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Abstract. Virtualization is common in various areas ranging from
mobiles to large data centers operated by cloud providers. Theoreti-
cally, virtualization provides various benefits that could be useful to HPC
as well, e.g., suspend a large application before system maintenance or
migrate a process before a node fails due to hardware malfunctioning.

In this paper, we analyze the current state of the art of virtual
machines for HPC with respect to their performance and energy con-
sumption. Furthermore, we report on our findings on the compatibility
of the current HPC software stack with virtual machines and how they
complicate application analysis and application tuning, as well as how
current HPC hardware limits some benefits of VMs.

1 Introduction

Due to numerous advantages, virtualization is omnipresent in seemingly all areas
of computing nowadays. Mobiles use virtualized instruction sets for a simplified
application develop- and deployment. Embedded systems rely on virtualization
to run multiple specialized operating systems for resource partitioning within one
device. Desktop users employ Virtual Machines (VMs) to run different operating
systems for an isolation of applications running on the same hardware, and even
large commercial data centers rely on VMs for a flexible assignment of resources
to their customers. As a result, most of today’s processors have all kinds of
hardware support for effective virtualization built-in, there is a large choice of
hypervisors which can use these hardware features, and all major operating
systems run well both as guests or hosts in virtualization scenarios.

Despite this pervasive support and various use cases, this technology is cur-
rently not employed in High-Performance Computing (HPC). In this paper we
investigate some use cases and benefits of virtualization and perform an analysis
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of the state-of-the-art with respect to the HPC software stack, the performance,
the energy consumption, and the support for current hardware. We also examine
its impact on the exploitation of today’s many-core architectures. The additional
degree of freedom with respect to the mapping of the applications onto the hard-
ware topology provides new facilities for performance fine-tuning. Our findings
reveal that using VMs hardly results in any overhead. Furthermore, VM migra-
tion may facilitate an increased overall system throughput, but requires special
support within the communication stack when using HPC interconnects. How-
ever, VMs complicate application analysis and tuning, as the new virtualization
layer is not well supported in tools and various benefits of VMs like stopping
and migrating are not possible with the default HPC software stack. Overall, we
conclude that VMs are still not ready for large scale deployment in HPC.

The paper is organized as follows. First, Sect. 2 describes VMs and their
implementation, followed by Sects. 3 and 4 which introduce the hardware and
applications/benchmarks used for the rest of the paper. Section 5 shows our mea-
surements with memory bandwidth limited and compute bound applications.
Section 6 introduces possible benefits of using VMs in HPC, whereas Sect. 7 dis-
cusses if these benefits can currently be achieved. The paper finishes with an
overview of related work and conclusions, in Sects. 8 and 9, respectively.

2 Virtual Machines

In this paper, we focus on system VMs, which virtualize the target hardware,
i.e., a process is started on the native host hardware that itself provides a com-
plete substitute for a system and boots a new Operating System (OS). The
hypervisor is a software used for the management of multiple guest VMs. Mod-
ern x86 hypervisors implementations rely on hardware support such as Intel’s
VT-x extension [20] or AMD-V. The former was introduced with the Pentium 4
processor in 2005 and is almost identical to AMD-V, which was introduced only
half a year later.

As applications running within VMs have their own virtual address space
within the address space of the process representing the VM, an additional
dimension of virtual memory/address translation is introduced including addi-
tional page tables (so called guest page tables). The address space of the VM is
typically accessed by means of guest physical addresses and the address space
of the application running within the VM by guest virtual addresses; host phys-
ical/virtual addresses refer to the native equivalents. Memory accesses from
within the VM require a translation from guest virtual addresses to host phys-
ical addresses. This is performed in two steps: the guest’s page tables translate
guest virtual addresses to guest physical/host virtual addresses, which are again
translated to host physical addresses. This so-called two level page walk is sup-
ported via VT-x in hardware by nested paging [2]. With VT-x the Translation
Lookaside Buffer (TLB) caches mappings involve both translation levels.

