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Abstract. Radiative transfer is the physical phenomenon of energy
transfer in the form of electromagnetic radiation. The propagation of
radiation through a medium is affected by absorption, emission, and scat-
tering. Radiative Transfer Equation (RTE) have been applied in a many
subjects including optics, astrophysics, atmospheric science, remote sens-
ing, etc. Analytic solutions for RTE exist for simple cases, but, for more
realistic media with complex multiple scattering effects, numerical meth-
ods are required. In the RTE, six different independent variables define
the radiance at any spatial and temporal point. By making appropri-
ate assumptions about the behavior of photons in a scattering medium,
the number of independent variables can be reduced. These assumptions
lead to the diffusion theory (or diffusion equation) for photon trans-
port. In this work, the diffusive form of RTE is discretized, using a
Forward-Time Central-Space (FTCS) Finite Difference Method (FDM).
The results reveal the radiance penetration according to Beer-Lambert
law.

Keywords: Radiation Transport Modelling (RTM) · Radiation Trans-
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1 Introduction

Radiative transfer is the physical phenomenon of energy transfer in the form of
electromagnetic radiation. Radiative transfer has applications in a wide variety
of subjects including optics, astrophysics, oceanography, atmospheric science,
remote sensing, infra-red imaging, etc. [3,11,16].

The propagation of radiation through a medium is affected by absorption,
emission, and scattering processes [3]. Absorption is the process by which the
energy of the photons is transferred to particles such as electrons present in
its transmission medium. The transfer of momentum raises the localized kinetic
energy of the electrons and hence the temperature. A common daily life example
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of absorption is that on a sunny day we can feel the warmth of the sun, even if
the surrounding temperature is quite low.

Emission is the process through which radiation transfers in the form of
waves/particles. Emissions may originate from a point source, such as a bulb
filament or a spark, or from a surface such as an ionized tube, neon bulb, etc.

Scattering is the deviation of the radiation waves/particles from their orig-
inal path. Scattering occurs as a result of particle-particle collisions. It can be
categorized as specular, such as in the case of mirror or diffused reflections [2].

Radiative transfer can be expressed mathematically in the form of radiation
transport equation [4]. The equation poses a challenge for those wishing to obtain
a definite solution considering its partial differential nature. Therefore, various
studies have employed different methodologies. For example, some researchers
have used the Monte-Carlo method to solve the radiation transport models [6].
Similarly, other numerical techniques such as the discrete-ordinate method have
also been employed to find the solution [8].

This paper focuses on solving the pure scattering radiation transport equa-
tion using the finite difference method. This methodology has previously been
used to solve the heat equation and simulate an infra-red signature [9,10,14].

2 Radiation Transport Equation

The equation of radiative transfer [13,17] is given mathematically as shown in
Eq. (1),

∂Iv (r, n̂, t)
c ∂t

+ Ω̂ · ∇Iv (r, n̂, t) +
(
kv,s + kv,a

)
Iv (r, n̂, t)

= jv (r, t) +
1
4π

kv,s

∫

Ω

Iv (r, n̂, t) dΩ (1)

where Iv the is spectral radiance of electromagnetic waves, c is the speed of light,
Ω̂ is the vectorial position of a solid angle (polar angle θ and azimuthal angle
ϕ), Ω is a solid angle, kv,s is the scattering opacity of the medium, kv,a is the
absorption opacity of the medium, jv is the emission coefficient of the medium
and t is the time variable.

The energy contents of electromagnetic waves can be calculated as shown in
Eq. (2),

dEv = Iv (r, n̂, t) cos(θ) dv dA dΩ dt (2)

where Ev is the radiation energy, θ is an angle that the unit vector n̂ makes with
the normal of elemental area dA, positioned at r, and v is the frequency. This is
illustrated in Fig. 1.

Similarly, radiance intensity and energy flux can be written as shown in
Eqs. (3) and (4):

φv (r, t) =
∫

4π

Iv (r, n̂, t) dΩ (3)
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Fig. 1. Radiance energy originating from differential area dA at vectorial position r
within a solid angle dΩ.

