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Abstract. Accurately estimate the crowd count from a still image with
arbitrary perspective and arbitrary crowd density is one of the difficulties
of crowd analysis in surveillance videos. Conventional methods are scene-
specific and subject to occlusions. In this paper, we propose a Multi-task
Multi-column Convolutional Neural Network (MMCNN) architecture for
crowd counting and crowd density estimation in still images of surveil-
lance scenes. The MMCNN architecture is an end-to-end system which is
robust for images with different perspective and different crowd density.
By promoting MCNN with 3 x 3 filter, the MMCNN could utilize local
spatial features from each column. Furthermore, the ground truth den-
sity map is generated based on Perspective-Adaptive Gaussian kernels
which can better represent the heads of pedestrians. Finally, we use an
iterative switching process in our deep crowd model to alternatively opti-
mize the crowd density map estimation task and crowd counting task.
We conduct experiments on the WorldExpo’10 dataset and our method
achieves better results.

Keywords: Convolutional neural networks - Crowd counting - Crowd
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1 Introduction

Counting crowd pedestrians in surveillance videos attracts a lot of attention in
public safety. It is especially significant in major cities where there are public
rallies and sports events. In the new year eve of 2015, 35 people died of stampede
in Shanghai, China. Unfortunately, there are many more similar disasters take
place around the world. Accurately estimating crowds from images or videos
is a highly valued problem of computer vision. In practical applications, crowd
counting and density estimation are challenging, because of severe occlusions,
diverse crowd distributions and scene perspective distortions.
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The most intuitive method is detecting and tracking all the people or fore-
ground segmentation, but these methods are indispensable in practical crowd
scenes. Many excellent methods [1-4] were constructed based on regression.
These methods firstly represent the crowd scenes into feature space, then learn
a mapping from the feature space to crowd counts. However, these works used
hand-crafted features which is designed by experienced researchers/engineers.
And the these features are scene-specific. Cong Zhang et al. [5] proposed a
framework for crowd counting based on deep convolutional neural networks,
their method uses CNN to extract deep features instead of hand-crafted features.
A good method of crowd counting can also be extended to other domains, such
as counting cells or bacteria from microscopic images, animal crowd estimates in
wild scenes, or estimating the number of cars at traffic jams, etc. [5] constructs
a new training set (sampled from source domain) which follows the distribution
of target domain to adapt the model to the new scenario. But this work is not
an end-to-end system, that is, we must crop the image to a same size set in
advance and splice them together when counting the crowd. Yingying Zhang
et al. [6] proposed a Multi-column Convolutional Neural Network to predict
crowd scenes’ density maps. But their network is very difficult to obtain optima
due to its multi-column structure and large-number-pixels regression task.

(a) Crowd scenes (c¢) Density maps

Fig. 1. (a) Crowd scenes there are many occlusions. All the images are selected from
the WorldExop’10 dataset [5,37]. (b) ROI areas of crowd scenes because there are
much noise. The area out of ROI is set to zero. (¢) Density maps generated by using
Perspective-adaptive kernels. The size and shape of each kernel is similar to the heads
of pedestrians. These density maps are labels of MMCNN when we training crowd
density estimation task.



470 T. Wang et al.

Contribution of This Paper. Inspired by state-of-the-art method [6], we pro-
pose a Multi-task Multi-column Convolutional Neural Network for crowd density
estimation and counting. We especially put the focus on density estimation and
the target is generating a density map close to the reality. By this density map,
we can conveniently find the high density areas and warning in advance. Con-
tributions of this paper are summarized as follows:

(1) We proposed Perspective-Adaptive method to generate head-shaped and
head-sized Gaussian Kernels. The Gaussian kernels used in [5] represent the
pedestrian contour (head and body) but it does not work well enough when
the occlusion is serious. [6] used round Gaussian kernels to describe pedes-
trians’ heads. However, it is not accurate enough when there is perspective
distortion.

