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Abstract. This paper presents a computer-aided detection (CAD) algorithm for
detection of prostate cancer (PCa) in biparametric magnetic resonance imaging
(bpMRI). Using image intensity, gradient and gradient direction from
T2-weighted (T2 W), diffusion weighted imaging (DWI) and apparent diffusion
coefficient (ADC) MRI series, together with a distance feature, a quadratic
discriminant analysis (QDA) model was evaluated in 18 patients. A 3D prob-
ability map was created for each patient and the number of true- and false
positive tumors was determined. Visual assessment showed that for the majority
of patients, highest tumor probability was found within the expert annotated
volume. The algorithm successfully located 21 of 22 tumors with 0 to 4 false
positive per patient. However, the algorithm had a tendency of under-estimating
the tumor volume compared to the expert. The study suggests that features
extracted from bpMRI can be used for automatic detection of PCa with per-
formance comparable to existing CAD algorithms.
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1 Introduction

In 2012 over 1 million men were diagnosed with prostate cancer (PCa) worldwide and
around 300.000 men died from the disease in 2012 [1]. The current diagnostic tool for
PCa diagnosis is systematic transrectal ultrasound guided biopsies (TRUS+B) due to
suspicious elevated prostate specific antigen (PSA) and/or an abnormal digital rectal
examination (DRE) [2]. The biopsies are used to grade the PCa according to the
Gleason system, which describes the microscopic appearance of PCa. In practice, the
Gleason score ranges from 6–10, with 6 being the lowest tumor aggressiveness and 10
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being the most aggressive [3]. DRE is not effective in detecting small tumors and
tumors located in the anterior or central part of the gland [4]. TRUS+B has a risk of
missing tumors that are not palpable by DRE and not visible on ultrasound [5]. Using
standard TRUS+B only 0.05–0.5% of the prostate volume is sampled [6]. Thus, TRUS
+B entails a risk of missing significant tumors, under-grading cancer burden, and
conversely detecting small insignificant tumors that might lead to over detection and
possible overtreatment [7, 8]. In patients with persistent suspicion of PCa, despite
previous negative, or inconclusive TRUS+B, repeated biopsy procedures are performed
in around 31% of the patients [9, 10]. The detection rates of second to fifth set of
biopsies range from 12.5 to 16.9% [10].

Magnetic resonance imaging (MRI) provides excellent contrast between soft tis-
sues, which makes it suitable for PCa examination [11, 12]. Recent studies suggest that
multiparametric MRI (mpMRI) guided biopsies improve the detection of clinically
significant tumors compared to TRUS+B [13]. Furthermore, it can help reduce the
number of unnecessary biopsies and allows better assessment of the cancer aggres-
siveness [14, 15].

Using mpMRI data for PCa screening is a labor intensive task; it requires a high
level of expertise, which is not widely available, and is affected by inter-observer
variation [7, 16, 17]. This motivates the need for semi- or fully automatic methods,
such as computer-aided detection (CAD) algorithms that holds the potential of reducing
reading time and inter-observer variation, and may improve the detection rate of
clinically significant PCa [18].

Different semi- or fully automatic CAD algorithms have been designed, but it still is
a novel technique that remains a challenging issue to improve [7, 19]. The first CAD
system to identify cancerous regions in the peripheral zone (PZ) was proposed in 2003
by Chan et al. [20]. Since then, a substantial number of papers have been published on
the subject along with detailed overviews of the current literature on prostate CAD
algorithms [7, 21, 22]. The methodology behind the published algorithms vary greatly
regarding region of interest (peripheral zone (PZ) or whole prostate), MRI sequences,
definition of ground truth, features and classifiers used [7, 21]. The best combination of
these parameters used for the CAD algorithm remains unsolved and might be scanner
and dataset dependent.

The most commonly used mpMRI sequences for prostate CAD algorithms are
T2W, DWI (ADC) and DCE. The first two sequences, T2W and DWI (ADC), take less
than 20 min to acquire, while adding the DCE sequence prolongs scanning time by up
to 45 min. Furthermore, the DCE sequence requires administration of an expensive
contrast agent [23]. The long scanning time and contrast costs could pose a limitation
on a more widespread distribution of mpMRI diagnostics. Limiting the number of
sequences used may partly resolve those limitations [24].