ψv (r, t) =
∫

4π

n̂ Iv (r, n̂, t) dΩ (4)

where φv and ψv are radiance intensity and energy flux respectively. Each of
these terms has units of W/m2.

Analytical solutions to the radiative transfer equation (RTE) exist for simple
cases, but, for more realistic mediums and complex multiple scattering effects,
computer simulations are required.

3 Methodology

There are six independent variables defining the radiance at any spatial and
temporal point in the radiation transport equation. These variables are the x, y,
z coordinates from a reference presented in the form of vector r, two dimensional
vectorial position of a solid angle Ω̂ (polar angle θ and azimuthal angle ϕ) and
time variable t. By making appropriate assumptions about the behavior of the
photons in the scattering medium, the number of independent variables can be
reduced. These assumptions lead to the diffusion theory (and diffusion equation)
for photon transport. Two assumptions, which permit the application of diffusion
theory are:

1. Relative to scattering events, there are very few absorption events. Likewise,
after numerous scattering events, few absorption events will occur, and the
radiance will become nearly isotropic. This assumption is sometimes called
directional broadening.

2. In a primarily scattering medium, the time for substantial current density
change is much longer than the time to traverse one transport mean free path.
Thus, over one transport mean free path, the fractional change in current
density is much less than unity. This property is sometimes called temporal
broadening.
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It should be noted that both of these assumptions require a high-albedo (pre-
dominantly scattering) medium. The diffusion approximation is limited to sys-
tems where reduced scattering coefficients are much larger than their absorption
coefficients and have a minimum layer thickness of the order of a few transport
mean free paths.

From the diffusion approximation, we can write Eq. (5),

Iv (r, n̂, t) =
1
4π

φv (r, t) +
3
4π

ψv (r, t) .n̂ (5)

by substituting Eq. (5) in Eq. (1), we get Eq. (6),

∂φv (r, t)
c ∂t

+ kv,aφv (r, t) − ∇.ψv (r, t) = jv (r, t) (6)

by applying Fick’s Law [7], we get Eq. (7),

ψv (r, t) = − ∇φv (r, t)
3 ((1 − g) kv,s + kv,a)

= −D∇φv (r, t) (7)

where g is the anisotropy of the medium and D is the diffusion coefficient.
By substituting Eq. (7) in Eq. (6), we get Eq. (8),

∂φv (r, t)
c ∂t

+ kv,aφv (r, t) − D∇2φv (r, t) = jv (r, t) (8)

Assuming hypothetically that there are zero absorption and zero emission
(pure scattering medium), we can simplify Eq. (8) to Eq. (9),

∂φv (r, t)
c ∂t

= D∇2φv (r, t) = D

(
∂2φv (r, t)

∂x2
+

∂2φv (r, t)
∂y2

+
∂2φv (r, t)

∂z2

)
(9)

where x, y, z are the space dimensions. We can reduce the dimensions to a
hypothetical two-dimensional space. This will further simplify the equation as
shown in Eq. (10),

∂φv (r, t)
c ∂t

= D

(
∂2φv (r, t)

∂x2
+

∂2φv (r, t)
∂y2

)
(10)

In order to do so, we have to discretize the equation. In this work, we will
discretize the equation using a Forward-Time Central-Space (FTCS) Finite Dif-
ference Method (FDM) [1,10,12,14]. This results in Eq. (11),

∂φv

(
r, t

)t+1

i,j
= ∂φv

(
r, t

)t

i,j

+c D

(
∂φv

(
r, t

)t

i+1,j
− 2∂φv

(
r, t

)t

i,j
+ ∂φv

(
r, t

)t

i−1,j

)

(
Δx

)2 Δt

+ c D

(
∂φv

(
r, t

)t

i,j+1
− 2∂φv

(
r, t

)t

i,j
+ ∂φv

(
r, t

)t

i,j−1

)

(
Δy

)2 Δt (11)
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where subscripts i, j are integers representing the computational points in the
two-dimensional space domain and the superscript represents the transient state.

