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Abstract. This paper presents an error analysis and correction model
for four structured light methods applied to three common types of bio-
logical tissue; skin, fat and muscle. Despite its many advantages, struc-
tured light is based on the assumption of direct reflection at the object
surface only. This assumption is violated by most biological material e.g.
human skin, which exhibits subsurface scattering. In this study, we find
that in general, structured light scans of biological tissue deviate sig-
nificantly from the ground truth. We show that a large portion of this
error can be predicted with a simple, statistical linear model based on
the scan geometry. As such, scans can be corrected without introducing
any specially designed pattern strategy or hardware. We can effectively
reduce the error in a structured light scanner applied to biological tissue
by as much as factor of two or three.
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1 Introduction

Structured light has proven to be very useful for 3D scene acquisition. This is
due to its high speed, precision and versatility. As such a wide array of related
techniques have been developed in the past decades, facilitating everything from
high precision metrology to real-time guidance of automation [8].

Structured light uses a calibrated camera-projector pair as shown in Fig. 1.
A series of time multiplexed patterns is projected onto the scene, which can
be used for matching and triangulation with the camera. This active approach
makes correspondence searching much simpler than passive stereo approaches,
and is applicable to scenes with poor texturing. A very important application
for structured light is 3D scanning of biological materials, especially human tis-
sue. Examples include head tracking for medical motion correction [22], vision
guided surgery [18,23], medical diagnostics [1,4,28] and automation in agricul-
ture and farming [7,21,25]. While the progress in the field has been impressive,
one must understand that many target materials are quite problematic. Indeed,
they violate the inherent assumption of direct, diffuse surface reflection that most
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structured light methods are built on. The Fresnel equations predict that when
light transitions from one media to another a portion is directly reflected and
another is transmitted into the media itself. In the media the light is scattered
one or multiple times until it is absorbed or retransmitted into the environment.
The proportion between reflected and refracted light is determined by the spe-
cific media’s optical properties. For example only 5–7% of human skin reflectance
is direct, the remainder is emitted via subsurface scattering [14]. It is therefore
of paramount importance that the effect of this violation on structured light is
understood and quantified.

In this study, we show that in general, a structured light scan of biological
tissue deviates significantly from reference measurements, even with patterns
designed specifically to reduce these effects. A large portion of the error can
be predicted with a simple, stochastic linear model based on the incident ray
geometry. Scans can then be corrected without the need for advanced pattern
strategies or special hardware. We can effectively reduce the error in any struc-
tured light scanner applied to biological tissue by as much as factor of two or
three.

Our study focuses on three types of biological tissue (fat, muscle and skin)
with an emphasis on human applications. However we are using porcine materials
as a substitute due to its availability and optical similarity to human tissue [26,
27]. Through empirical study we quantify the error induced in structured light
by the biological material’s optical properties. This results in a linear error model
based on the view geometry fitted to each method, material combination that
can be used to predict and correct the scan error.
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Fig. 1. The structured light principle: a number of patterns are projected onto the
scene, and images are captured by a camera. Correspondences are determined by dif-
ferent encoding algorithms, and used to triangulate points on the object surface. In
this example, 3-step Phase Shifting patterns are shown.

2 Related Work

The issue of global lighting effects in the context of structured light has been
recognized by many authors, e.g. in the acquisition of a human face reflectance
field [6].
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In order to reduce these effects, hardware modifications such as polariza-
tion have been used [2]. Recent attempts have been to design structured light
encoding patterns such that they are less susceptible to global lighting effects.
The underlying observation is, that with high-frequent patterns, global lighting
effects can be considered constant, and invariant to a spatial shift of the pat-
tern. This allows for efficient separation of the observed light intensities into
direct and global light [20]. In Modulated phase Shifting [3], structured light
patterns are modulated by means of carrier patterns, such that they become
high-frequent in both spatial dimensions, thereby improving their separation
power. Micro Phase Shifting [10] makes use of sinusoidal patterns in a narrow
high-frequency band, promising robustness to global lighting effects and stable
phase unwrapping with an optimal number of patterns. It should be noted, that
the decoding process in conventional Phase Shifting methods (e.g. [13]) also
implicitly performs direct/global light separation. This is true in particular for
high frequency scene coding patterns. Since lower frequency phase unwrapping
patterns are affected differently by global lighting effects, this can lead to gross
outliers. Hence, the advantage of Micro Phase Shifting is not in higher accu-
racy, but rather in improved robustness (fewer outliers), and more efficient use
of information in the encoding patterns.