The aim of the present study was to establish a new algorithm for detection of PCa
suspicious foci using biparametric MRI (bpMRI) based on T2W and DWI (ADC) MRI
sequences and compare it to expert annotations.
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2 Materials and Methods

2.1 Patient Data

Eighteen patients were scanned at Herlev Hospital, Denmark using a 3.0T MRI scanner
(Ingenia, Philips Healthcare) with an anterior pelvic phased-array coil. One mg intra-
muscular Glucagon combined with 1 mg hyoscine butylbromid (Buscopan) intra-
venous injection was administered to the patient to reduce peristaltic movement during
the MR examination. MR series were axial T2W and DWI including four b-values (0,
100, 800, and 1400 s/mm2)). An ADC map (b-values 100 and 800 s/mm2) was cal-
culated for each patient using the MR-scanner software. For details about the MRI
protocol, see Table 1.

All patients had at least one negative or inconclusive TRUS+B prior to the MRI
examination. Patients underwent a new TRUS + B with either 10 standard biopsies and
1–3 biopsies from MR positive areas, or only biopsies from MR positive areas (3–4
biopsies). All patients were diagnosed with local or locally advanced PCa. Patient and
tumor characteristics are listed in Table 2. Fusion of MRI and real-time ultrasound was
done using a Hitachi Medical Systems, Real-time Virtual Sonography (RVS) setup.

Table 1. Sequence parameters for 3 Tesla Ingenia MRI with pelvic phased-array coil

Sequence Pulse
sequence

TR
(ms)

TE
(ms)

FA
(°)

FOV
(cm)

ACQ
Matrix

Number of
slices

Slice
thickness
(mm)

Axial
DWI*

SE-EPI 4916 76 90 18 � 18 116 � 118 25 4

Axial
T2 W

SE-TSE 4228 90 90 18 � 18 248 � 239 31 3

SE = spin echo, EPI = echo planar imaging, TSE = turbo spin echo, TR = repetition time,
TE = echo time, FA = flip angle, ACQ matrix = acquisition matrix. * = b = 0, b = 100,
b = 800, b = 1400 s/mm2.

Table 2. Patient and tumor characteristics. Prostate and tumor volume is based on expert
delineation on T2 W. Gleason scores were obtained from prostate biopsies.

Median (range, STD)

Patient age [years] 66 (53–78, 6.57)
Prostate volume [cc] 46 (34–85, 14)
Tumor volume [cc] 2.09 (1.02–10.38, 2.19)
All Tumors (22)
Gleason score 6 (n = 4)
Gleason score 7 (n = 13)
Gleason score 8 (n = 3)
Gleason score 9 (n = 2)
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2.2 Image Pre-processing

T2 W series were manually cropped to exclude some of the normal tissues surrounding
the prostate gland. To correct for non-uniformity in MRI intensities the images were
normalized using the N3 algorithm, and made isotropic using tri-linear interpolation
(1 � 1 � 1 mm3 voxels) [25]. DWI (b = 1400 s/mm2) and ADC series were resam-
pled to match the world coordinate system of the T2 W series, using coordinate
information from the image headers. For one patient the DWI and ADC images were
manually co-registered to T2 W images using 3dSlicer since there was clear dis-
placement between the image series [26, 27]. The remaining 17 patients were visually
inspected for any displacement and no co-registration was done.

2.3 Expert Delineation

The prostate contour was delineated on T2 W images for all patients by an expert (>5
year experience in prostate MRI) to focus the analysis on prostate tissue only. Fur-
thermore, expert tumor contours on biopsy confirmed areas were annotated on T2 W
images using the combined MRI series, see Fig. 1. All contours were made in
Eclipse™ Treatment Planning System (Varian Medical System).

2.4 Voxel Feature Extraction

Intensity features from T2W, high b-value DWI (b = 1400 s/mm2) and ADC, together
with 3D image gradient magnitude and gradient direction for T2 W, ADC and DWI
images were used as features. The gradient magnitude is the square root of the sum of
squares of the individual gradients in x, y and z direction. Gradient direction feature
indicates in which direction the image intensity changes most rapidly using the
Azimuth angle (measured in the xy-plane from the x-axis). Furthermore, a Euclidean
distance feature, measuring the shortest distance from each voxel within the prostate to
the prostate boundary, was used.

Fig. 1. Example of expert delineation of prostate boundary (dashed white) and tumor boundary
(solid black) on T2 W (a), ADC (b) and DWI (c) for patient 1.
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The 10 features used for this study are listed in Table 3.

2.5 Voxel Classification

The intensity features (T2W, DWI and ADC) for each patient were normalized to zero
mean and unit variance to account for interpatient-variation. Afterwards, all feature
vectors were normalized to zero mean and unit variance.

