lagged diffusivity scheme

Here, TV(u) defines the discretised form of the total variation of a smooth
function.

TV(u) :=
∑

(i,j)∈I

∥∥∥∥

(
dxui,j

dyui,j

)∥∥∥∥
2

, (22)

where dx and dy denote standard forward differences. To find a minimiser u∗ we
proceed similarly as before. We use a lagged diffusivity fixed-point iteration to
overcome the nonlinearities in the regulariser R. Similarly as before, we obtain a
series of convex problems. The difference lies in the fact that we must minimise
a sum of three terms now. Even though one could apply iPiano, we opt for a



510 G. Radow et al.

better adapted algorithmic approach. We use the three-operator splitting scheme
presented in [6] to handle the additional TV term. It requires us to evaluate the
proximal mapping of the TV term

proxαTV (ũ) = arg min
u

⎛

⎝‖u − ũ‖22
2

+ α
∑

(i,j)∈I

∥∥∥∥

(
dxui,j

dyui,j

)∥∥∥∥
2

⎞

⎠ . (23)

In this work, we use the algorithm of Chambolle and Pock [3]. It is appealing
due to its simple form and decent efficiency. The complete algorithm, including
the numerical strategy with the three-operator splitting is listed in Algorithm 2.

Here, we use the same stopping criteria as for Algorithm 1, see (19) and (20).
In addition, we abort the iterative algorithm for computing proxαTV(ũ) when
the following condition is met.

1
MN

∥∥∥u(m+1) − u(m)
∥∥∥
1

< 10−6

(
9
10

)l

‖up‖∞ (24)

Here, l corresponds to the loop counter for the lagged diffusivity scheme. By
tightening the convergence requirements while progressing through the outer
iteration of Algorithm 2, we aim to shorten computing time at the start and get
a better final result. It seems plausible that the first few iterates can be rather
rough, whereas accurate estimates are much more important towards the end.

7 Numerical Results

We use three different synthetic test images for a qualitative analysis of our meth-
ods. These images are chosen in such a way that they contain features commonly
occurring in microscopic images. The considered samples are depicted in Fig. 2.
For our evaluation we corrupt each image three times with Poisson noise in three
different strengths, yielding a total of nine noisy images. One of them is shown

Fig. 2. (a–c) Noise-free original versions of our considered test images. The numbers
in brackets indicate the size of the square images. (d) Exemplary noisy version of ramp.
The lowercase index states the peak value, that the original image was scaled to before
computing the Poisson noisy image. The noisy image has a range going from 0 to 19.
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(a) (b) (c) (d)

Fig. 3. (a) denoised image obtained by using the method from [2] for ramp10 (SSIM =
0.7845) (b) denoised image obtained by using the method from [9] for ramp10 (SSIM =
0.7437) (c) result of Algorithm 1 optimised for maximal SSIM with S�, gePM, λ ≈
0.2446, τ ≈ 0.2443 for ramp10 (SSIM= 0.7817) (d) result of Algorithm 2 optimised
for maximal SSIM with S1, gW, λ ≈ 10.39, τ ≈ 96.74, κ ≈ 226.2 for ramp10 (SSIM =
0.6552)

Table 1. MSE and SSIM for all tested images. Numbers in bold show the best result
of all considered methods. The index after the image name denotes the peak value
to which the image was scaled for the computation of the noisy image. Our approach
outperforms the reference algorithms in terms of MSE for bars and ramp. Also, we
obtain a higher SSIM for bars and circles.

Image MSE SSIM

[2] [9] Algorithm 1 [2] [9] Algorithm 1

bars255 1.3295 21.0788 1.6132 0.5381 0.4535 0.8264

bars10 23.9553 25.3805 17.0658 0.4448 0.4156 0.5685

bars1 428.8934 296.7009 292.8159 0.2744 0.3033 0.3122

ramp255 9.4805 160.4250 18.4692 0.9618 0.8086 0.9375

ramp10 114.0484 186.8883 111.2820 0.7845 0.7437 0.7817

ramp1 544.2952 702.1416 459.8652 0.4758 0.4836 0.5196

circles239 1.6322 0.8585 0.8934 0.8284 0.8176 0.9394

circles10 20.9328 9.7073 9.4121 0.6912 0.6563 0.8226

circles1 103.5318 56.7450 85.3593 0.2714 0.4334 0.6910

in Fig. 2, in an exemplary manner. In order to simulate different noise levels
we rescale the images such that their peak value equals 255, 10, and 1 respec-
tively before computing the sample of the probability distribution (2). In the last
case the strength of noise is fairly high and the features of the original image
are barely visible. We also use the mean squared error (MSE) and the struc-
tural similarity (SSIM) as a means to measure the quality of our reconstructions
(see [19] for a reference on the SSIM). In addition, we consider the methods pro-
posed in [2] and [9] for comparison. The authors of these works provide reference
implementations of their algorithms, allowing us to do an objective evaluation.



512 G. Radow et al.

(a) (b)

(c) (d)

Fig. 4. (a) Original noisy image, cut out from Fig. 1 (b) result of VST from [2] (c) result
of Algorithm 1 with S�, gW λ = 1.25 and τ = 2.5 (d) Result of Algorithm 2 with S�,
gW λ = 1.25 and τ = 2.5 and κ = 0.5

Table 1 presents our findings for all considered images. Figure 3 shows one of
the denoised images for every considered algorithm. The results of Algorithms 1
and 2 were achieved by thoroughly tuning all the model parameters to minimise
the MSE respectively maximise the SSIM. The findings from Table 1 indicate
that we achieve competitive results in most cases. If we focus solely on the
SSIM, then our results are notably better (0.8226 vs. 0.6563 resp. 0.6912 for
circles10).

Finally, Fig. 4 presents the results of our algorithms on a real world exam-
ple. The images depict gold sputtered PTFE particles recorded by a secondary
electron detector of a ZEISS DSM 962 scanning electron microscope at an accel-
erating voltage of 20 kV. We have used a working distance of 6 mm and a magni-
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fication factor of 5000. Since the ground truth is unknown, the parameters have
been tuned to obtain the most visually appealing result. Clearly, we are able to
remove noise and other artefacts while preserving the contrast and sharp edges.

8 Conclusion

We have shown that modern optimisation methods and discretisation schemes
can be applied with benefit in electron microscopy. Although our basic
anisotropic model is relatively simple, it already yields visually convincing results
in our test application. The flexible variational framework enables many possible
extensions that can be used for specific applications. For future work we may
especially include a thorough study of possible optimisation methods for optimal
balancing of data term and regularisers.
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