A newer approach is unstructured light [5], in which the pattern frequency can
be high in both dimensions. However the number of patterns is not ideal, and the
matching procedure rather inefficient. For binary encoding methods, exclusively
high or low-frequency pattern schemes can be considered robust against different
global illumination effects [9].

An approach to compensate for the measurement error in isotropic semi-
transparent material caused by subsurface scattering was presented in [16]. Sim-
ilarly to our approach, this work empirically determines the measurement error
and explains it by means of a single variable (the projected light angle), albeit
only with a single verification object and structured light method. In [15], a
Monte-Carlo simulation of the measurement situation was presented, which gives
some insight into the error forming process.

In [11], an analytical derivation of the measurement error is given for the
Phase Shifting method. This error model predicts the error to decrease with
increased spatial frequency of the pattern. The model does not however take
into account the loss of amplitude at higher frequency patterns, which increases
noise in the measurement data. Furthermore it requires precise knowledge about
the scanned material’s optical properties (extinction coefficient, phase function
and index of refraction), all of which can be difficult to find or estimate.

Computer simulations of structured light scans were performed in [19] to
benchmark encoding methods with respect to various parameters, and were
found to have similar robustness with respect to subsurface effects.

To our knowledge, no study has thus far quantified the amount of error in
scans of biological tissue, or provided a means of correcting for it.
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3 Statistical Error Model

Our principle assumption is that the error is composed of a deterministic part,
which once determined can be subtracted from future scans, in order to improve
the accuracy. Previous work gives some hints as to which parameters to include
in a statistical error model [11,16].

Fig. 2. The structured light scan geometry with the parameters of our error model.
The surface normal is n, view direction v, light direction l and the projector-surface
distance is d.

Considering the scan geometry, as shown in Fig. 2, we include three variables
in our error model: the view angle (given by n · v), the light angle (given by n · l)
and the distance from projector to object, d. We then formulate the following
error model:

y =
[
1 n · v n · l d]

⎡

⎢
⎢
⎣

β0
β1
β2
β3

⎤

⎥
⎥
⎦ , (1)

where

y is the predicted error in mm,
βi is a weight,
n, v, l and d are shown in Fig. 2.

We also tried including many other variables, including reflected light to view
angle and coding direction to normal vector angles. These variables are inspired
by the analytical error model of Holroyd [11], but did not explain sufficient
variance to justify their inclusion in our model. We also fitted Holroyd’s error
model directly, but our linear model provided more explanatory power.
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Fig. 3. Structured light patterns used in our experiments. In each case, 12 patterns
were used.

4 Experiments

In order to gather data for the error quantification we scanned surfaces made of
one of three porcine tissue types; fat, muscle or skin. All samples were raw and
unprocessed with 8 samples of each type. The samples were placed individually
in the scan volume and spanned many view and light angles. Their distance
to the projector also varied from approximately 200mm to 400mm. Each scan
produced approximately 5 · 105 data points resulting in millions for each tissue
type.

In optical metrology it is common practice to prepare optically challenging
surface with a spray [12]. This makes the surface optically diffuse while pre-
serving the geometry. The method was used to acquire a ground truth surface
to which each scan was compared. Specifically, after each scan the object was
sprayed and covered with a thin layer of chalk. Then the reference scan was
obtained. While we cannot assume that the chalk coated surfaces to be perfect,
we consider them ground truth as they provide very clear contrast with virtu-
ally no global illumination. In order to verify that this procedure does not alter
surface geometry, we applied two separate layers of chalk to a sample object,
and compared the scan result after each layer. The mean signed distance was
0.037mm, indicating that chalk spraying the surfaces does not significantly bias
the result. As can be seen in Fig. 4 the effect of chalk spraying is relatively pro-
nounced, increasing reflectance and counteracting the pattern blurring caused
by subsurface scattering.