(2) Based on MCNN [6], we improve the method of merging the feature maps
from different columns with 3 x 3 filter. In this way, the network could
consider local spatial information of each feature map.

(3) We proposed a Multi-task Multi-column Convolutional Neural Network
(MMCNN) based on MCNN [6]. We use an iterative switching process in
our deep crowd model to alternatively optimize the density map estimation
task and the count estimation task. In this way, the two different but related
task can alternatively assist each other to obtain better local optima and
make up for the shortcomings of regression framework.

2 Related Work

Many algorithms have proposed in the literature for crowd counting. Earlier
methods [7] adopt a detection-style framework to estimate the number of pedes-
trians. [8-10] have used a similar detection-based framework for pedestrian
counting. In detection-base crowd counting methods, people typically assume
a crowd is composed of individual entities which can be detected by some given
detectors [11-14]. The limitation of such methods is that occlusion among people
in a very dense crowd significantly affects the performance of the detector.

In counting crowds in videos, people have proposed to cluster trajectories of
tracked visual features. Such as [15,16]. But these tracking-based methods do
not work for estimating crowds from individual still images.

The most extensively used method for crowd counting is feature-based regres-
sion, see [17-22]. The main steps of these methods are: (1) extracting the fore-
ground; (2) extracting various features from the foreground, such as area of crowd
mask [17,18,20,23], edge count [16-18,24], for texture features [17,25]; (3) uti-
lizing a regression function to estimate the crowd count. Linear [23] or piece-wise
linear [24] functions are relatively simple models and get decent performance.
Other more advanced methods are ridge regression (RR) [17], Gaussian process
regression (GPR) [16], and neural network (NN) [25].

There have also been some works focusing on crowd counting from still
images. [26] has proposed to leverage multiple sources of information to compute
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an estimate of the number of individuals present in an extremely dense crowd.
In that work, a dataset of fifty crowd images containing 64 K annotated humans
(UCF_CC_50) is introduced. [27] has followed the work and estimated counts by
fusing information of multiple sources, namely, interest points (SIFT), Fourier
analysis, wavelet decomposition, GLCM features, and low confidence head detec-
tions. [28] has utilized the features extracted from a pre-trained CNN to train
a support vector machine (SVM) that subsequently generates counts for still
images.

Many works introduce deep learning into various surveillance applications,
such as person re-identification [29], pedestrian detection [1,30,31], tracking [32],
crowd behavior analysis [33] and crowd segmentation [34]. Their success benefits
from discriminative power of deep models. Zhang et al. [5] has proposed a CNN
based method to count crowd in different scenes. They first pre-train a network
for certain scenes. When a test image from a new scene is given, they choose
similar training data to fine-tune the pre-trained network based on the perspec-
tive information and similarity in density map. Their method demonstrates good
performance on most existing datasets. But this type of methods need to crop
one image into patches of similar sizes, then estimate the total number of each
patch, and merge all the patches into one image. In this way, there are inevitably
overlaps between patches. And this method is not an end-to-end framework, it is
not suitable for practical application such as real-time public safety monitoring.
Yingying Zhang et al. [6] recently proposed a Multi-column Convolutional Neural
Network. They use three columns of CNNs corresponding to filters with recep-
tive fields of different sizes so that the features learned by each column CNNs
could deal with perspective effect and different image resolution. But they did
not take perspective distortion of heads into consideration.

