
Automatic Emulation by Adaptive Relevance
Vector Machines

Luca Martino(B), Jorge Vicent, and Gustau Camps-Valls

Image Processing Laboratory (IPL), Universitat de València, Valencia, Spain
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Abstract. This paper introduces an automatic methodology to con-
struct emulators for costly radiative transfer models (RTMs). The pro-
posed method is sequential and adaptive, and it is based on the notion
of the acquisition function by which instead of optimizing the unknown
RTM underlying function we propose to achieve accurate approxima-
tions. The proposed methodology combines the interpolation capabilities
of a modified Relevance Vector Machine (RVM) with the accurate design
of an acquisition function that favors sampling in low density regions
and flatness of the interpolation function. The proposed Relevance Vec-
tor Machine Automatic Emulator (RAE) is illustrated in toy examples
and for the construction of an optimal look-up-table for atmospheric
correction based on MODTRAN5.

Keywords: Radiative transfer model · Relevance Vector Machines ·
Emulation · Self-learning · Look-up table · Interpolation · MODTRAN

1 Introduction

In many fields of Science, Engineering and Technology, the mathematical and
physical models are implemented in computer programs known as simula-
tors [25]. Simulators are increasingly popular nowadays in social sciences, social
network modeling and (electronic) commerce as well. These simulators aim to
model and reproduce the complex real-world phenomena accurately. On the
downside, simulators typically require large computational cost and memory
resources, as well as the introduction of complicated ad hoc rules in the pro-
grams. Despite their good performance and reputation in the related fields, these
shortcomings impede its wide practical adoption. In the last decades, machine
learning has played a key role in the field by proposing surrogate models, known
commonly as emulators, which try to reproduce (learn) the complex input-output
mapping built by simulators from empirical data. This is typically done by run-
ning the simulator for a number of input factors and situations, thus yielding
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a training dataset, which is then used to fit regression models able to perform
out-of-sample predictions.

Statistical emulators were actually developed in the 1980s for general pur-
poses [9,21,25]. Emulators typically rely on Gaussian Processes and neural net-
works because of their flexibility, accuracy, and computational efficiency. Once
the emulator model is developed, one can run approximate simulations very effi-
ciently because the testing time for machine learning models is commonly very
low (often linear or sub-linear). This actually allows one to analyze the system
for which the simulator was built with far more instantiations and situations,
as well as to perform sensitivity analysis (that is, analyze the relative relevance
of the drivers) in a more robust manner. We find interesting applications of
Gaussian process emulators for input feature selection and sensitivity analy-
sis, and uncertainty quantification of the outputs given the uncertainty of the
inputs [5,19].

In this paper, we will focus on the perhaps most active field nowadays building
emulators, that of Earth Science. In Earth observation and climate science one
typically has access to physical models encoding the variable relations. These
physical models are either called process-based models in global change ecol-
ogy, radiative transfer models (RTMs) in remote sensing, or climate models in
detection-and-attribution schemes for climate science applications. RTMs sim-
ulate the system as y = f(x,ω), where y is a measurement obtained by the
satellite (e.g. radiance); the vector x represents the state of the biophysical vari-
ables on the Earth; ω contains a set of controllable conditions (e.g. wavelengths,
viewing direction, time, Sun position, and polarization); and f(·) is a function
which relates y with x. Such a function f is typically considered to be nonlinear,
smooth and continuous. The goal in inverse modeling is to obtain an accurate
model g(·) ≈ f−1(·), parametrized by θ, which approximates the biophysical
variables x given the data y received by the satellite, i.e. x̂ = g(y,θ). In emu-
lation mode, however, we are interested in approximating the RTM well, that
is, obtain a machine learning model ̂f that approximates the RTM code f at a
fraction of time and accurately. Obtaining such a model is a game changer since
one can do model inversion, sensitivity analysis and parameter retrieval much
more efficiently than with the original simulator.

Here we are concerned about using the emulator to replace RTMs and
then perform model inversion. Such inversion typically requires large multi-
dimensional look-up tables (LUTs), which are precomputed for their later inter-
polation [11]. However, the computation of these LUTs still imposes a large
computation burden, requiring techniques of parallelization and execution in
computer grids. In order to further reduce this computation burden, a possible
strategy is to select an optimal subset of anchor or landmark points in order to
reduce the error of the interpolation of LUTs. Compact and informative LUTs
give raise, in turn, to interesting possibilities for emulating RTMs [24]. In this
work, we address the problem of optimal selection of the points to be included
in the LUT and the construction of the emulator simultaneously.