VMs introduce a further degree of freedom with respect to the mapping
of virtual CPUs (VCPUs) onto Hardware Thread Contexts (HTCs). Although
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any VM configuration is feasible, the following three are of main interest when
scheduling parallel applications on NUMA systems:

Outside pinning. Fill up the threads/processes VCPUs by VCPUs and pin
theses to the physical cores in accordance to the pinning strategy suitable for
the particular application. This configuration only uses as many VCPUs as
needed by the application.

Outside pinning (all VCPUs). In contrast to the previous one, in this con-
figuration all VCPUs are passed to the VM regardless of the amount of
threads/processes being executed.

Host-topology. Map the host’s topology onto that of the VM, i.e., perform an
identity mapping of VCPUs to CPUs, and pin the threads/processes within
the VM with the respective strategy from above.

3 Hardware Overview

All measurements were performed on two-socket NUMA nodes equipped with
two Intel Xeon E5-2670 CPUs based on Intel’s Sandy Bridge architecture. Each
CPU has 8 cores resulting in a total of 16 CPU cores in the entire system whereby
each core has support for two HTCs resulting in a total of 32 HTCs for the whole
system. The L3 cache is shared among all cores of a CPU, both L1 and L2 cache
as well as the instruction pipeline are shared among HTCs of the same core. Our
systems are equipped with a total of 128 GiB of RAM (64 GiB per CPU) each.
Furthermore, there are both a QDR InfiniBand Host Channel Adapter and a
1 Gbit/s Ethernet network card in the systems.

The so-called thermal design power (TDP) of each CPU in our system is
115 W, i.e., the CPU consumes about 115 W on average when all 8 cores are
active and measured for a reasonably long time frame. Energy measurements
were carried out by using two mechanisms: (1) the so-called Running Average
Power Limit (RAPL) CPU counters which measure CPU cores, DRAM and CPU
package energy consumption and (2) a MEGWARE Clustsafe, which measures
the energy consumption of a whole system on the primary side.

4 Applications/Benchmarks

We used two example applications in this paper: a slightly modified version of
mpiBLAST 1.6.0 and the CG solver from the numerical library LAMA [5,10].
Furthermore, we used the well known STREAM benchmark for an assessment
of the impact of virtualization on memory-bound applications [14].

4.1 mpiBLAST

mpiBLAST is an application from computational biology. Using MPI-only, it is a
parallel version of the original BLAST algorithm for a heuristical comparison of
local similarities between genome or protein sequences from different organisms.
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Due to its embarrassingly parallel nature, mpiBLAST allows for perfect scal-
ing across tens of thousands of compute cores [11]. mpiBLAST uses a two-level
master-slave approach and requires therefore at least 3 processes. The data struc-
tures used in the different steps of the BLAST search typically fit into the L1
cache resulting in a low number of cache misses. The search mostly consists of
a series of indirections resolved from L1 cache hits allowing for good overlap-
ping of different searches on the two HTCs of one core. Our modified version of
mpiBLAST is available on GitHub1. In contrast to the original mpiBLAST we
removed all sleep() function calls which were supposed to prevent busy waiting.

4.2 LAMA

LAMA is an open-source C++ library for numerical linear algebra. We use
LAMA’s standard implementation of a Conjugate Gradient (CG) solver, a hybrid
OpenMP/MPI application. The library is compiled with Intel’s MKL library to
use basic BLAS operations within a step of the CG solver. Each solver iteration
contains various global reduction operations resulting in frequent synchroniza-
tion of threads as well as MPI tasks. As the involved data structures do not
fit into CPU caches, the performance is fundamentally limited by main mem-
ory bandwidth and inter-core/node bandwidth for reduction operations. Thus,
the CG solver obtains the best performance with just using a few cores. Conse-
quently, it benefits from the so-called scatter pinning, i.e., threads are equally
distributed among the NUMA domains and main memory bandwidth of all CPUs
can be saturated with fewer threads. We use scatter pinning for all measurements
involving LAMA.

5 Performance and Energy Consumption

Figure 1 presents the results of our scalability analysis of mpiBLAST and
LAMA’s CG solver. Figure 2 shows the average power consumption during the
measurements and energy consumption of one application run. Each meter point
was captured by the execution of the respective application in a loop for 30 min
and averaging the individual results afterwards.