The classifier used for this study was a quadratic discriminant analysis
(QDA) model. The 10 features listed in Table 3 were used in the final model using
leave-one-out cross-validation. In leave-one-out cross-validation one patient is kept
outside the training set and used for subsequent testing of the model. This is repeated
until all patients have been used for testing. The result of the classifier was a probability
map per-voxel-basis for each 3D prostate volume with values between 0 and 1, where 1
is indicating highest suspicion of PCa.

2.6 Evaluation

A true positive (TP) was defined as a model detected volume (connected voxels
with >0.5 probability) of >0.2 cc within the expert tumor contour. False positives
(FP) were defined as model detected volumes outside the expert tumor contour of
volumes >0.2 cc. The number of TP and FP, and percentage of TP and FP voxels were
evaluated for >0.5 probability obtained from the probability map. Furthermore, the
receiver operating characteristics area under curve (ROC-AUC) was calculated
(voxel-wise) for each patient and overall for the algorithm.

3 Results

Figure 2 shows the probability maps for image slices at tumor location (approx. center)
for each patient.

Visual assessment of the probability maps show that the highest tumor probability
corresponds well with the expert annotated area for many patients (e.g. Fig. 2a, i–j, n–o
and p–s)

In several patients (Fig. 2d, g–h and m) the tumor region has been identified,
although the detected area is smaller than the expert annotation. In some of the patients
a high tumor probability is found near the expert annotation (Fig. 2e, k–l). One tumor

Table 3. The features used for the classifier

Feature type Images

Intensity T2W, DWI, ADC
Gradient magnitude T2W, DWI, ADC
Gradient direction T2W, DWI, ADC
Distance Prostate contour on T2 W
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shows no area with high tumor probability within the expert annotation (Fig. 2o) and
some tumors only show a small area with high tumor probability (e.g. Fig. 2b and f).

Table 4 shows the quantitative performance of the algorithm with the number of TP
and FP for detected volumes >0.2 cc for >0.5 probability.

Of the 22 tumors 21 were detected by the algorithm with a median number of FP
per patient of 1. The number of FP ranged from 0 to 4 per patient with a total of 28. The
detected TP volumes ranged from 10.71% to 97.31% (median 38.58%) with actual
volumes of 0.24 to 5.45 cc (median: 1.14 cc). Three FP volumes were >1.50 cc, the
remaining were < 1.00 cc (median: 0.52 cc). The ROC-AUC ranged from 0.69–0.98
with a mean of 0.83.

Fig. 2. Probability maps (0 probability being transparent) overlaid T2 W images presented for
all patients.
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4 Discussion

In this study we presented a CAD algorithm based on bpMRI that can locate the
majority of PCa annotated by an expert. A probability map was calculated for each
patient using intensity features from T2W, DWI and ADC along with gradient mag-
nitude and direction, and a distance feature. Both visual and quantitative evaluation
showed good performance of the algorithm with only one missed tumor. Thus, the
algorithm can potentially aid physicians in detecting PCa on MRI for biopsy guidance.

The most used evaluation metric for CAD algorithms is ROC-AUC [21]. We found a
ROC-AUCof 0.83,which is in linewith theROC-AUC (0.80–0.89) reported by others [7,
21, 22]. However, some studies report higher values >0.89. Ehrenberg et al. [28] obtained
a ROC-AUC of 0.92, also detecting 21 out of 22 tumors with a low number of FP.

We found a low number of FP ranging from 0–4 per patient [15]. Giannini et al.
[29] found a per lesion sensitivity of 96% with a median of 3 FP per patient when
considering only PZ tumors. Their results are comparable to our per-lesion sensitivity

Table 4. Overview of output from the algorithm showing percentage true positive (for each
tumor) and false positive voxels. Furthermore, the number of TP and FP for each patient for
lesion volumes >0.2 cc at >0.5 probability is shown along with overall and per-patient
ROC-AUC.

Patient True positive
voxels [%]

False positive
voxels [%]

No. true
positives

No. false
positives

ROC-AUC

Tumor
1

Tumor
2

1 56.49 – 2.96 1/1 1 0.88
2 20.67 – 5.13 1/1 4 0.76
3 60.71 34.9 3.56 2/2 2 0.82
4 34.34 10.71 2.45 2/2 1 0.71
5 16.94 25.47 3.83 2/2 2 0.74
6 31.53 – 2.14 1/1 1 0.69
7 38.24 – 1.95 1/1 1 0.80
8 38.92 – 3.19 1/1 1 0.86
9 41.44 – 2.07 1/1 0 0.69
10 15.71 – 3.25 1/1 3 0.81
11 27.75 – 1.85 1/1 1 0.84
12 54.57 – 3.57 1/1 2 0.84
13 73.84 – 2.61 1/1 1 0.91
14 90.13 0.00 0.94 1/2 1 0.80
15 83.18 – 3.26 1/1 1 0.95
16 74.27 – 4.21 1/1 2 0.93
17 97.31 – 5.09 1/1 2 0.98
18 77.54 – 3.89 1/1 2 0.91