In our experiments, we used four different structured light methods:

– Binary Gray coding [24]: one completely lit and one completely dark image
were used to define the binary threshold individually in each camera pixel.
The remaining patterns were used to encode 210 = 1024 individual lines on
the object surface.
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Fig. 4. Fine grained binary structured light pattern projected onto various types of
tissues. The effect of subsurface scattering is clearly seen the pattern becomes blurred
without chalk coating.

– N-step Phase Shifting was used with 9 shifts of a high-frequency sinusoid of
frequency 1/76 px−1, corresponding to approximately 1/10mm on the object
surface. Three additional patterns were used for phase-unwrapping [13].

– Micro Phase Shifting [10] using frequencies in the band [1/80.00 −
1/70.00] px−1. These frequencies corresponds to a spatial frequency on the
object surface of approximately 1/10mm. Slightly different from [10], the spe-
cific values were determined using a derivative free non-linear pattern search.

– Modulated Phase Shifting [3] with three shifts of a sinusoid of frequency
1/76 px−1 (1/10mm on the object surface). Each of these sinusoids was mod-
ulated in the orthogonal direction using a sinusoidal carrier with the same
frequency. Three additional patterns were used for phase-unwrapping.

For the sake of brevity these will henceforth be referred respectively to as;
Gray, PS, Micro PS and Mod PS. The former two are standard methods of
structured light and can be expected to perform very similar to many derived
methods. The latter two are state-of-the-art and have been specifically designed
to mitigate the effects of global illumination, as described in Sect. 2. As such we
asses and compare the progress in the state-of-the-art in terms of counteracting
the influence of global illumination. A pattern budget1 of 12 was settled on for
each method as it provided a reasonable balance in acquisition time and accuracy.
For all Phase Shifting methods, pattern frequency was set so that each period
would be approximately 10mm on the object surface. The remaining frequencies
needed in micro Phase Shifting were determined using simplex optimization as
suggested in the original paper [10]. Figure 3 shows the pattern sequences used
in our experiments.

For every sample, we defined a binary mask within which all possible surface
points were reconstructed. This ensured that the exact same surface region was
used in the evaluation of each method.
1 Pattern budget is the number of projected patterns allowed in a single scan.
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The error of each surface point was quantified by determining its signed
distance to the corresponding point in the chalk sprayed reference. For Gray
code scans we define the corresponding points as being the pair with the smallest
absolute normal distance. With the other methods, we compared points using
their position in the pixel grid.

5 Results and Discussion

The parameters obtained after fitting the error model to our data are seen in
Tables 1, 2 and 3. These shows the estimated parameters as well as the RMS of
data compared to the chalk coated reference before and after correction (respec-
tively RMSraw and RMScor) in units of mm. The two latter were evaluated
through a process of leave-one-out k-fold cross validation with 5 partitions. In
addition we have also estimated the degree of variance explained, R2, as well as
the P -values for the statistical significance of our model against a constant model.
All model dependencies were subject to an analysis of variance (ANOVA) [17].

In general the model provides a significant reduction in RMS for all methods
with the greatest effect for muscle and skin. It is interesting to note that R2 is

