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Abstract. The most widely used resiliency approach today, based on
Checkpoint and Restart (C/R) recovery, is not expected to remain viable
in the presence of the accelerated fault and error rates in future Exascale-
class systems. In this paper, we introduce a series of pragma direc-
tives and the corresponding source-to-source transformations that are
designed to convey to a compiler, and ultimately a fault-aware run-time
system, key information about the tolerance to memory errors in selected
sections of an application. These directives, implemented in the ROSE
compiler infrastructure, convey information about storage mapping and
error tolerance but also amelioration and recovery using externally pro-
vided functions and multi-threading. We present preliminary results of
the use of a subset of these directives for a simple implementation of
the conjugate-gradient numerical solver in the presence of uncorrected
memory errors, showing that it is possible to implement simple recovery
strategies with very low programmer effort and execution time overhead.

1 Introduction

The resilience of High Performance Computing (HPC) applications in the pres-
ence of faults and errors on future extreme scale supercomputing systems is a
growing concern. With process technology scaling, future exascale-class systems
will be constructed from transistor devices which are less reliable than those used
today. Furthermore, the recent trend of aggressive scaling of processor cores and
memory chips in order to drive floating-point performance suggests that future
exascale class systems will require exponential growth in compute and memory
resources [1,13]. However, with increase in the number of system components,
the overall reliability of the system will decrease proportionally. The projections
on fault rates based on current HPC systems and technology roadmaps pre-
dict that exascale class systems will experience several errors per day. This will
impact long running scientific applications which will terminate abnormally, or
worse, may complete with incorrect results [4].
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The de-facto approach used today to provide resilient operation is based on
Checkpoint and Restart (C/R) which periodically commits the application state
to persistent storage. Recovery is initiated only upon failure of a process and
entails terminating all the remaining processes and restarting the application
from the latest stable global checkpoint. If unchecked by aggressively reducing
its frequency and/or the volume of saved data, this approach is inviable. As the
applications scale to leverage the capabilities of these large scale machines, the
amount of state to be gathered will grow considerably, resulting in proportional
increases in the intervals required to create and commit checkpoints as well
as recover them from storage. Given that the projected Mean Time to Failure
(MTTF) of the exascale systems will be of the order of a few minutes [1], C/R
will no longer be effective in scenarios where the C/R interval is greater than
the system MTTF.

Still, various HPC applications offer rich possibilities to algorithmically
detect and correct the errors in their program state. Algorithm-based fault toler-
ance (ABFT) [2,9] techniques for linear algebra kernels enable the identification
of the error location and correction of bit flip errors using checksum error encod-
ing in the data structures and adapting the algorithms to operate on the encoded
data. Similarly, iterative numerical algorithms such as the Adaptive Multi-Grid
Solver [5], can tolerate errors at the expense of longer convergence rates or itera-
tions. Even more extreme, algorithms that rely on random events, as is the case
of algorithm that leverage Monte-Carlo simulation techniques can (in specific
contexts) tolerate memory errors provided they do not lead to catastrophic pro-
gram behavior. Yet, in the face of the wealth of such application acceptability
or tolerance characteristics, such algorithmic features are not exposed to the
programming environment due to the lack of convenient interfaces.

In this paper, we extend our previous approach that is based on programming
model extensions that incorporates simple language-level support that is tightly
coupled with the compiler and runtime system to adaptively and dynamically
apply redundancy [11,12]. The approach allows users to specify various detec-
tions conditions that strongly suggest silent-data corruption in addition to the
traditional error detection through abnormal program execution. The program-
ming model extension described here is based on #pragma directives which are
then translated as source-to-source code transformations to support application
level detection and recovery strategies through retry and multi-threading check-
ing and correction semantics. These detection and recovery mechanisms can be
coupled with an introspection runtime system enabling the use of redundant
multithreading when too many faults are observed. We have implemented these
directives and the corresponding code transformations in the ROSE Compiler
Infrastructure [16] and use them to demonstrate their suitability to an illus-
trative scientific kernel – the conjugate gradient iterative solver. The results,
albeit very preliminary, do reveal that with very little programming effort, this
pragma-based code transformations approach substantially increases the ability
of selected section of codes to survive uncorrected memory errors.
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2 Pragma-Based Code Transformation Directives

We next present the various pragma directives and illustrate their use via source-
to-source transformations and examples. We begin with the simplest forms where
fault-tolerance is indicated to very sophisticated source code transformations
where detection and recovery with redundant code execution is used.