3 Method

3.1 Perspective-Adaptive Kernels

Many works followed [5] and defined the density map regression ground truth
as a sum of Gaussian kernels centered on the location of objects. This kind of
density map is suitable for characterizing the density distribution of circle-like
objects such as cells and bacteria. [5] uses human-shaped Gaussian kernels to
generate density map. But due to severe occlusions (Fig.1(a)), heads are the
main cues to judge whether there exists a pedestrian in a practical surveillance
scene. [6] uses circle-like Gaussian kernels to represent the heads of pedestrians
in the image. It works when the scene is full of pedestrians but actually the heads
in the image are not circle-like because of perspective distortion. Precisely, the
shapes of heads are more similar to ellipses than circles. We proposed a method
of generating density maps based on Perspective-Adaptive Kernels:

Firstly, we generate each scene’s perspective map M by linear regression [5] or
geometry-adaptive method [6]. Most of the time, the datasets have provided the
perspective map, such as the WorldExpo’10 dataset. The value of each element in
the perspective map M (p) denotes the number of pixels in the image representing
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one square meter at that location in the actual scene. The value of M contains
the perspective information. For example, if the same person is standing at two
point with different distances from the camera, it will look shorter when he is
in the place far away from the camera, the head will be smaller, and the M (p)
value will be smaller too, vice versa. After we obtain the perspective map and
the center positions of pedestrian head p; in the region of interest (ROI), we
create the crowd density map as:

Dip) = 3 7 (Vs P 3) &
PCP;

where g is the gradient of perspective map, C; and C5 are empirical coefficients,
Ny, represents Gaussian kernel and ¥ = (0,,0,), P represents the position of
head. Assume that perspective distortion only exists in y-axis and the heads in
the image is distorted only in y-axis. To exactly represent the pedestrian head,
we set the variance o, = C1M(p), o, = (1 + gCs)0,.

3.2 Normalized Crowd Density Map

Our MMCNN model has two switchable learning objectives, the main task is to
estimate the crowd density map of the input image. Because density map repre-
sents the distribution of pedestrians and has abundant spatial information. To
ensure that the integration of all density values in a density map equals to the
total crowd number in the original image, the whole distribution is normalized
by Z. The created density maps are showed in Fig. 1(c). To obtain density maps
precisely, we conduct a lot of experiments and find the best empirical coefficients,
C71 = 0.12, C5 = 0.5. At this time, the size of Gaussian kernel is close to pedes-
trian head size in the image and will not appear too small. We only consider the
pedestrians in ROI and truncate the Gaussian distribution outside ROL.

3.3 Multi-task Multi-column CINN Model

An overview of our crowd MMCNN model is shown in Fig.2. Our MMCNN
model uses the base framework of MCNN [6]. The input image is original still
image from surveillance video. In our model, we use the filters of different sizes
to perceptive heads of different scales and there is no need to crop the image into
a pre-set size like [5]. Motivated by the good performance Fully Convolutional
Networks [36], we promote the MCNN [6] model by using 3 x 3 filters instead of
1 x 1 filters to merge the Concated feature map into one-channel feature map.
Suppose that the shape of Concated feature map volume is 42 x 144 x 180, if
we use 1 x 1 filters to merge all the channels, the filter only consider how to
compute the weighted average of 42 channels. It is difficult to consider the local
relationship between neighboring pixels. But if we use 3 x 3 filters, the network
could consider contextual information (compute weighted average of 42 x 3 x 3
neighboring values) and has a good ability to fit actual scenes.
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Our framework contains three parallel CNNs whose filters are with local
receptive fields of different sizes. We use the same network structures for all
columus like [6] but changed 1 x 1 kernel and the number of filters to slightly
increase model’s complexity. For each column, the structure is Conv-ReL U-
Pooling-Conv-ReL U-Pooling-Conv-ReL U-Conv, and we concat all the feature
maps from different columns and merge the feature map volume by 1 3 x 3 x 42
filter. Then, we set the neuron corresponding to the area out of ROI to zero
based on the ROI mask (images with ROIs are showed in Fig. 1(b)). The ROI
mask is optional, because some datasets do not provide ROI information or we
do not need to consider ROI in practical problems. And both two pooling layer
use 2 x 2 Max pooling kernel.
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Fig. 2. The structure of the proposed MMCNN model for crowd counting and density
map estimation (inherit the structure of MCNN [6]). The text in blue denote manipula-
tions of deep neural network (Conv; means ith convolutional layer and Eltwise means
dot production of two matrix). The cubes in blue denote different feature map volumes
after each manipulations. The number above each blue cube is the number of output
channels. (Color figure online)

