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Abstract. Retrieving the 3D shape of an object from a collection of
images or a video is currently realized with multiple view geometry algo-
rithms, most commonly Structure from Motion (SfM) methods. With the
aim of introducing artificial neuronal networks (ANN) into the domain of
image-based 3D reconstruction of unknown object categories, we devel-
oped a scalable voxel-based dataset in which one can choose different
training and testing subsets. We show that image-based 3D shape recon-
struction by ANNs is possible, and we evaluate the aspect of scalabil-
ity by examining the correlation between the complexity of the recon-
structed object and the required amount of training samples. Along with
our dataset, we are introducing, in this paper, a first baseline achieved
by an only five-layer ANN. For capturing life’s complexity, the ANNs
trained on our dataset can be used a as pre-trained starting point and
adapted for further investigation. Finally, we conclude with a discussion
of open issues and further work empowering 3D reconstruction on real
world images or video sequences by a CAD-model based ANN training
data set.

1 Introduction

Nowadays, image-based 3D reconstruction, also known as multiview stereo
approaches, are usually realized as an analytic solution, based on multiple view
geometry. In general, almost all approaches use the principle of Structure from
Motion (SfM)—or rephrased real wold object shapes from different 2D images
captured from different locations. The reconstructed 3D objects are usually rep-
resented by a set of s points in a 3D space calculated from w ≥ 2 2D images
captured from different camera positions. This kind of representation leads to
a nonlinear least squares problem with 2 · w · s constraints and 6 · w + 3 · s
unknowns. Benchmarks of state of the art commercial 3D reconstruction soft-
ware like 123D Catch [2], or PhotoScan [1], as well as academic approaches e.g.
VisualSfM [29], or ARC 3D [26], show that the accuracy of the reconstructed
3D point cloud with respect to the ground truth is mostly sufficient [23] for
the specific use case, but exponentially impacts the processing time. For solv-
ing the nonlinear least squares problem in these SfM approaches, methods such
as gradient descent, conjugate gradient, Gauss-Newton, Levenberg Marquardt,
c© Springer International Publishing AG 2017
P. Sharma and F.M. Bianchi (Eds.): SCIA 2017, Part I, LNCS 10269, pp. 146–158, 2017.
DOI: 10.1007/978-3-319-59126-1 13



Structure from Motion by Artificial Neural Networks 147

...

...

...
...

...

...

...

...

I 1

I 2

I 3

I 4

I w

H1
1

H1
2

H1
z

Hn
1

Hn
2

Hn
s

O1

Oq

Input
layer

1st Hidden
layer

nth Hidden
layer

Output
layer

2D OOI
Views

3D OOI
Voxel

Fig. 1. Simplified scheme of an ANN system architecture for image-based 3D recon-
struction. As input vectors (�Iw) for the ANN, a number of w 2D gray scale projections
of a 3D object, taken from particular viewpoints, are used. The kind of ANN (feed-
forward, convolutional, recurrent, etc.) and setup (numbers of layers [n], numbers of
neurons within each layer, kind of meshing, etc.) has to be varied to find the best possi-
ble network for this task. The output layer of the ANN consists of v3 voxels, depending
on the resolution of the voxel space. Our current training dataset consists of several
10, 0000 objects with different voxel resolutions. Each training item consists of w = 12
images from various viewpoints of each object that serve as input—seen on the left
hand side of the figure—as well as v3 binary voxel values as output—seen on the right
hand side. Currently, we train and test our ANNs only on our virtual computer gen-
erated dataset. In the future, these pre-trained ANNs shall be applied for the training
on “real-world” images and objects.

and singular value decomposition are commonly used. The complete processing
pipeline of SfM approaches consists of a concatenation of algorithms, some of
which have already been shown to be realizable by ANNs [4,10,20,27]. Hence,
we introducing a scalable dataset, which provides 3D objects and 2D images
of different complexity. Such a dataset, we argue, would allow for a system-
atic investigation of ANNs for multiview reconstruction, hopefully leading to a
better understanding of which architectures are suitable for this task. Highlight-
ing these opportunities, we include a first baseline showing that a single simple
feedforward ANN can replace the whole 3D reconstruction pipeline. It already
allows us to analyze some of its weaknesses, like a low reconstruction accuracy
of occluded parts.