2.1 Hardware Error Detection and Correction

In this work we assume that some, but not all the memory faults are corrected via
hardware mechanisms such as Error-Correcting-Codes (ECC) and chipKill [14].
As such, the only faults that are signaled via hardware that trigger the execu-
tion of the amelioration actions defined by the directives described here, include
detected but uncorrected memory errors.1

2.2 Tolerant Storage Declaration

This first tolerant directive simply indicates that a specific data declaration (to
follow the directive) can tolerate a specific maximum number of (uncorrected)
errors. Alternatively, when present, the directive also indicates that the corre-
sponding data structure should be placed in a specific data storage as indicated
by a secondary integer identifier.2 The directive has the syntax shown below
where exp1 and (the optional) exp2 denote compile-time integer values.

#pragma failsafe tolerant ( exp1 : exp2 )

A simple example of the use of this directive is shown below where the array A
is to be allocated preferentially to the storage labelled with id zero and can only
tolerate 1 uncorrected error.

#pragma failsafe tolerant (1: 0)

int A[M][N];

In the absence of both expression exp1 and exp2 fields, the run-time system
assumes that any number of errors are to be tolerated for this specific variable.

This pragma is also applicable to global variables or heap-allocated variables,
although the later needs to be explicitly controlled by the use of a tolerant variant

1 As a minor point, we further assume that upon restart (via state restore) data is
flush out of cache storages so that erroneous values are not restore as part of the
application’s state.

2 We envision a memory system where distinct regions of the storage space have
distinct resilience characteristics each of which is identified by a unique numerical
or symbolic identifier.
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of malloc3. The variable to be associated with this behavior can either be a scalar
or a statically allocated arrays. In case of a pointer variable, it is the pointer
that needs to be labelled as tolerant but not the heap-allocated storage it points
to. To that effect we also provide a variant of the malloc function labelled as
tolerant malloc(size, N, K). Upon parsing and translation the compiler will
produce a simple text file, with the scope of the variables labelled as tolerant
and the corresponding statically declared name including the numeric values for
exp1 and exp2.

This tolerant data is then parsed by the run-time system and can be incor-
porated as part of an introspection system. As variables that are deemed less
tolerant reach their limit of tolerated errors, they can be migrated to increas-
ingly more robust regions of the address space thus allowing a run-time system
to dynamically manage the underlying state of the machine while meeting (or
at least attempting to meet) the tolerance requirements of each data structure.

2.3 Sentinel Values for Silent Data Corruption Detection

These constructs, akin to the #assert specify a user-defined predicates that
must hold at specific execution points of the application. Using these pragmas
the user can attempt to correct silent data or uncorrected errors in specific
variables and thus proceed with the computation. Still, and even in the event
of user amelioration, error variables record the error events and interface with a
resilience introspection engine for subsequent application adaptivity.

The syntax of this pragma is shown below and it is the programmers respon-
sibility to ensure that the evaluation scope of the arguments of the handler
functions and assertion predicates are appropriately scoped.

#pragma failsafe assert ( predicate ) error ( function handler )

A simple example of the use of this pragma is shown below:

#pragma failsafe assert ( a > 0 ) error ( MyFunction(&b))

where it is assumed that MyFunction is an integer-returning function and where
a non-zero value will indicate the inability to correct an erroneous condition and
a zero valued return success in correcting such situation. The translation of the
above directive in terms of source C code is as shown below.

