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Abstract. Segmentation of objects with known geometries in an image
is a wide research area. In this paper we show an energy minimization
model to detect the tip of glass pipettes in microscopy images. The
described model fits two rectangles with a common reference point to
dark image regions, which are the sides of a pipette. The model is mini-
mized using gradient descent. The low number of parameters result in a
fast evolution and noise insensitivity. The algorithm is tested on label-
free and fluorescent microscopy images. The error of the tip detection is
only a few micrometers. Automatic pipette tip detection is a step forward
to automate the patch-clamping process. The described method can be
extended to 3 dimensions or other applications.

Keywords: Shape detection · Patch-clamp · Pipette detection ·
Autopatching · Energy minimization · Label-free

1 Introduction

Segmentation of objects with well defined geometries is a vital problem in image
analysis. Several methods were proposed to detect lines, ellipses or rectangles
to identify roads [6], trees [11], or houses [7], respectively using marked point
processes. Another way is to compromise strict geometries and use variational
methods. For example higher order active contours (HOAC) that can describe
various objects with defined shape allowing slight variations of the boundaries.
HOACs were successfully used to model circular objects [9] or complex road
structures [12]. Recently a family of hybrid variational models was proposed
[13,14] that is capable of capturing circular and elliptical objects by minimizing
only a few parameters. Here we present a variational method that extends the
latter model to detect elongated straight object pairs that have a common ref-
erence point. We use this model to segment pipette tips under a microscope and
automatically navigate these tips with micrometer precision for patch-clamping
and measure properties of neuron cells.

Patch-clamping is a technique to study ion channels in cells. The technique
was invented by Erwin Neher and Bert Sakmann in the early 1980s who received
the Nobel Prize in Physiology or Medicine in 1991 for their work. Although the
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Fig. 1. Schematic whole-cell patch-clamping.

technique can be applied to a wide variety of cells, it is especially useful for
measuring the electrophysiological properties of nerve cells (neurons).

The schematic process of patch-clamping a single cell is the following. A
glass pipette is pulled onto an electrode. The tip of the glass pipette is open,
thus the measured signal originates only from the pipette tip, because the glass
does not transfer electricity. The pipette is then pushed next to a cell. When
a tight connection, called ‘gigaseal’ is formed between the cell and the pipette,
the cell membrane is broken by vacuum or relatively high voltage pulses. This
way the whole-cell patch-clamping configuration is established as illustrated in
Fig. 1, the electric signal is passed to an amplifier and then it is ready to be
recorded.

The patch-clamping process has to be repeated manually for every tar-
get cell. Experienced biologists can usually do only 10–30 successful patch-
clamping a day. The process is repetitive and monotonous, thus error prone
as the researchers get fatigued. Recently, efforts have been made to automate
the technique. In [3] authors used their automatic patch-clamp setup for in vivo
applications. In [10] the authors extended the technique to a multi-electrode
system using up to 12 pipettes. A MATLAB implementation of an automatic
patch-clamp software is publicly available [2]. A detailed description of building
an automatic patch-clamp setup can be found in [4]. In [1] automatic patch-
clamping has been successfully used for cardiomyocytes. An issue of automatic
patch-clamping is that glass pipettes has to be changed after every patch-
clamping, limiting the throughput. In [5] the authors show a way to clean the
pipettes which allows them to be used about 10 times. Patch-clamping is often
used in tissue slices when there is an imaging modality to see the target cells and
the pipette, unlike to in vivo applications. However, changing the pipettes intro-
duces another problem. The pipettes are not perfectly identical and the tip can
be slightly translated after the change. In [8] a method is proposed for automatic
pipette tip detection using fluorescent channels. However, fluorescent materials
can damage cell functions and are not always applicable. Recently, a method
for pipette detection in label-free microscopy was proposed in combination with
fluorescent cell detection in tissues [15]. The method is used in low magnification
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(4x) which provides sharp image of the pipette due to the relatively thick focus
plane, even if it is tilted. The detection is based on finding intersecting lines
using Hough transform, which calculates the lateral position of the tip. The z
position is refined using a focus detection algorithm.