While recent deep neural network models have achieved promising results
on related tasks, e.g. 3D object recognition, depth prediction, and single-view
3D reconstruction, which are introduced in detail in Sect. 2, the task of image-
based 3D reconstruction of unknown object categories using ANNs is, to our
knowledge, not yet systematically examined. This fact is partly due to the lack
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of datasets for this task, containing images and 3D ground truth of different
3D objects. Filling this gap, we introduce in Sect. 3 the general architecture
of ANN-based 3D reconstruction and discuss how the 3D objects can be rep-
resented in the output layer of an ANN. Following this initial discussion, we
introduce our voxel-based dataset in Sect. 4 and release the less complex cases of
3 × 3 × 3, 4 × 4 × 4 and 8× 8 × 8 voxel spaces as a static dataset. For providing
a scalable dataset, which allows different degrees of complexity, a generator for
n × n × n datasets is introduced as well. In Sect. 5, we describe the design of a
simple feedforward ANN and show that it can reconstruct 3D objects in both
the 3×3×3 and 4×4×4 setup with an adequate accuracy. Based on the results
we achieved by training our ANN, we introduce the first baseline on this dataset
in Sect. 6. Section 7 sets our approach in a broader context and discusses oppor-
tunities for transferring the results of ANN-based multiview 3D reconstruction
from our computer generated dataset to real world images or video sequences
with unknown 3D objects. We conclude this paper by pointing out open issues,
proposing further working directions, and describing ongoing work such as our
CAD model-based ANN training data set.

Table 1. Overview of the cube dataset showing randomly picked objects in different
setups as example.

setup images of the object seen from 12 different viewpoints

3
×

3
×

3

cube 012497 with its pattern
(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0)

4
×

4
×

4

cube 030290 with its pattern
(0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, . . . , 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1)

8
×

8
×

8

cube 029598 with its pattern
(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . . , 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1)

1
6
×

1
6
×

1
6

cube 000776 with its pattern
(1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1 . . . , 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1)
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2 State of the Art

The reconstruction of 3D objects with ANNs is still in its infancy. To our knowl-
edge, there is no approach that does 3D reconstruction of unknown 3D objects
using only ANNs. For known 3D object categories, recently few approaches [7,30]
were introduced. However, our approach worked with unknown categories just
like any SfM approach. We summarize in this section work on related topics
that seem relevant in this context, for example 3D object recognition, depth
map generation as well as prediction, stereo image generation, and single-view
3D reconstruction.

For depth prediction, Eigen et al. [8] use series of convolutional neural net-
work (CNN) stacks applied at increasing resolution for surface normal estimation
and semantic labeling. The first scale predicts a set of coarse features for the
entire image, the second scale produces mid-level resolution predictions, and
the third scale refines the predictions to higher resolution. This work is based
on a multi-scale deep network for depth estimation [9]. A global coarse-scaled
network consisting of convolutional and max-pooling layers estimates the depth
at a global level. A fully convolutional fine-scaled network aligns these coarse
predictions with local details. For surface normal estimation, Wang et al. [28]
implement two CNNs. A top-down CNN takes the whole image as input and
captures the coarse structures which cannot be decoded by local evidence alone.
A bottom-up CNN acts on local patches extracted from the image and cap-
tures local evidence at a higher resolution. The output of these two networks is
combined with a fusion network that learns how to incorporate their predictions.