Table 1. Muscle model estimate and regression quality

β0 β1 β2 β3 RMSraw RMScor R2 P

Gray 0.13 0.15 −0.026 2.3 × 10−4 0.42 0.27 0.0082 0

Phase Shifting 0.25 0.47 −0.18 −2.5 × 10−5 0.5 0.21 0.06 0

Micro PS 0.21 0.36 −0.12 −4.1 × 10−6 0.45 0.23 0.034 0

Modulated PS 0.27 0.077 0.053 −9.7 × 10−5 0.42 0.26 0.0037 0

Table 2. Skin model estimate and regression quality

β0 β1 β2 β3 RMSraw RMScor R2 P

Gray −0.48 0.018 0.43 1.3 × 10−3 0.4 0.19 0.069 0

Phase Shifting 0.27 0.28 0.26 −5.9 × 10−4 0.54 0.17 0.13 0

Micro PS 0.45 0.27 0.21 −1.0 × 10−3 0.52 0.19 0.13 0

Modulated PS 0.34 0.1 0.27 −6.7 × 10−4 0.46 0.22 0.054 0

Table 3. Fat model estimate and regression quality

β0 β1 β2 β3 RMSraw RMScor R2 P

Gray −0.12 0.13 0.039 2.0 × 10−4 0.26 0.24 0.016 0

Phase Shifting −0.18 0.31 −0.11 3.9 × 10−4 0.22 0.16 0.084 0

Micro PS −0.13 0.2 −0.043 3.0 × 10−4 0.2 0.16 0.043 0

Modulated PS −0.06 0.15 −0.029 1.6 × 10−4 0.2 0.17 0.018 0
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Fig. 5. Signed distance (sd) between scan and reference on a single sample of muscle.
Top row: before applying the linear correction model. Bottom row: after correction.
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Fig. 6. Signed distance (sd) between scan and reference on a single sample of skin. Top
row: before applying the linear correction model. Bottom row: after correction.
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Fig. 7. Signed distance (sd) between scan and reference on a single sample of fat. Top
row: before applying the linear correction model. Bottom row: after correction.
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in general relatively low; at best 13% and at worst 0.8%. Such measure might
dispute model’s validity, but the statistical test versus a constant model proves
otherwise. In all cases we can conclude that our model is statistical significant
within almost a 100% confidence interval, as indicated by the P -values tested
against a constant model. While this might seem improbably low, bear in mind
that the models was estimated using millions of points which assists in obtaining
a statistical significant results. The model estimate itself is rather stable, yield-
ing almost the same error measure for every iteration in the cross validation.
This is to be expected due to the high number of training samples and the low
dimensionality of the model.

It is seen that most methods have a positive intercept, meaning that regard-
less of measurement conditions the surface seems to be further away from the
camera. The Phase Shifting methods are especially affected by this bias. This
effect is further amplified under ideal scanning conditions, where view and light
angle are approximately perpendicular to the measured surface. Since β1 and
β2 are in most cases positive it will further add to positive surface bias. It is
also interesting to note that for Phase Shifting methods distance adds a nega-
tive weight. This means that distant measurement will effectively have less of a
positive bias than close ones. The worst bias can be observed in standard Phase
Shifting applied to skin were error can climb to approximately 0.75mm.

This positive trend can be illustrated by visualizing the per point error as a
heat map upon an obtained point cloud, an interesting trend can be observed.
Figures 5, 6 and 7 shows the signed error on a single sample visually before and
after applying the correction model. All have a positive bias which is very strong
for muscle and skin. This alludes to a general trend, subsurface scattering causes
the estimated surface to lie further away from the scanner. This is intuitively
correct as subsurface scattering is caused by light entering the material for a bit
before it is reflected.

In all cases the application of the proper linear model reduces the error’s
RMS significantly. With a relatively low reduction for fat and a high reduction
for skin and muscle. Skin seems to be especially interesting for application as
it has the highest error RMS and also receives the largest reduction from error
prediction. The remaining unmodeled variance can probably be attributed to
variance in chalk thickness, material inhomogeneity and slight vibrations in the
recording environment.

6 Conclusion

Structured light is greatly affected by the optical properties of biological mate-
rials such as subsurface scattering. By comparing structured light scans of a
biological object with scans of the same object covered with a thin chalk layer,
we have successfully quantified the resulting error. Our study shows a general
positive bias resulting in a surface that lies further away from the scanner than
an identical diffuse surface. Due to this positive bias, the RMS of the error can
be as high as 0.54mm. We described the error by fitting a stochastic linear model
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based on view geometry to the obtained data. Using it, a large portion of the
error can be predicted and compensated for. For instance, applying this model
to Phase Shifting scans of skin reduces error RMS from 0.54mm to 0.17mm.

As opposed to the solutions to global illumination proposed in [3,10] our app-
roach requires no specially designed pattern strategy or hardware. It can simply
be applied directly to the obtained geometry. Additionally our methodology can
be applied to any given structured light method and subsurface scattering mate-
rial. From a pragmatic view, one must conclude that standard Phase Shifting is
the superior choice for scanning biological tissue. Not because it shows the lowest
error, but rather because the error can be predicted well and compensated using
our method.
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