3 Automatically, converting the heap-allocated use of a malloc into a tolerant-malloc
is rather tricky to do statically as in the general case a compiler would have to track
the use of address as function argument and allocation across procedure boundaries
to understand when the address of a pointer could have been declared in another
scope as tolerant. As a results we restrict the use of this pragma to the storage that
is statically allocated either at the file or at the global scope levels.
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i f ( p r ed i c a t e ( . . . ) == 0){
i f ( f unc t i on hand l e r ( . . . ) != 0){

f a i l s a f e e r r o r ++;
FAILSAFE REPORT ERROR(0 , f a i l s a f e e r r o r ) ;
f a i l s a f e e r r o r f l a g = 0 ;

} e l s e {
FAILSAFE REPORT CORRECTION(0 , f a i l s a f e e r r o r ) ;

}
}

In the absence of the error clause, and should the predicate evaluation not
hold at runtime, the generated code will terminate the applications execution
via the exit function as illustrated in the sample code below.

i f ( p r ed i c a t e ( . . . ) == 0){
FAILSAFE REPORT ERROR EXIT( 0 ) ;

}

2.4 User-Controlled State Saving and Restoring with Retry

In order to provide users with the capability to control the saving and restoring
of program state, we have included a save/restore directive. The directive thus
include which program variables constitute relevant program state that needs to
be saved and restored and for how many retries the execution of the subsequence
control-flow program blocks should be attempted.

This directive can be combined with the assert pragmas described above to
detect erroneous execution conditions resulted from silent data corruption.

#pragma failsafe save restore ( var list ) retry ( exp )

{/* code block */ }

This directive is translated into code that saves the state of the set of variables
listed in the var list into auxiliary variable via a memory copy construct4 Upon
detection of an uncorrected error in the code block, the control is transferred to
the beginning of the block with the state of the saved variable reinstated. The
snippet of code below depicts the structure of the generated code as the result
of the translation of this directive for a retry value of 2.

i n t f s num t r i e s ;
v o l a t i l e i n t f s num er ro r s ;
f s num t r i e s = 0 ;
f s num er ro r s = 0 ;
<code f o r sav ing data ob j ec t s>
do {

i f ( f s num t r i e s != 0){
4 In the current implementation only supports scalar and statically allocated array

variables with known compile-time bounds. The support of dynamically allocated
arrays with multiple pointer levels can, however, pose serious implementation chal-
lenges in terms of correctness and performance.
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<code f o r r e s t o r e data ob j ec t s>
}
f s num er ro r s = 0 ;
<o r i g i n a l code block here>
f s num t r i e s++;

} whi le ( ( f s num er ro r s != 0) && ( f s num t r i e s < 2 ) ) ;
i f ( f s num er ro r s != 0){

FAIL SAFE EXCEPTION( ) ;
}

2.5 Redundancy-Based Fault Detection and Recovery

In addition to the pragmas described above, we have also implemented two
simple redundancy-based detection and recovery pragmas, namely, using dual
and triple computing redundancy that can in some context detect and correct,
respectively, errors in the computation by direct comparison of the values in a
selected lists of variables. As with the previous pragma directive, a maximum
number of retries is attempted before an abnormal execution is reported.

#pragma failsafe dual redundancy save restore ( var list1 )

compare ( var list2 ) retry ( exp )

{ /* code block */ }

In addition to the aspects of computation redundancy this directive extends
the notion of redundancy by including dual and triple threading (using the
OpenMP directives) and detection of errors via the direct comparison of a
selected set of variables specified in the compare list var list2 which is assumed
to be disjoint of var list1 the former list assumed to be the output of the code
block. In other words all the variables in var list1 are output variables of the
computation so their state need not be saved and restored upon re-execution.