In 2016, Liu et al. [18] propose a single-view 3D reconstruction method using
a CNN to estimate per-pixel depth, normal, and symmetry correspondence. Rec-
tifying the depth information, they set up the symmetry correspondences as an
optimization problem in their network. Another work [17] introduces a CNN to
learn unary and binary potentials for the continuous conditional random field
layer that estimates depth on single images which are over-segmented into super-
pixels. Li et al. [16] use a method that extracts multi-scale image patches around
the superpixel centers, and a CNN learns the relationship between these patches.
Thus, the estimation of depth can be formulated as a regression problem.

Roy et al. [22] present a convolutional regression forest where each node
in the forest is associated with a CNN which makes a depth estimation for a
window around each pixel with a corresponding probability. Without requiring
labeled data by using only pairs of images with a small camera motion between
themselves, Garg et al. [11] propose an unsupervised framework to train a deep
neural network for single-view depth prediction.

Already back in 2004, Peng et al. [20] showed that object reconstruction
by an ANN is more accurate than object generation by 3rd order polynomials.
The ANNs they used in their experiments were completely based on multilayer
feedforward network designs.
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3 Multiview 3D Reconstruction by ANNs

Images as input for ANNs have become quite common for, e.g., object recog-
nition tasks [12,14,24]. For these tasks, the output layer of an ANN is usually
defined in a way that each output neuron represents a single object category.
However, in computer graphics and computer vision, the shape of 3D objects
is usually described by vertices, edges, and faces which vary depending on the
complexity of the object. A simplified representation of 3D objects for comput-
ers was introduced by the first computer games, which use volumetric pixels—so
called voxels. Thus, when designing an ANN to output 3D information one has
to choose a suitable representation for 3D objects, i.e., the output layer of the
ANN must encode either (i) vertices, (ii) edges, (iii) faces, or (iv) voxels of the
object.

In connection with the performance of ANNs in binary classification tasks,
we chose a voxel-based representation of the 3D objects for the output layer.
This form of representation has the additional advantage that the resolution and
therefore its accuracy, as well as its computational complexity, can be scaled. The
input consists of images captured from the object from different viewpoints, as
is common for any SfM approach. These considerations lead to the scheme of a
general architecture for ANN-based 3D reconstruction, illustrated in Fig. 1. Like
in digital imaging, a general working architecture with a low resolution should
establish the basis for higher resolution results. Hence, we designed our dataset
with low resolutions, but with an option to scale up.

4 Dataset

As a first idea for creating a dataset which provides the necessary amount of
training and test samples to train larger ANNs, we considered a database gen-
erator based on a geometry definition file format like Wavefront obj. Since a
dataset of a variety of 3D obj objects will consist of simple and complex objects
at the same time, and because the complexity of an object is quite difficult to
quantize, we turned towards designing a more conservative dataset. Thus, we
brought up a cube-based dataset, cf. exemplary objects of it in Table 1. The
generation of this dataset is done in two steps. First, a cube generator computes
random cubes in a r×r×r-space and stores them as 3D obj objects. Second, the
images and voxel generator creates w images showing an object from different
viewpoints and its corresponding voxel cloud in a defined resolution.

4.1 Cube Generator

This generator1, written in Matlab, randomly generates n 3D objects. Each
such object is created by taking a unit cube in R

3 and subdividing it into
r × r × r subcubes. The parameter r can be defined by the user. By ensur-
ing the uniqueness of the cube distribution in the r × r × r grid, this generator
1 Cf. supplementary material on https://ikw.uos.de/%7Ecv/publications/SCIA17.

https://ikw.uos.de/%7Ecv/publications/SCIA17
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is able to generate 2r
3

different 3D objects and export them as 3D obj object
files. Each 3D object is generated by filling the r×r×r grid with random binary
values, where 1 is interpreted as a filled subcube, while 0 signifies an empty
space. To generate the object description, each subcube in the r × r × r grid is
described by 8 vertices connected by 6 rectangular faces. Before exporting them
as 3D obj objects, duplicate vertices are combined and inner faces, where two
subcubes are connected with each other, are deleted.