The field has received attention from (apparently unrelated) fields in statisti-
cal signal processing and machine learning. The problem has been cast as exper-
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imental optimal design [6,17,20,26] of interpolators of arbitrary functions f .
To reduce the number of direct runs of the system (evaluations of f), a pos-
sible approach is to construct an approximation of f starting with a set of
support points. This approximation is then sequentially improved incorporat-
ing novel points given a suitable statistical rule. This topic is also related to
different research areas: optimal nonuniform sampling, quantization and inter-
polation of continuous signals [8,16], the so-called Bayesian Optimization (BO)
problem [12,18,27], and active learning [2,7,10,28]. Finally, an interesting alter-
native approach is based on adaptive gridding, where the aim is to construct
a partitioning of X into cells of equal size, where the cell edges have different
lengths depending on their spatial direction. This was the approached followed
in [4]. In order to find these lengths, the proposed method uses a modification
of the Relevance Vector Machines (RVMs) [3,22].

In this paper we introduce a simpler and more general approach. The pro-
posed method is a sequential, adaptive and automatic construction of the emu-
lator based on the notion of the acquisition function, similarly to the BO app-
roach [12,18]. Unlike in BO, our goal is not the optimization of the unknown
underlying function f but its accurate approximation ̂f . Given a set of initial
points, the emulator is built automatically with the online addition of new nodes
maximizing the acquisition function at each iteration. Theoretically, the acqui-
sition function should incorporate (a) geometric information of the unknown
function f , and (b) information about the distribution of the current nodes.
Indeed, areas of high variability of f(x) require the addition of more points as
well as areas with a small concentration of nodes require the introduction of
new inputs. Thus, the experimental design problem is converted into a sequen-
tial optimization problem where the function to be optimized involves geometric
and spatial information (regardless of the dimensionality of the input space).

The rest of the paper is outlined as follows. Next Sect. 2 describes the gen-
eral ideas behind the automatic emulation. In Sect. 3, we introduce the proposed
automatic emulator scheme, and revises each of the building blocks (regression
and acquisition functions). In Sect. 4, we give experimental evidence of perfor-
mance of the proposal in several numerical examples, one of them involving the
optimization of the nodes for the construction of an optimal LUT for atmospheric
correction involving a computationally demanding physical model. We conclude
in Sect. 5 with some remarks and outline of the further work.

2 Automatic Emulation

This section introduces the proposed scheme for automatic emulation. We start
by fixing the notation and presenting the processing scheme. Then we will detail
all the ingredients that allows to design an adaptive acquisition function in con-
junction with the RVM model.
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2.1 Emulation Scheme

Let us consider a D-dimensional input space X , i.e., x = [x1, . . . , xD]ᵀ ∈ X ⊂ R
D

and, for the sake of simplicity, we assume that X is bounded. Let us denote the
system to be emulated as f(x) : X �→ R, e.g. a complicated transfer equations
modeled with an expensive RTM. Given an input matrix Xt = [x1, · · · ,xmt

]
of dimension D × mt, we have a vector of outputs yt = [y1, . . . , ymt

]ᵀ, where
yt = f(xt), where the index t ∈ N

+ denotes the t-th iteration of the algorithm.
Essentially, at each iteration t one performs an interpolation or a regression,
providing ̂ft(x|Xt,yt), followed by an optimization step that updates the acqui-
sition function, At(x), updates the set Xt+1 = [Xt,xmt+1] adding a new node,
set mt+1 = mt + 1 and t ← t + 1. The procedure is repeated until a suitable
stopping condition is satisfied. We assume scalar outputs in order to simplify the
description of the technique, yet the algorithm can be easily extended to multi-
output settings. The algorithm is outlined in Algorithm 1 and Fig. 1 shows a
graphical representation of a generic automatic emulator. In this work, f(x)
represents RTM but, more generally, it could be any costly function.

Interpolator

f(x)Xt At(x)

t ← t + 1

Xt+1
yt ̂ft(x|Xt,yt)Regressor/

Acquisition
FunctionRTM

Fig. 1. Graphical representation of an automatic emulator. In this work, the function
f(x) represents RTM but, more generally, it can be any function costly to be evaluated.

Algorithm 1. Automatic Emulation.
1: Regression: Apply an regression procedure, following some pre-established

method, providing ̂ft(x|Xt,yt), given the current matrix of input/support points
Xt = [x1, . . . ,xmt ]

ᵀ , and yt = [y1, . . . , ymt ]
ᵀ .