A finite difference method (FDM) is a numerical method for solving differen-
tial equations such as that in Eq. (10). This method approximates the differen-
tials with differences by discretizing the dependent variable (radiance intensity)
in the independent variable domains (space and time). Each discretized value of
the dependent variable is referred to as a nodal value.

Equation (11) is solved in a two-dimensional spatial domain, as shown in
Fig. 2. The two-dimensional space is discretized in equally spaced quadrilaterals.
Each quadrilateral is referenced in two-dimensional space via indices i and j.
Indices i and j refer to positions on the horizontal and vertical axes, respectively.
The n and m refer to the maximum value of the i and j indices, respectively.

Fig. 2. Radiance intensities in the two-dimensional discretized domain. Indices i and
j refer to the nodal position of radiance intensity.

For the stability and accuracy of the FDM, it is vital to choose the correct
time step value. In this work, the Courant-Friedrichs-Lewy (CFL) condition
[5,12] is used to decide the time step size. The CFL condition is given in Eq. (12),
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2DcΔt ≤ min
(
(Δx)2 , (Δy)2

)
(12)

where D is the diffusion coefficient (m2/s), c is the speed of light (m/s), Δt is
the time step size (s), and Δx and Δy are the differences in the spatial positions
of the nodes (m).

In addition, initial and boundary conditions are required. In this case, bound-
ary conditions were specified such that they resembles to an infinite space. The
source radiance was introduced on a small part of the boundary. The flow chart
of the method of solution is given in Fig. 3, while the values of the constants are
presented in Table 1.

Loop over time and space!

No!

Start

Define total time, total space variables…

Allocate size, dimensions to radiance intensity variable…

Define boundary conditions…

Solve equation (over time and space) …

Define time steps, space steps variables…

Define speed of light and spectral diffusion

Meet CFL criteria…

Yes! 

Define initial conditions… 

Check results… 

Fig. 3. Flow chart of the method of solution.
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Table 1. Values of constants

Constant Value Units

D (diffusion coefficient) 0.282× 10−4 m2/s

Δx x Δy (size of nodal quadrilateral) 1× 1 m

c (speed of light) 3.0× 108 m/s

4 Results and Discussion

Ten cases are set with inlet radiance intensities of 10 W/m2, 50 W/m2,
100 W/m2, 500 W/m2, 1000 W/m2, 5000 W/m2, 10000 W/m2, 50000 W/m2,
100000 W/m2, and 500000 W/m2. The main reason for this diverse range is to
understand the response of the medium and to identify its limiting behavior.
It is vital to highlight here that the medium’s spectral diffusivity plays a vital
role. Given study is limited to only highly diffusive mediums. Figure 4 shows the
radiance intensity penetration with different inlet radiance intensities.
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Fig. 4. Radiance intensity penetration
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Fig. 5. Contour plots with various radiance intensities.

Contour plots with various inlet radiance intensities are shown in Fig. 5.
Lighten regions show the radiance intensity of 100 W/m2 and above in a two-
dimensional space. As expected, the results clearly demonstrate that the radiance
penetration has increased with the increased value of the inlet source radiance.
This behavior is also in accordance with the Beer-Lambert Law [15].
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5 Conclusion

The Radiation Transport Equation (RTE) can be solved using a Forward-Time
Central-Space (FTCS) Finite Difference Method (FDM) in special cases such as
a highly diffusive mediums (as discussed above). The results show the radiance
intensity space, which reflects on the radiance penetration.

6 Future Work

This work can be further extended by varying the diffusion coefficient and observ-
ing its impact on the radiance penetration. It will help to find the validity limits
of Radiation Transport Equation (RTE) solution using Forward-Time Central-
Space (FTCS) Finite Difference Method (FDM).
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