4.2 Images and Voxel Generator

For the generation of the w input images and a voxel cloud with the resolution
v, a Matlab script is provided1 which accepts 3D obj files as input data. For this
generator, the user can define the number of images w taken from the 3D object,
its pixel resolution x × x, and the resolution of the voxel cloud v × v × v.

When generating w images showing the object from w different viewpoints,
the generator will choose viewpoints that are uniformly distributed around the
object to provide as different perspectives as possible. This is achieved by con-
sidering a sphere enclosing the object and evenly distributing the w viewpoints
on the sphere using the Fibonacci lattice [13]. From these viewpoints, gray scale
images with a resolution of x × x are rendered. For each scene, a light source
is added next to the viewpoint. The images, as well as the voxel cloud of the

convolution2d_input_1: InputLayer
input:

output:

(None, 1, 240, 20)

(None, 1, 240, 20)

convolution2d_1: Convolution2D
input:

output:

(None, 1, 240, 20)

(None, 500, 236, 16)

maxpooling2d_1: MaxPooling2D
input:

output:

(None, 500, 236, 16)

(None, 500, 118, 8)

dropout_1: Dropout
input:

output:

(None, 500, 118, 8)

(None, 500, 118, 8)

flatten_1: Flatten
input:

output:

(None, 500, 118, 8)

(None, 472000)

dense_1: Dense
input:

output:

(None, 472000)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, r × r × r )

Fig. 2. The activation functions for all inner nodes are rectifiers, while the tanh is used
for the output layer. The loss function used for training is the mean squared error.
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objects, are created after scaling the object to the v × v × v grid, so that all
voxels laying inside the object are defined as cubes.

4.3 Cube Datasets

In addition to the generators, we have released three datasets—a 3 × 3 × 3,
a 4 × 4 × 4 and a 8 × 8 × 8 setup, cf. Table 1—as static benchmarks. This
ensures reproducibility for the proposed baseline. These static snapshots consist
of 100, 000 different objects for the 3×3×3 setup, 300, 000 different objects for the
4 × 4 × 4 setup and 430, 000 different objects for the 8 × 8 × 8 setup. The objects
in both datasets are shown from w = 12 different viewpoints with a resolution
of 100× 100 pixel. This number of objects is, in our opinion, a sufficient amount
for training an ANN. Further, we chose w = 12 different viewpoints since this is
the minimum amount allowing us to solve this task by hand.

5 3D Reconstruction with ANNs

To show the usability of our dataset in a 3D reconstruction task, we trained an
ANN to predict the 3D voxel representation of the object from its images. For
each of the objects, there were 12 images, taken from different viewpoints (cf.
Table 1), and the values in the binary voxel grid are either 0 when outside the
object or 1 when inside the object. The aim is that the trained ANN acquires
a model of this relationship and is able to output correct voxel grid labels, also
for new unknown 3D objects in the same input format.

We prepared the data to fit the available hardware resources by downscaling
the size of the input images, here from 100 × 100 to 20 × 20 pixels. We then
concatenated all 12 images of one object into one matrix of the size 240 × 20,
which then served as input to the ANN. To make the objects easier to load at
once as training data for the different ANN setups, 100, 000 different objects
were stored into one large matrix.

5.1 Baseline ANN

We created a first simple feedforward ANN using the Keras [6] neural net-
works library, with Theano [25] as backend. Due to the use of binary voxels
as output, image-based 3D reconstruction becomes similar to a classification
task (but allowing multiple classes per input). Hence, we adapt a simple exam-
ple ANN [5,24], that was originally devised to recognize handwritten digits from
the MNIST dataset [15]. The resulting network consists of five main layers i.e.
the input layer, a convolutional layer, a pooling layer (max pooling), a fully
connected dense layer, and the output layer, that is also fully connected.