2: Optimization: Update the acquisition function obtaining At(x) and set

xmt+1 = max
x∈X

At(x).

Moreover, include the new point in the set of nodes, i.e., Xt+1 = [Xt; xmt+1], and
set mt+1 = mt + 1.

3: Check Stop Condition: For instance, whether the number of desired points was
reached, or if ‖ ̂ft(x) − ̂ft−1(x)‖ ≤ ε, then stop. Otherwise, set t ← t + 1 and come
back to step 1.
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2.2 Conceptual Definition of the Acquisition Function

Let us start describing the general properties that a generic acquisition function
At(x) should satisfy. Conceptually, an acquisition function can be defined as the
product of two functions, a geometry term Gt(x) and a diversity term Dt(x):

At(x) = Gt(x)Dt(x), (1)

where Gt(x) : X �→ R
+, Dt(x) : X �→ R

+ and hence At(x) : X �→ R
+ (i.e.,

A(x) ≥ 0). The first function Gt(x) represents some suitable geometrical infor-
mation of the hidden function f . The second function Dt(x) depends on the
distribution of the points in the current vector Xt. More specifically, Dt(x) will
have a greater probability mass around empty areas within X , whereas Dt(x)
will be approximately zero close to the support points and exactly zero at the
support points, i.e., Dt(xi) = 0, for i = 1, . . . , mt and ∀t ∈ N. As a consequence,
a suitable acquisition function satisfies the following condition,

At(xi) = 0, for i = 1, . . . ,mt, and ∀t ∈ N. (2)

3 RVM Automatic Emulator (RAE)

In this section, we specify the implementation of an automatic emulator based
on a variant of the RVM method, called RAE. Thus, we introduce the Adaptive
RVM (A-RVM) (employed as regressor in RAE) and then we describe a suitable
construction of an acquisition function At(x), taking into account important
information provided by the hyperparameters of A-RVM previously optimized.

3.1 Adaptive Relevance Vector Machine (A-RVM)

Let us consider the standard regression model

y = f(x) + ε,

where ε ∼ N (0, σ2
e) and we observe N data pairs, {xn, yn}N

n=1. We also denote
X = [x1, . . . ,xN ], y = [y1, . . . , yN ]ᵀ, and define the following N basis functions

φn(x|xn) = exp
(

−‖x − xn‖2
2δ2n

)

: X × X → R (3)

Hence, we have N functions centered in the data inputs xn’s, each one with
a different scale parameter δ2n. Moreover, let us define the N × N matrix
[Φ]i,j := φj(xi|xj), and the N × 1 vector φ(x,X) = [φ1(x|x1), . . . ,φN (x|xN )]ᵀ.
We assume that the hidden function f can be expressed as f(x) = φ(x,X)ᵀw,
where w is an unknown vector. Furthermore, we consider a Gaussian prior over
the N × 1 weight vector w, i.e., w ∼ N (0,Σp). The Minimum Mean Square
Error (MMSE) solution is

ŵ =
1
σ2

e

(

1
σ2

e

ΦΦᵀ + Σ−1
p

)−1

Φy = ΣpΦ
(

ΦᵀΣpΦ + σ2
eIN

)−1
y. (4)
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Hence, since ̂f(x) = φ(x,X)ᵀŵ, then

̂f(x) = φ(x,X)ᵀΣpΦ
(

ΦᵀΣpΦ + σ2
eIN

)−1
y = kᵀ (

K + σ2
eIN

)−1
y, (5)

where we have set K = ΦᵀΣpΦ and kᵀ = φ(x,X)ᵀΣpΦ.

On the adaptive lengthscales. We remark again that the number of basis
function φn is exactly N as the number of data and N + 1 hyperparameters,
θ = [δ1, . . . , δN , σ2

e ]ᵀ, N scale parameters δn (one per each function φn) and the
variance of the measurement noise σ2

e .

0 5 10 15 20
x

f(x)

φ1(x|x1)

φ2(x|x2) φ3(x|x3)

̂f(x)

Fig. 2. Graphical representation of
adaptive RVM regression model. The
regressor ̂f(x) =

∑3
n=1 wnφn(x|xn) is

a linear combination of N = 3 basis
functions, each one with a different
scale δn, n = 1, 2, 3.