We introduce an iterative switching process in our framework to alternatively
optimize the density map estimation task and the count estimation task. The
main task is estimating the crowd density map of the input image. Density
map prediction needs spatial information and crowd distribution while global
count regression only focuses on predicting a numerical value, therefore, using
global count as the secondary learning objective can improve the accuracy of
our main task. Because of two pooling layers in the CNN model, the output
density map is down-sampled to 1/4 size. Since the density map contains rich
and abundant local and detailed information, the CNN model can obtain a better
representation of crowd image. The total count regression of the input image is
treated as the secondary task and the regression head is directly connected after
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Conv5. Then Euclidean distance is used to measure the difference between the
estimated density map (global count) and ground truth. The two loss functions
are defined as:

N
Lo(6) = 1 Y IFu(X::0) - Dl 2

N
Le(0) = S IE(X:0) - G, g

where © is the set of parameters of the CNN model and N is the number of
training samples. Lp is the loss between estimated density map Fy(X;;©) (the
output of Conv5) and the ground truth density map D;. Similarly, L¢ is the
loss between the estimated crowd count F.(X;;©) (the output of fe3) and the
ground truth number C;.

3.4 Training of MMCNN

The loss functions (2) and (3) can be optimized via batch-based stochastic gra-
dient descent and backpropagation, typical for training neural networks. But in
reality, the datasets are very small and the density map data is not balanced
(most pixels’ value of density map is 0, but the non-zero values are what the loss
function really need), it is not easy to learn all the parameters simultaneously.
Motivated by [6], we pre-train CNNs in each column separately by our itera-
tive switching process. We then use these pre-trained CNNs to initialize CNNs
in all columns and fine-tune all the parameters simultaneously. The iterative
switching algorithm we use when we pre-train and fine-tune the CNNs is just
like the learning objective switch algorithm in [5]. We firstly use density map to
supervise MMCNN’s training process due to its abundant spatial information.
And then we use global count as training label to promote the precision of our
MMCNN model. In this way, our MMCNN model could easily get the optima.

4 Experiment

We evaluate our MMCNN model on The WorldExpo’10 dataset-the largest and
most comprehensive dataset in crowd counting field and compare our model to
many other methods in the literature. Implementation of the network and its
training are based on Caffe developed by [35].

Evaluation Metric. By following the convention of existing works [5,6] for
crowd counting, we evaluate different methods with the absolute error (MAE),
which is defined as follow:

1 N
MAE:NZ]Zi—p(Zi)L (4)
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where N is the number of test images, z; is the actual number of crowd in the
ith image, and p(z;) is the estimated number of crowd in the ith image. In some
ways, MAE indicates the accuracy of the estimates.

The WorldExpo’10 Dataset. WorldExpo’l0 crowd counting dataset was
firstly introduced by [5,37]. This dataset is the largest dataset focusing on crowd
counting. It contains 1132 annotated video sequences which are captured by 108
surveillance cameras, all from Shanghai World Expo 2010. The authors of [5] pro-
vided a total of 199,923 annotated pedestrians at the centers of their heads in
3980 frames. 3380 frames are used in training data. Testing dataset includes five
different video sequences, and each video sequence contains 120 labeled frames.
Five different regions of interest (ROI) are provided for the test scenes. Some
images are shown in Fig. 1(a).