In this paper we propose a novel pipette tip detection algorithm using energy
minimization. The method works for differential interference contrast (DIC) and
oblique microscopy image stacks that contain optically sliced images of a pipette.
These microscopy techniques provide dark image regions at the edge of the glass
pipette. The method tries to fit two line segments with a common end point
on the different projections of the image stack. The idea of fitting a primitive
shape to the image is inspired by the Snakuscule [14] algorithm that segments
circular objects. Besides the exact location of the tip’s endpoint in 3D, our detec-
tion algorithm determines the orientation and tilt angle as well. The algorithm
can be extended to fluorescent pipette tip detection, after an edge detection
preprocessing step.

2 Methods

Our tip detection method relies on the image formation of DIC (and similarly
of oblique) microscopy. DIC is able to show very small optical path length dif-
ferences of the objects. Diffraction, refraction, reflection and too high optical
path length differences can cause effects that are not shown correctly by DIC.
The light rays hit the sides of the pipette in a very flat angle, which results in
strong effects of the mentioned principles. Due to these side-effects, the regions
of pipette edges in the image will be dark, which is information about the posi-
tion of the pipette. Our method relies on this observation. The pipette is usually
not completely in focus in a single image, which is illustrated in Fig. 2a–b. We
have developed a 2D model that works on a minimum intensity projection (MIP)
of an image stack. The MIP image contains dark stripes in the position of the
pipette edges as shown in Fig. 2c. We apply the proposed algorithm for all three
possible projection directions to determine the exact position of the pipette tip.

Fig. 2. Example images of a pipette. (a) The pipette tip is nearly in focus. (b) The
z level is moved 20 micrometers up compared to (a). (c) Minimum intensity projection
along the third dimension of the stack image.
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2.1 The Pipette Hunter

The pipette capturing configuration is illustrated in Fig. 3. Let i and j define
our standard basis at the image origin. The coordinates in the standard basis
are denoted by x1, x2 and I(x1, x2) is the image data. The main idea is to cover
dark image regions (the edges of the pipette) with two wide rectangles given
some constraints. The rectangles are aligned with two line segments that have
a common end point, also called as pivot point. The pivot point is the reference
point of the two rectangles. The line segments are called legs. The pivot point is
given by its position vector r = x1i + x2j. The rotation of the legs around the
pivot point ϕ1, ϕ2 are measured from the i axis in the positive direction. The unit
direction vectors of the legs are noted as e1, e2 and their unit normals as n1,n2

respectively. ξi1 and ξi2 are distances from the pivot point in the direction of ei

that define the placement along the leg and the length of a rectangle (i ∈ {1, 2},
ξi2 > ξi1 ≥ 0). ηi1 and ηi2 are distances in the normal directions that define the
perpendicular placement and the thickness of a rectangle (i ∈ {1, 2}, ηi2 > ηi1).
Note, that η values can be given such that the rectangles are not symmetric to
the legs, which will allow fine tuning of the pivot point later in the algorithm.
The model has 4 degrees-of-freedom (DOF), 2 for the coordinates of r and 1-1
for ϕ1 and ϕ2.

Fig. 3. The pipette hunter.

2.2 The Associated Extreme-Value Problem

The points of the rectangles pi, i ∈ {1, 2} can be decomposed either in the
directions of the standard basis vectors or in the directions defined by their
respective legs such that

pi = r + ξiei + ηini

=
[
x1 + ξi

(
cos ϕi

) − ηi

(
sinϕi

)]
i +

[
x2 + ξi

(
sinϕi

)
+ ηi

(
cos ϕi

)]
j (1)

=
[
x1

(
cos ϕi

)
+ x2

(
sinϕi

)
+ ξi

]
ei +

[−x1
(
sin ϕi

)
+ x2

(
cos ϕi

)
+ ηi

]
ni,
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where ξi and ηi are the local coordinates w.r.t. the pivot point. The area of the
two rectangles can be simply given as:

A =
2∑

i=1

(ξi2 − ξi1) (ηi2 − ηi1) . (2)

We define the energy of the described system as the sum of the energies of the
individual legs E =

∑2
i=1 Ei:

E
(
x1, x2, ϕ1, ϕ2

) .=
2∑

i=1

1
A

ηi2∫

ηi=ηi1

ξi2∫

ξi=ξi1

f(ξi, ηi)I (pi) dξidηi, (3)

where f is an appropriately chosen function representing any filter that rotates
with the legs. Note that upper indices indicate variables on which the energy
depends and are not powers. The easiest way to understand the energy function
is to consider f to be identical to 1. In this case the energy is low when the mean
image intensity under the rectangles defined by the Pipette Hunter is low. The
components of the energy gradient w.r.t. the coordinates of the pivot point are:

∂E

∂x1
=

∂E

∂r
· i

∂E

∂x2
=

∂E

∂r
· j, (4)

where ∂E
∂r · b is the scalar (dot) product of the gradient vector ∂E

∂r ≡ E∇ with
one of the standard basis vectors b ∈ {i, j}. The gradient vector itself is a sum
of two vectors (i.e. the coordinates of the pivot point dependent on the energies
of both legs), each of them can be decomposed in the directions of its own leg,
such that the integration boundaries become constants:

∂E

∂r
=

2∑

i=1

[(
∂Ei

∂r
· ei

)
ei +

(
∂Ei

∂r
· ni

)
ni

]
. (5)

The energy gradient w.r.t. the rotations ϕ1 and ϕ2 are:

∂E

∂ϕi
=

2∑

j=1

1
A

ηj2∫

ηj=ηj1

ξj2∫

ξj=ξj1

f (ξj , ηj) I∇ (pj) · ∂pj

∂ϕi
dξjdηj . (6)

From Eq. (1), the derivatives of the position vector pj are:

∂pj

∂ϕi
= δij

{
ξj

[− (
sin ϕi

)
i +

(
cos ϕi

)
j
]
+ ηj

[− (
cos ϕi

)
i − (

sin ϕi
)
j
]}

= δij (ξjni − ηjei) . (7)

where δij is the Kronecker delta function, indicating that (unlike the pivot coor-
dinates) the rotations of the legs contribute to the system energy independently.
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Using Eqs. (4–7) and (a) the following identities i · ei = cos ϕi, i · ni =
− sin ϕi, j · ei = sin ϕi, j · ni = cos ϕi, (b) the definitions of the directional
derivatives Iξ

i
= I∇ · ei, Iη

i
= I∇ · ni, the complete system is written as:

∂E

∂x1
=

1
A

2∑

i=1

ηi2∫

ηi1

ξi2∫

ξi1

f (ξi, ηi)
[
cos ϕiIξi (pi) − sin ϕiIηi

(pi)
]
dξidηi

∂E

∂x2
=

1
A

2∑

i=1

ηi2∫

ηi1

ξi2∫

ξi1

f (ξi, ηi)
[
sin ϕiIξi (pi) + cos ϕiIηi

(pi)
]
dξidηi (8)

∂E

∂ϕi
=

1
A

ηi2∫

ηi1

ξi2∫

ξi1

f (ξi, ηi) [ξiIηi
(pi) − ηiIξi (pi)] dξidηi, i = 1, 2.

2.3 Simplification

Consider the simple case when no filter function is used: f (ξi, ηi) ≡ 1. Then the
calculations will be limited to the boundaries of the rectangles. By using filters,
the calculations can be expanded to the internal regions of the rectangles. Our
simplified model uses no filter function. Let the primed ξ′, η′ variables note the
variables measured from the origin of the standard basis in the directions of
the respective local systems ei, ni, i.e. (ξ′

i, η
′
i) = (ei · r + ξi, ni · r + ηi). Note

that the primed variables ξ′, η′ differ from their unprimed counterparts only
by a displacement, hence dξ = dξ′, dη = dη′. The gradient components of the
energy w.r.t. the pivot point (i.e. the first two lines of the extreme value Eqs. (8))
become single integrals:

∂E

∂x1
=

1
A

2∑

i=1

⎛

⎝cos ϕi

ηi2∫

ηi=ηi1

I (ξ′
i2, η

′
i) − I (ξ′

i1, η
′
i) dηi

− sin ϕi

ξi2∫

ξi=ξi1

I (ξ′
i, η

′
i2) − I (ξ′

i, η
′
i1) dξi

⎞

⎟
⎠

∂E

∂x2
=

1
A

2∑

i=1

⎛

⎝sin ϕi

ηi2∫

ηi=ηi1

I (ξ′
i2, η

′
i) − I (ξ′

i1, η
′
i) dηi (9)

+ cos ϕi

ξi2∫

ξi=ξi1

I (ξ′
i, η

′
i2) − I (ξ′

i, η
′
i1) dξi

⎞

⎟
⎠ .