5.1 Memory Bandwidth Applications

The available memory bandwidth is slightly lower within a VM resulting an
overhead of less than 5% (cf. Table 1). For the “Small” measurements2 the TLBs
can store all required translations generating hardly any page walks. Although
running STREAM on the “Large” array size should result in more page walks, we
notice a small overhead decrease. Hence, the effect of the additional page walk
is in the order of measurement noise. As a result, memory bandwidth bound

1 https://github.com/jbreitbart/mpifast.
2 An array of 153 MiB (458 MiB STREAM memory consumption in total).

https://github.com/jbreitbart/mpifast
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Fig. 1. Runtime of mpiBLAST and LAMA’s CG Solver with varying number of
processes/threads for all three VM configurations. The overhead is computed based
on the native execution.

applications may suffer from a small constant performance loss, when running
inside a VM. We use all 32 HTCs, compact pinning, and the host-topology
configuration for the shown STREAM measurements.

As the CG solver is memory-bound, it scales up to only 11 threads with an
average runtime of 41.45 s in native execution. At this meter point using a VM
results in a performance penalty of around 6%. In accordance with our previous
findings the CG solver only scales up to 8 threads within a VM (cf. Fig. 1) due
to the lower memory bandwidth. Considering its best performance at 8 threads
with 42.44 s (outside pinning) and 42.97 s (host-topology), we get an effective
performance degradation of less than 4%. For thread counts exceeding 25 the
VM outperforms native execution which is due less remote memory accesses
within the VM. There is hardly any difference in energy consumption between
native execution and using a VM (cf. Fig. 2). We expect this to be a result from
different first-touch runtime behavior.
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Fig. 2. Power required while running LAMA’s CG Solver/mpiBLAST (line chart)
exclusively and the energy required for one run (bar chart). Uncore, RAM, and cores
are measured by the RAPL counters. The remainder is the difference between the
ClustSafe measurements and the sum of all RAPL counter values.

Table 1. STREAM benchmark results on array sizes of 152.6 MiB (Small) and 1.22 GiB
(Large). The throughput is given in GiB/s and the Overhead (OHD) in %.

Kernel Small Large

Native VM OHD Native VM OHD

Copy 53.23 50.76 4.64 65.22 63.69 2.34

Scale 64.27 62.79 2.30 65.99 64.73 1.91

Add 67.18 65.18 2.97 67.06 65.27 2.66

Triad 67.18 64.94 3.33 67.17 65.26 2.84

5.2 Compute Bound Applications

We do not expect compute bound applications to suffer a major performance
loss when running in VM and Fig. 1 mostly confirms our expectations. The trend
is the same for both, native execution and the virtualized environment showing
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the best performance with 32 processes. The VM only generates little overhead
of up to 3% in runtime and even less for energy consumption. However, there
is one notable effect: when we start to use two HTCs per core for computation,
outside pinning with a VCPU count equal to the number of processes has sig-
nificant impacts on the generated overhead, e.g., about 6% for 18 processes. As
mpiBLAST almost entirely works on data residing within the first-level cache, a
higher number of cache miss is the most probable reason which may stem from
additional system noise. However, further research is required to identify the
exact cause.

6 Benefits of Virtualization

So far we have only shown that VMs have a small impact on performance and
energy consumption. However, we have not discussed any of their potential ben-
efits for HPC.

6.1 Isolation

In cloud computing VMs are often used for provisioning of isolated environments
between different customers. In HPC, computing centers achieve the required
isolation by a dedication of complete compute nodes to users. This strategy
decreases the overall system utilization if the application is not capabable of a
full system exploitation. To our knowledge, only few HPC computing centers
schedule jobs at a finer granularity purely relying on Linux for a prevention of
resources conflicts. Furthermore, this strategy cannot be applied if users explic-
itly specify thread affinities.

Nonetheless, co-scheduling jobs with diverse resource demands is known to
increase overall system throughput [4]. For an evaluation of the performance
penalties caused by VMs in such a scenario, we co-scheduled mpiBLAST and
LAMA each within their own VM on the same host. As mpiBLAST performance
is insensitive regarding the pinning, we derive its pinning from the requirements
of LAMA, i.e., scatter pinning is used.