Clearly, the use of different δn’s fos-
ters the flexibility of the regression method.
Moreover, and more important for our pur-
pose, each parameter δn contains geomet-
ric information about the hidden func-
tion f(x). Indeed, the parameters δn’s of
the functions φn’s located in regions with
a greater variation of f(x) are smaller
than the parameters δn’s of the functions
φn’s located in regions where f(x) is flat-
ter. Roughly speaking, a great value of δn

means that φn is located in an area where
f is virtually flat, whereas a small value
of δn is obtained when φn is located in a
region where f has an high derivative, for
instance. This consideration is very useful
in order to build a suitable acquisition func-
tion. An illustrative example of the adap-
tive property is shown in Fig. 2.

On hyperparameter tuning. The tuning of the hyperparameters is performed
maximizing the log-marginal likelihood,

J(θ) = log[p(y|θ)] = −1
2
yᵀ(K + σ2

eIN )−1y − 1
2

log
[

det(K + σ2
eIN )

]

+ c,

where c is a constant and K = ΦᵀΣpΦ. We consider a simulated annealing
approach for finding the global maximum of J(θ) [13,15,23]. More sophisticated
optimization methods could exploit information about the gradient of J(θ).

3.2 Proposed Acquisition Function

As we have observed before, the N learnt parameters δn’s of M-RVM contain
geometric information about the hidden function f(x). Thus, in order to create
a suitable acquisition function we need to take into account also the distribution
of the other inputs in the current iteration of the algorithm. A possibility is to
define the acquisition function as
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A(x) =
mt
∏

i=1

Vi(x|xi), (6)

where Vi(x|xi) = (x−xi)2 exp(− (x−xi)
2

�δi
), being � > 0 a parameter chosen by the

user. The function Vi(x|xi) has the analytical structure of a Nakagami density
[14]. The Nakagami density has been widely studied from an analytical point of
view. Thus, different features of Vi(x|xi) are known analytically and it can be
easily normalized.

x

Fig. 3. Example of two functions
Vi(x|xi) for the same xi (circle) with
a high (solid) and low (dashed) δn.

Note that each Vi(x|xi) depends on the
parameter δi and Vi(xi|xi) = 0 (Fig. 3).
Hence, A(xi) = 0 for all i = 1, . . . , mt.
The function Vi(x|xi) is symmetric with
respect to xi and it is bimodal with modes
located at

x∗ = xi ±
√

�δi. (7)

When δi is small, the two modes are closer
to each other and closer to xi, whereas
when δi is high the modes are far away
from xi. Figure 4 shows a sequence of
approximations { ̂ft(x)}3t=0 of f(x), and
the corresponding acquisition functions at
each iteration.

4 Experimental Results

4.1 Synthetic Example

In order to test RAE, first we consider a toy example where we can compare the
achieved approximation ̂ft with the underlying function f which is unknown in
the real-world applications. In this way, we can exactly check the true accuracy
of the obtained approximation using different schemes. For the sake of simplicity,
we consider the function

f(x) = log(x), (8)

with x ∈ X = (0, 20] hence D = 1 (see Fig. 5). Even in this simple scenario,
the procedure used for selecting new points is relevant as confirmed the results
provided below. We start with m0 = 3 support points, X0 = [0.01, 10, 20].
We add sequentially and automatically other 10 points using different tech-
niques: (a) completely random choice, uniformly within X = [0, 20], (b)
a deterministic procedure filling the greatest distance between two consecu-
tive points, adding the middle point of this interval, (c) Latin Hypercube
(LHC) sampling [17], (d) RAE with � = 6 in the functions Vi(x|xi). In
all cases, we use the M-RVM regression scheme (for simplicity, we also set
σ2

e = 0.1). The optimization of the remaining hyperparameters is obtained
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Fig. 4. A sequence of approximations ̂f0(x), ̂f1(x), ̂f2(x) and ̂f3(x) (top) of the func-
tion f(x) = log(x) (dashed line) obtained by RAE starting with 3 points and the
corresponding acquisition functions A0(x), A1(x), A2(x), A3(x) and A4(x) (bottom).
The nodes are depicted by circles. In this example, we have set � = 6.

by a parallel simulated annealing approach [13,15]. Note the deterministic
procedure always adds sequentially the following points, obtaining X10 =
[X0, 15, 5.005, 12.5, 17.5, 7.5025, 11.25, 13.75, 16.25, 18.75] (recalling that X0 =
[0.01, 10, 20] for all methods). At each run, the results can slightly vary even
for the deterministic procedure due to the optimization of the hyperparame-
ters (we use a simulated annealing approach that is a stochastic optimization
technique [13]). We average all the results over 500 independent runs.