Note, that the integrands are the differences of the image intensity values on the
regions’ opposite boundaries (that is, the opposite edges of the rectangles).
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Similarly, the gradient components of the energy w.r.t. the angles ϕ1, ϕ2 (the
third line of the extreme value Eqs. (8)) become:

∂E

∂ϕ1
=

1
A

⎛

⎜
⎝

ξ12∫

ξ1=ξ11

ξ1 [I (ξ′
1, η

′
12) − I (ξ′

1, η
′
11)] dξ1

−
η12∫

η1=η11

η1 [I (ξ′
12, η

′
1) − I (ξ′

11, η
′
1)] dη1

⎞

⎠

∂E

∂ϕ2
=

1
A

⎛

⎜
⎝

ξ22∫

ξ2=ξ21

ξ2 [I (ξ′
2, η

′
22) − I (ξ′

2, η
′
21)] dξ2 (10)

−
η22∫

η2=η21

η2 [I (ξ′
22, η

′
2) − I (ξ′

21, η
′
2)] dη2

⎞

⎠ .

Note that unlike in the case of the pivot equations, the integrands (of the sin-
gle integrals) are the weighted differences of the image intensity values on the
regions’ opposite boundaries (that is, the opposite edges of the rectangles).

2.4 Solving the Equations

One way to minimize the energy E
(
qi

)
of a system that depends on general

variables qi, i = 1, 2, ...n is to find the stationary solution for the gradient descent
evolution equation: ∂qi

∂τ = − ∂E
∂qi , where τ is the ‘artificial’ time, and at the

stationary point ∂qi

∂τ = 0 (hence ∂E
∂qi = 0).

In our case, the dimensions of the pivot point Eqs. (9) and the rotation angle
Eqs. (10) are different. The first two is expressed in length units, while the second
two is in radians. Thus we perform a normalization. The complete system, using
the local coordinate system, consists of four coupled differential equations:

∂x1

∂τ
= − ∂E

∂x1

∂x2

∂τ
= − ∂E

∂x1

∂ϕ1

∂τ
= − 2

(ξ11 + ξ12)
∂E

∂ϕ1
(11)

∂ϕ2

∂τ
= − 2

(ξ21 + ξ22)
∂E

∂ϕ2
.

The quantities on the right hand side are defined in (9) and (10).
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2.5 Properties and Notes

The Pipette Hunter is neutral (does nothing) in a homogeneous environment.
Weak ‘external forces’ (constants to Eq. (11)) may be added to avoid freezing in
these regions.

In the simplified case, the integrals are calculated only on the edges of the rec-
tangle shaped region, hence only the image intensity distribution at the boundary
is taken into account. The intensity function can freely vary inside. This is not
always acceptable. To impose some regularity requirements inside the rectan-
gles, an appropriate filter function can be applied, hence the general equations
in (8) need to be used. Minimizing the most significant Fourier coefficients of
the intensity function (i.e. using a combination of the Fourier basis functions as
a filter) allows minor variance inside the rectangles.

3 Results

We have implemented (11) in MATLAB. If some part of the legs are outside the
image boundaries, we use the median value of the image for calculations, which
is usually very close to the background intensity. For ξi1 we use 0, and for the
length of the legs (ξi2 − ξi1) we use half of the longer side of the image. We find
this value to work well when the pipette covers about half of the image (it can
be the shorter side as well) or even goes over it.

The η values should be chosen such that if a rectangle is fit on a pipette edge,
its sides that are aligned to ei lie on the opposite sides of the dark region. For
our tests we have empirically set 15 pixels for both η values which satisfied the
above requirement, and thus the sides are symmetric to the corresponding leg.
Note, that the distance between the sides (ηi1 + ηi2) becomes 30 pixels. If this
distance is too short, the algorithm is not able to fit the model on dark regions.
Similarly, if the distance is too high, the result can be inaccurate.