Figures 3 and 4 show the results of our measurements for both runtime and
energy consumption. The efficiency is computed based on the fastest native
execution, i.e., with 16 processes in co-scheduling mpiBLAST achieves about
45% of the performance of its native execution with 32 processes and LAMA
achieves about 80% of the performance of its native execution with 11 threads.
In general, we observe an increase of the overall application throughput similar
to the results presented in [4]. The power consumption (cf. Fig. 4) is slightly
increased compared to the exclusive application runs. This, however, is expected
behavior as the system is doing more work while achieving a higher energy
efficiency when taking the application throughput into account.
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Fig. 3. Application runtime (bar chart, left y-axis) and efficiency (line chart, right
y-axis) when running both LAMA and mpiBLAST concurrently. The efficiency is com-
puted based on the most efficient exclusive application run. The x-axis shows the
number of mpiBLAST processes running, the HTCs used by LAMA can be computed
via 31 minus the number of mpiBLAST processes. We used 31 HTCs in total to allow
for comparisons with [4].

Fig. 4. Power Consumption when Co-scheduling LAMA and mpiBLAST. Uncore,
RAM, and cores are measured by the RAPL counters. The remainder is the differ-
ence between the ClustSafe measurements and the sum of all RAPL counter values.

6.2 Transparent Start, Stop, and Migrate

VMs can be stopped and restarted at any time transparently from within the
VM. Such a feature may ease hardware maintenances during applications runs
without losing the current progress. Furthermore, VMs can also be restarted on
another host or migrated from one host to another. Cloud providers leverage
this feature exactly for these reasons: VMs are moved to nodes with little or no
load for hardware/software maintenances or load balancing without generating
application downtimes.

HPC centers typically take their system off-line for maintenance and do not
apply any automatic load balancing. Resources are dedicated to jobs regardless
of their actual usage. However, based on the results of our co-scheduling mea-
surements (cf. Sect. 5), we can also show that VM migration can contribute to
an increased overall system throughput. Figure 5 presents an example schedule
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Fig. 5. Co-scheduling vs. Exclusive scheduling.

and the resulting runtime of three jobs. We expect the jobs mpiBLAST (long)
and mpiBLAST (short) to be in the job queue at the beginning and LAMA
to be added shortly after the start of mpiBLAST (short). The exclusive case
runs natively on the hardware, whereas the co-scheduling case employs VMs
in conjunction with migration reducing the runtime by about 16%. This per-
formance increase stems from the fact that LAMA memory-bound and profits
from the execution on two nodes. Executing LAMA on two nodes is only possible
via migration, as Node 1 is already fully utilized by the job mpiBLAST (long).
The migration time (27 s) is very short compared to the total runtime of the
jobs. The energy consumption is almost identical for both scenarios with the co-
scheduling case consuming 3.1 MJ and the exclusive scheduling requiring 3.2 MJ.
We used Ethernet to communicate between the two nodes, as Infiniband can-
not be used in conjunction with migration without changes to the software
stack [16,17].

7 State of the Art

Despite the benefits of virtualization for HPC, there are certain limitations that
come with this technology. This section summarizes implications thereof to the
HPC software stack.

7.1 HPC Hardware/Software Support

As noted before, common hard- and software come with support for virtualiza-
tion. However, major challenges are OS-bypass techniques, i.e., hardware that
is directly controlled in user space such as InfiniBand or GPUs. Their employ-
ment requires support of the HPC software stack whereas two approaches for
their virtualization are common: (1) the device is entirely emulated in software
which typically results in unacceptable performance penalties, or (2) the guest
is granted direct access to the hardware device via PCIe pass-through [1]. This
is usually done in conjunction with Single Root I/O Virtualization (SR-IOV)



730 J. Breitbart et al.

enabling the device virtualization in hardware such that it can be passed to
multiple VMs at the same time at nearly native performance [18].

However, VM migration is impossible with attached pass-through devices.
A hypervisor may unplug any device at any time, though the communication
stack has to deal with such events. Most MPI implementation cannot handle an
unplugging of the InfiniBand card during runtime and seemingly no hypervisor
can communicate with the MPI processes to coordinate the unplug. As a result,
migration is not possible for HPC applications without adjustments to the soft-
ware stack [16]. NVIDIA does not provide SR-IOV support for their GPUs, but
proposes a propriatary technology called GRID. As a result, GRID can only be
used with a small subset of the available hypervisors (VMWare, Xen) that are
directly supported by NVIDIA. AMD announced SR-IOV support at the end of
20153. However, neither AMD nor NVIDIA solve the issues that come with VM
migration.