The activation functions of all inner nodes are rectifiers and for the output
tanh. As the tanh function has outputs in the range of −1 to 1, the voxel grid
labels are adapted accordingly. Because tuning the ANN is not the primary
objective in this paper, the architecture of the layers are chosen without much
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Table 2. Baseline of the image-based cube 3D reconstruction dataset. All results are
generated by using the feedforward ANN seen in Fig. 2. The object accuracy is a mea-
sure of how many objects were reconstructed completely correct or more than 80% of
their voxels.

Training cubes Epochs Voxel accuracy Object 100%
accuracy

Object 80%
accuracy

3
×

3
×

3 1–10, 000 4 78.01% 0.52% 40.80%

1–10, 000 8 82.03% 2.39% 63.05%

1–30, 000 2 84.66% 1.38% 60.91%

1–30, 000 4 88.86% 4.84% 81.72%

4
×

4
×

4 1–10, 000 8 66.01% 0.00% 1.53%

1–30, 000 2 67.09% 0.00% 0.90%

1–30, 000 4 70.80% 0.00% 4.47%

consideration. Therefore, it is possible that other sizes would be more suitable
for the problem—the values used can be found in Fig. 2. For the objective of
providing a dataset for a sytematical development of multiview reconstruction
by ANN, the generated results provide an initial step (cf. Sect. 7) as a starting
point for further research.

For creating a more robust network, a dropout rate of 20% during training in
the connections between the pooling layer and the dense layer is implemented in
addition to the main layers cf. Fig. 2. For training we used, the training sample
size and epochs hyperparameters mentioned in Table 2, a batch size of 200, the
mean squared error as loss function and the Adam optimizer.

6 Baseline and Results

The best performance we achieved when training the ANN shown in Fig. 2 was
88.68% overall voxel accuracy on the 3×3×3 setup, using objects 1 to 30, 000 as
the training set during 4 epochs of learning. In the 4 × 4 × 4 setup, a maximum
accuracy over all voxels of 70.80% could be reached, using the objects 1 to 30, 000
as the training set over 4 epochs. In Table 2, a selected overview of trained ANNs
is given as baseline, where we also provide the percentages of 3D objects which
could be reconstructed 100% and 80% correct, respectively. The footprint on the
hard disk of all trained ANNs was about 725 MB per network. The overall run
time varied from 2 to 6 hours using a non GPU accelerated version of Theano.

To investigatie how well a voxel at a certain position was learned, the accu-
racy for each voxel is calculated. Figure 3 shows the average accuracy for (a)
the 3 × 3 × 3 setup and (b) the 4 × 4 × 4 setup, where an accuracy of random
chance—50%— is marked blue and an accuuracy of 100% is marked dark red.
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Fig. 3. Average accuracy of each voxel in two different setup (a) and (b); from the left
to the right hand side the slice by slice walk through; accuracy is color coded from 0.5
random chance–blue to 1.0 every time correct–dark red (Color figure online)

7 Discussion

There is an ongoing discussion on what reconstruction accuracy can be reached
with an ANN approach for image-based 3D reconstruction. During the prepara-
tion of this dataset, its generator, and while designing the first ANN architecture,
our estimations on the expected accuracy varied from about 60% up to 98%. As
the standard processing pipeline used for image-based 3D reconstruction is a
concatenation of algorithms, most of them applying only linear operations, one
would expect that ANNs should be able to perform quite well on this kind
of problem. However, the first observations, presented in Table 2, suggest that
the problem is not as simple as one might expect. One possible reason is that
classical SfM approaches [1,19,21,29] reconstruct vertices and faces instead of
reconstructing the object as voxel space. This issue might increase the complex-
ity, due to the hidden inner object voxels. These inner voxels may be occluded
and thus not detectable on any image. Therefore, the additional interrelationship
must be learned, that, e.g., inner object voxels are always to be filled.