21/22 28 0.83
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of 95% (21/22 detected tumors) and a median number of 1 FP per patient. A FP in a
healthy patient will lead to unnecessary biopsy and healthcare cost, whereas in repeat
biopsy patients a high sensitivity is more important than a high specificity [30].

Support Vector Machines (SVM) are the most studied classifier for PCa CAD
algorithms. However, other classifiers such as Random Forest, Naïve Bayes and Linear
Discriminant Analysis, have been used [21]. S. E. Viswanath [31] compared 12 dif-
ferent classifiers, including QDA, for PCa detection and found that QDA was the best
forming classifier in terms of accuracy, execution time and overall evaluation.

Our algorithm has a tendency of under-estimating tumor volume compared to
expert annotation (e.g. Fig. 2d). MRI series have been shown to generally
under-estimate tumor volume compared to histopathological estimated volumes,
although more prominent on ADC than T2W [24, 32]. However, the intent of the
algorithm was not to segment the tumor volume but to determine the location of the
tumor in order to target biopsies.

Even though tumor volumes >0.5 cc usually are deemed clinically significant, a
threshold of 0.2 cc was used for detecting TP and FP in this study [33]. However, tumor
volume alone does not determine the PCa risk as some small tumors (0.2–0.5 cc) have
high Gleason grade components (Gleason grade 4) and are therefore clinically signifi-
cant tumors [34, 35]. Thus, a volume threshold <0.5 cc on MRI seems appropriate [24].

We acknowledge certain limitations to this study; Firstly, the prostate was not
automatically segmented but annotated by an expert. For a clinical useful CAD
algorithm, prostate segmentation should be done automatically as well, however, much
research has already been done within this subject and was not within the aim of this
study [36]. Another limitation is the use of biopsy results with expert annotation as
ground truth. The optimal ground truth would have been the pathological results from
radical prostatectomy specimens. Since PCa often is a multifocal disease it is possible
that some of the FP lesions found actually are TP not detected by the expert on bpMRI
[37]. Furthermore, standard biopsies detected additional small, low grade cancers
missed by the expert, which corresponds well with the fact that MRI often overlook
clinically insignificant PCa [38]. Finally, no co-registration was done between T2W
images and DWI and ADC images (except manual registration in one patient). Thus,
geometric image mismatch could have affected the results of the CAD algorithm.
A volume with high tumor probability was found in some patients (e.g. Fig. 2e and k–i)
at the same location as the expert annotation although with a slight displacement. This
might be the results of deformation and/or movement of the prostate during the MRI
examination. Automatic registration methods have been explored in the literature,
however, this is not a trivial problem to solve [7, 39]. According to Wang et al. [7]
registration using the coordinate information in the image header is often sufficient
when there is limited patient motion. In this study, prostate movement was visually
accessed, and found to be minimal.

The PIRADS v2 guidelines recommend the use of DCE series for expert assess-
ment of PCa, however, it is not clear whether DCE is necessary for CAD algorithms in
order to obtain good performance [40]. The combination of T2W, DWI (ADC) and
DCE are the most commonly used sequences for PCa diagnostic. However other
imaging modalities, such as proton density, diffusion tensor and MR spectroscopy,
have been applied for CAD algorithms as well [7, 39].
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CAD algorithms are intended to assist radiologists in their workflow by selecting
key images and highlight suspicious areas for further evaluation. This might decrease
the workload and inter-observer variance among radiologists [7]. Hambrock et al. [16]
showed that their CAD algorithm could assist less-experienced radiologists in evalu-
ating PCa on mpMRI reaching performance levels similar to experienced radiologists.

In this study all patients had at least one prior negative biopsy and all were PCa
positive. A future study is needed to assess the algorithms performance in PCa negative
patients to test the algorithms ability to exclude PCa negative patients from further
diagnosis.

5 Conclusion

This study demonstrates that a new algorithm based on bpMRI can be used for PCa
detecting with only one missed tumor and a low number of false positives. The
quantitative results are within the range of existing CAD algorithms using MRI data for
PCa detection.
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