We compute the L2 distance between ̂ft(x) and f(x) at each iteration,
obtained by the different method We show the evolution of the averaged L2

distance versus the number of support points mt (that is mt = t + m0) in
Fig. 5 (specifically, we show the median curves obtained over the 500 runs). We
can observe that the RAE scheme outperforms the other methods, providing
the smallest distances between f and ̂ft. The proposed technique gives a clear
advantage in the first iterations: with only mt = 7 points provides an error
of ≈10−1, whereas the other methods require more than 12 points for obtain-
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Fig. 5. The L2 distance (in log-scale) between f(x) and ̂ft(x) versus the number of
the number of support points mt, that is mt = t + 3 in this example. The results of
RAE are shown with squares, the LHC curve is shown with x-marks, the curve of the
deterministic procedure is depicted with triangles and the results of the completely
random approach is illustrated by circles.

ing the same error value. After adding a certain number of nodes (enough for
covering the entire domain X ), clearly the results become similar. The difficulty
of the automatic problem is clearly represented by the curve of the deterministic
procedure: the attempt of filling as fast as possible all the domain X trying to
maximizing the distance among the nodes is not the best strategy, in general.
In some specific scenarios, after the addition of one point, the performance can
even get worse (it can vary depending on the regression scheme employed). This
happens with the deterministic procedure and the addition of the 6-th and 7-th
node (see Fig. 5). Figure 4 depicts the function f(x) in Eq. (8), the approximation
̂ft(x), and the acquisition function At(x) obtained in four consecutive iterations
of RAE, considering a specific run of the algorithm.

4.2 Emulation of Costly Radiative Transfer Codes

Our second example focuses on the optimization of selected points for a
MODTRAN5-based LUT. MODTRAN5 is considered as de facto standard
atmospheric RTM for atmospheric correction applications [1]. This RTM solves
the radiative transfer equation in the atmosphere considering the effect of scatter-
ing and absorption by gasses and aerosols for a flexible configuration of viewing
and illumination conditions and surface reflectance. In our test application, and
for the sake of simplicity, we have considered D = 2 with the Aerosol Optical
Thickness at 550 nm (τ) and ground elevation (h) as key input parameters. The
underlying function f(x) consists therefore on the execution of MODTRAN5 at
given values of τ and h at the single output wavelength of 760 nm (i.e. bottom of
the O2-A band). As the parameters ai, bi and c in the toy example above, other
MODTRAN5 input parameters are set to standard atmospheric and geomet-
ric conditions (e.g. mid-latitude summer atmosphere, rural aerosol, nadir view,
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55◦ solar zenith angle, sensor height at 100 km). The input parameter space is
bounded to 0.05–0.4 for τ and 0–3 km for h. In order to test the accuracy of
the different schemes, we have evaluated f(x) at all the possible 1750 combina-
tions of 35 values of τ and 50 values of h. Namely, this thin grid represents the
ground-truth in this example.

We test (a) a random approach choosing points uniformly within X =
[0.05, 0.4] × [0, 3], (b) the Latin Hypercube (LHC) sampling (see, e.g., [17])
and (c) RAE (� = 3). We use the simulated annealing algorithm [13,15] for
both, optimizing the hyper-parameters of M-RVM and finding the maximum of
the acquisition function At(x). We start with m0 = 5 points x1 = [0.05, 0]�,
x2 = [0.05, 3]�, x3 = [0.4, 0]�, x4 = [0.4, 3]� and x5 = [0.2, 1.5]� for all the
techniques. We compute the final number of nodes mt required to obtain an
�2 distance between f and ̂f approximately of η ∈ {0.03, 0.2}, with the differ-
ent methods. The results, averaged over 103 runs, are shown in Table 1. RAE
requires the addition of ≈3 new points to obtain a distance ≈0.2 and ≈6 new
points to obtain a distance ≈0.03.

Table 1. Averaged number of nodes needed for obtaining a L2 error ≈ η.

L2 error η Random Latin Hypercube RAE

0.2 19.25 11.03 7.58

0.03 28.43 16.69 11.19

5 Conclusions

We introduced an automatic method to construct surrogate models, also known
as emulators, and optimal look-up-tables for costly physical models (as RTMs).
We proposed an iterative scheme combining the interpolation capabilities of
RVMs with the design of an acquisition function that fosters a suitable choice
of the nodes and flatness of the interpolation function. We illustrated the good
capabilities of the method in a synthetic example and a real example involving
atmospheric correction based on the computationally expensive MODTRAN5
model. Future work is tied to the development of multi-output schemes and
testing in other costly RTMs.
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