In this dataset, the perspective maps are given. We apply our Perspective-
Adaptive Kernels to obtain density maps. After many times of experiments, we
set C1 = 0.12, Co = 0.9 (details in Sect. 3.1). Because of the noise in the area
out of ROI, we only consider the ROI regions. So we use dot production to
set the neuron corresponding to the area out of ROI to zero. We generate the
ROI mask matrix corresponding to each scene. Each mask matrix has the same
resolution of density map and the value is either 1 or 0. For evaluation, we use
the same evaluation metric (MAE) suggested by [5]. The original input image
has 720 x 560 pixels, we generate density maps have a resolution of 144 x 180
because our MMCNN model has two 2 x 2 Max pooling layers. The sum of each
density map equals to the total count of pedestrian in the image. The input of
our model is original image and RIO mask, output is predicted density map or
regressed global count, the whole process is illustrated in Fig. 2.

We use 1/10 of training data as validation data to evaluate the performance
and help to optimize hyper parameters. We first split the MMCNN model into
three single-column multi-task CNNs, and train each column with two learning
tasks iteratively. First of all, we train each column with density map and obtain
the optima. Then, we append fully connected layers at the end of each CNN and
train each CNN with global count, we firstly fix the parameters of convolutional
layers until the learning curve come into plateau period. Then, we update all
the parameters. In this way, we can obtain the optimal model of each column.
We then use these pre-trained single-column CNNs to initialize the columns of
MMCNN model and update all the parameters simultaneously in the same way
of pre-training each column. For comparing 3 x 3 kernels and 1 x 1 kernels,
we conducted the experiment with 3 x 3 kernels in the same method above-
mentioned. The result is showed in Fig.3. The figure tells that 3 x 3 kernels
worked, but multi-task training policy played a greater effect.

In the test phase, the multi-column CNN model is fine-tuned with the first
60 labeled frames for every test scene, and the remaining frames are used as
the test data. The results of different methods in the five test video sequences
can be seen in Table 1. In scene 2 and scene 5, the density of the crowd changes
drastically and there are a lot of noise. Such as sceneb, many pedestrians are
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Fig. 3. Comparing single-task CNNs with mulit-task CNNs. Blue bars denote test
MAE when using 3 x 3 kernels and orange bars denote test MAE when using 1 x 1
kernels. CNN (i) means a single column CNN of MMCNN with single task (crowd
density map estimation). m/t CNN(i) means single column CNN with multi-task
training. MCNN means single-task multi-column CNN. The figure tells that multi-
task learning and 3 x 3 kernels could optimize the performance of our CNN model.
And the experiment is conducted on the WorldExpo’10 dataset. (Color figure online)

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Fig. 4. Test results in each test scene of the WorldExpo’10 dataset. Each column has
three pictures which are examples selected from a same scene, the first row are input
images with ROIs, the second row are predicted density maps of MMCNN, the third
row are the ground truths.
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taking umbrella and wearing a hat. In these two scenes, [5] works better. But our
model also achieves better performance than Fine-tuned Crowd CNN model [5]
in terms of average MAE. Compared to MCNN [6], our model performs better
in scene 2 and scene 5 because our 3 x 3 filter in C'onv5 could integrate local
spatial information in a 3 x 3 receptive fields and our model has a similar average
MAE with MCNN [6] (Fig.4).

Table 1. Mean absolute errors of the WorldExpo’10 crowd counting dataset

Method Scenel | Scene2 | Scene3 | Scened | Sceneb | Average
Zhang et al. [5] | 9.8 14.1 14.3 22.2 3.7 12.9
MCNN [6] 3.4 20.6 12.9 13.0 8.1 11.6
MMCNN 3.4 18.5 9.6 8.7 7.9 9.6

5 Conclusion

In this paper, we have proposed a Multi-task Multi-column Convolutional Neural
Network which can accurately estimate crowd global count and crowd density
map in a still image. We evaluate the performance of our model in WorldExpo’10
dataset which is the most representative dataset in crowd counting field. In this
dataset, MMCNN outperforms the state-of-art crowd counting methods [6] in
each scene and also performs better than Fine-tuned Crowd CNN model [5]
in terms of average MAE. Compared to [5], the result reflects that our head-
shaped Gaussian kernel is not robust enough in such scene where there are
many umbrellas and hats.
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