We start multiple instances of the Pipette Hunter mechanism in swarm to
cover the whole image, which is not possible by using only 2 legs. A simple swarm
setup is to place a few mechanisms with different rotations on grid points over
the image. This number can be minimized to keep the runtime low. As we require
the pipette to be around or over the center of the image and set the length of
the legs to be half of the longer side of the image, putting mechanisms to the
sides and the center of the image will be enough to find the pipette region with
at least one instance. Note, that this is a specific case and the search can fail if
the requirements are not satisfied. In the general case where no assumption is
made on the pipette’s position, the runtime can be much higher as it depends
on the number of instances in the swarm. Furthermore, we use a 2-phase run
of the algorithm. In the first phase, we only update the angles and apply a
force that pulls the two legs towards each other. The phase ends if the angles’
changes are small or the legs get closer to each other than 0.1 rad. This allows the
initialization of an instance with high angle difference (even π/2 rad or more).
In the second phase we turn off the pulling force, update the pivot point as well
and keep the restriction that does not let the legs get too close to each other.
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Fig. 4. Images captured during the runtime of the algorithm. Red dashed lines are
the starting position of the legs, which is kept in all the images for comparison. White
dashed lines are the current state of the legs. (a) During the first phase, both the
introduced force and the image intensities pull the legs towards the dark regions. (b)
End of the first phase. (c) In the second phase the pivot point is also updated. The legs
are moved and rotated to cover darker image regions. (d) The result of the detection.

A few iterations of the algorithm on an example image using one mechanism is
shown in Fig. 4.

3.1 Comparisons

To compare the detection of the Pipette Hunter to a reliable solution, we have
manually determined the pipette tip positions in 31 stack images. Figure 5 con-
tains images where the pipette orientation and the starting points of the algo-
rithm differs. The average absolute difference between the algorithm’s result and
the hand-picked focus points is 3.53 ± 2.47 µm, which is 32.97 ± 23.10 pixels
and the image size was 1388 by 1040 pixels. This error is acceptable in automatic
patch-clamping. A cell’s diameter is 10–20 µm. If the pipette tip is aimed at the
cell’s centroid, given the above error it will still reliably hit the cell. Furthermore,
our results are better than the value reported in [8] for final tip-target distance
in in vitro experiments, which was 12.06 ± 4.30 µm.

We have developed a simple baseline algorithm which can be compared to
our method. The baseline model also searches for dark image regions. The model
works if the pipette orientation is 0 rad. First, the algorithm searches for mini-
mum point-pairs in the y direction in every slice, then fits two lines on them. The
intersection of the two lines will be considered as the pipette tip. The algorithm
has a linear runtime, but poor in quality. The baseline model often over-detects
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(a) (b) (c)

Fig. 5. Example configurations and results.

the pipette tip, which is illustrated in Fig. 6 and compared to the proposed
model. On 15 appropriate image stacks (where the pipette orientation is 0 rad.)
the mean absolute difference to the hand-picked solutions is 17.92 ± 9.49 µm
(167.52 ± 88.68 pixels).

Fig. 6. Comparison to the baseline algorithm (left) on the same image stack.

3.2 Application on Fluorescent Images

Patch-clamping is sometimes performed in two-photon (fluorescent) imaging
mode. The proposed pipette detection method can be applied on fluorescent
images after applying an edge detection filter (e.g. Sobel detector in our case)
and inverting the image. The edges of the pipette will be dark regions. Figure 7

Fig. 7. Example fluorescent images and the detection result. (a) Images of a fluorescent
pipette in different z-levels and the projected fluorescent image. (b) The projected
image filtered with the Sobel operator. (c) Result of the pipette detection algorithm.



182 K. Koos et al.

shows the algorithm applied on a fluorescent image after the discussed pre-
processing steps. Because the dark regions are narrow, we used smaller η values
and longer legs.

4 Discussion

In this paper an energy minimization framework has been proposed for patch-
clamp pipette detection. The method works on minimum intensity projection of
DIC images. The main idea is to fit rectangles on dark image regions that are the
sides of the pipette. The algorithm can be applied in automated patch-clamping,
where the pipette has to be changed often and slight changes in the pipette’s
length and shape can be detected in a robust way. The result includes the pipettes
orientation and tilt angle as well. The steps of the algorithm are presented on
example images. The results are compared to hand-picked pipette tip positions
and to a baseline algorithm. After a preprocessing step, the approach can also
be applied to fluorescent images. Further work includes extension to 3D, which
will work on stack images and directly return an (x,y,z) point, both on DIC and
fluorescent images. We believe our method can be extended to other applications,
e.g. road intersection detection, neuron network segmentation and more.
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