Initially Kernel-based Virtual Machine (KVM) restricted VMs to run within
a single NUMA domain [9] only. However, this limitation has been resolved
with Version 2.0 released in 2014 allowing for the provision of virtual NUMA
topologies to VMs comprising multiple VCPUs. This has implications to both
GNU OpenMP and Intel OpenMP as the pinning strategies may not behave
correctly, depending on the CPU/VCPU mappings.

Inter-VM intra-host communication is usually rather slow, unless a local-
ity aware MPI implementation is deployed. Support for this feature, however,
requires an experimental feature (ivshmem) that was added with the latest KVM
version released in December 2015. Usually, a virtual Ethernet device (or an IB
device passed through to the VM) is used for this communication path, even
though shared memory would be possible [15]. Running multiple VMs with the
same application on the same host is important, as the size of a VM is also
the granularity at which processes may be migrated between nodes. Overall,
migration is an interesting feature, however currently no HPC system scheduler
leverages this mechanism for automatic load balancing. Besides being a non-
trivial task by itself, VM migration limits the usable hardware.

7.2 Increased Complexity

The additional software layer that comes with virtualization adds to the com-
plexity of the system. This layer complicates various tasks that are common in
HPC. For example, we were unable to pinpoint the exact reason for the per-
formance difference of running LAMA with a high number of threads within
a VM compared to native execution. We observe a reduction of remote mem-
ory accesses when running within a VM. Further investigations with a currently
unreleased NUMA simulator indicate an unstable first touch behavior, i.e., the
exact distribution between NUMA nodes depends on the runtime characteristics,
although it is identical in native execution among various runs. We would not

3 http://www.amd.com/en-us/press-releases/Pages/amd-unveils-worlds-2015aug31.a
spx.

http://www.amd.com/en-us/press-releases/Pages/amd-unveils-worlds-2015aug31.aspx
http://www.amd.com/en-us/press-releases/Pages/amd-unveils-worlds-2015aug31.aspx
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be surprised if other applications reveal similar subtle (performance) bugs when
running within a VM that could result in a notable performance degradation.

The virtualization layer adds a degree of freedom with respect to the affin-
ity, i.e., the VCPUs have to be mapped to the real cores in addition to the
threads/processes that map onto the VCPUs. As current OpenMP and MPI
implementations lack support for this two-level pinning, we had to implement
it manually for all measurements. Depending on the exact pinning strategy, we
could observe efficiency variations of up to 10%.

8 Related Work

Virtualization is regularly evaluated for HPC in the recent years [12,19,21]. How-
ever, the focus is usually put on the comparison of different hypervisors on the
overhead for common HPC workloads and not on the overall HPC stack. Further-
more, the migration of VMs—one of the main arguments for virtualization—is
a topic of major interest [7]. Huang et al. present Nomad, a thin virtualization
layer between the user processes and the InfiniBand hardware for a transparent
VM migration with attached pass-through devices [8].

For effective co-scheduling, an understanding of the resource utilization and
the mutual influence of applications is beneficial. Different proposals exist to
come up with good predictions, often based on empirical slow-down measure-
ments [3,6,13].

9 Conclusion

In this paper we studied the current state of the art of VMs for HPC. When
looking at raw performance and energy efficiency number, VMs arguably have
almost no drawback. VMs can offer various benefits for computing centers like
stopping and restarting jobs or automatic load balancing, but the HPC software
and hardware stack prevents the deployment of such features. The increased
complexity when using VMs also adds to the burden of HPC specialists analyz-
ing and optimizing applications. The additional indirection complicates finding
the source of potential performance degradation, as we found no tool that can
correlate host measurements to guest processes.

There are still various areas of research to be explored. We have prelimi-
nary OS noise/jitter measurements that indicate higher noise when using VMs,
which can limit scalability of some applications. Further work is required to
exactly quantify the impact. Furthermore, we plan to investigate the benefits of
migration at a larger scale.
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