Based on these considerations, we were interested if there are positions that
are harder to predict within the voxel space. Thus, we expanded the results, with
Fig. 3 showing the average accuracy for each voxel. It can be seen that the accuracy
of the outer voxels of the cube in both setups is very high, while the accuracy drops
towards the center of the voxel cube. This can be explained by the fact that these
voxels are often blocked from view by other parts of the object.
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Considering the issues that occur even on this simple cube dataset, one can
expect further insights from a more thorough analysis of ANNs trained on this
dataset. It may turn out that 2D convolution is not the appropriate architecture
for this 3D scenario and that other architectures are more suitable. The recent
technique of layer-wise relevance propagation [3] may help to identify problem-
atic regions in the input images and suggest changes to the design of the ANN.
Furthermore, one may consider using the classification, in a non binary manner.
Instead, one can create half cubes by incorporating the correspondences to the
surrounding blocks. In this way, more accurate objects can be reconstructed.

8 Conclusion

In this paper, we introduced a cube-based dataset to be used as a reference
dataset for evaluating multiview 3D reconstruction algorithms. Also, we devised
a first baseline ANN architecture to be trained on that dataset. Our initial
results suggest that multiview 3D reconstruction of unknown objects by a simple
five layer feedforward ANN is possible. Based on the results observed on our
simple ANN, we expect that a significant improvement in the performance can
be achieved. These enhancements can be done, e.g. through another design of
the layers, as well as its connections, more training examples or epochs, another
size of the training set or even through another non-voxel-based representation
of the 3D object. As already stated in the introduction, the main goal of this
paper is not to introduce an ANN with the best possible accuracy, but rather
to introduce a dataset for a systematic investigation of ANNs for multiview
reconstruction.

Consequently, the dataset presented here is the basis on top of which we
will develop, design, train, test, and benchmark various ANNs. To get a deeper
understanding, we plan to visualize the features learned on each layer and in each
node of the network. We hope that the release of a standard scalable set of 3D
training data will empower the community to head in the same or similar direc-
tion. In addition, such a set allows evaluating the best performing ANN against
classical SfM approaches, which are nowadays used for exactly these tasks—the
image- and video-based 3D reconstruction of objects. Such an evaluation will
only lead to meaningful results if the SfM, as well as the ANN approaches, use
the same input data for the 3D object and a comparable output format for the
reconstruction process.

Achieving this ambitious goal, further work must be done, which also includes
the identification of open issues and the discussion of ANN architectures whether
they are promising or misleading. For this purpose, our roadmap of further work
consists of five packages which not necessarily have to be processed sequentially:

– Proving a widely diversified set of ANNs which outperform the current base-
line on our dataset by a significant value of at least 5%.

– Visualization of learned features by each layer and node to understand the
general working principle of each designed ANN.
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– Developing, generating, and introducing a virtual 3D CAD dataset with a
voxel resolution of at least 100 × 100 × 100.

– Developing, generating, and introducing a real 3D object dataset with the
corresponding images captured from different viewpoints and including the
3D ground truth data of the object.

– Analyzing if voxel-based multiview 3D reconstruction by ANN can be scaled
up, e.g. by the use of pre-trained computer-generated training data, to reach
a suitable voxel resolution with available hardware resources.

One forthcoming work package is the generation of an extensive dataset based
on 3D CAD objects. Although those objects will introduce an additional level of
complexity and hence may be less suited for initial experiments, they definitely
deserve attention in the future due to their practical relevance. Thus, we will
expand our images and voxel generator to allow for any volumetric obj 3D object
to be converted into a set of w images and a voxel cloud with a certain resolution.
Furthermore, we plan to design, train, and test a diversified set of ANNs on our
dataset to support our claim that ANN-based 3D reconstruction from images or
video sequences is feasible. We encourage everyone to outperform our baseline
and to improve image-based 3D reconstruction using ANNs.
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