For a simple but generic code, the dual redundancy directive can be trans-
lated into the source code as shown below with a maximum retry of 2 times. The
triple redundancy variant would include three OpenMP threads and three,
rather than two, copies of the variable specified in the compare list.

i n t f s num t r i e s ;
v o l a t i l e i n t f s num er ro r s ;
< de c l a r a t i o n o f dup l i ca t ed o f v a r i a b l e s in v a r l i s t 2 >
. . .
f s num t r i e s = 0 ;
f s num er ro r s = 0 ;
<code f o r sav ing data in v a r l i s t 1 >
do

i f ( f s num t r i e s != 0){
<code f o r r e s t o r e data in var l i s t 1 >

}
f s num er ro r s = 0 ;
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#omp p a r a l l e l num threads (2 )
{

<o r i g i n a l code r e l a b e l i n g v a r i a b l e s in v a r l i s t 2 >
}

<compare v a r i a b l e s in v a r l i s t 2 f o r each thread>

i f ( mismatch ( v a r l i s t 2 ) )
f s num er ro r s++;

f s num t r i e s++;
} whi le ( ( f s num er ro r s != 0) && ( f s num t r i e s < 2 ) ) ;
i f ( f s num er ro r s != 0){

FAIL SAFE EXCEPTION( ) ;
}

The code variant for triple redundancy, includes a voting functions rather
than a compare function to determine of the three concurrent threads have
executed correctly.

3 Experimental Evaluation

We conducted a set of preliminary experiments to evaluate the ability of the
proposed program pragmas to lead to applications that survive uncorrected (but
detected) memory errors.

For these experiments we focused on a key numerical kernel code, the popular
conjugate-gradient iterative linear system solver for the system Ax = b. We used
an input 40×32 A matrix with a specific structure with a randomly generated b
vector as the linear system to be solved. The algorithm requires about 4 MBytes
of storage for the system matrix and 0.223 MBytes for the auxiliary intermediate
computation vectors. As the system matrix A remains constant throughout the
computation, we opted to use checksum column- and row-wise error correction
for detected but uncorrected memory errors afflicting the address space regions
associated with A.

For these experiments we use the fault-injection infrastructure described in
[10] to inject memory errors in the data address space of the application at
specific error rates, leading to approximately a single memory error per algorithm
iteration to one error per 20 iterations (or a single error per system solve cycle).
In these experiments we do not inject errors in the code section of the application
address space.

For the errors impinging on data section we opt from two different amelio-
ration strategies. When the error impinging on A we recover by executing the
error correction using the column- and row-wise checksums and restart the solver
iteration. When the memory error impinges on the auxiliary vectors, we restart
the iteration of the algorithm using the previous iterations values of the x vector
only as all the other vectors used are temporaries5

5 In the parlance of the compiler analysis, there vectors can be privatizable as no data
flows across iterations of the loop through them.
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The Table 1 below present the numerical results showing the overhead of the
use of the #pragma failsafe save restore directive for this example. In the
absence of any error of software copy overhead, the specific linear system requires
21 iterations to converge for a preselected numerical convergence tolerance over
10.680 secs for a sequential execution on a desktop computing system.

Table 1. Execution times vs. injected memory rates for CG simple solver.

Error Checksum Iteration restart Algorithm Execution Execution

Interval (secs) Recovery Recovery Iterations Time (secs) Overhead

2 12 1 34 23.761 122.5%

4 5 1 27 20.537 92.3%

5 4 1 26 18.569 73.9%

10 1 1 23 15.368 4.5%

20 1 0 22 11.310 0.6%

A couple of simple observations are in order. First, in this controlled exper-
iments, all executions are survivable as the error rate is not high enough that
the maximum number of retries (set at 2) for the same iteration of the algo-
rithm is ever exceeded. Second, as the storage size of the matrix A dwarfs the
storage space of the auxiliary vectors it was thus expected that the number of
errors impinging on the matrix A. As such the retries with checksum correctness
and copy of previous state are more numerous (and also computationally more
expensive) that simple retries where the only the vector x and a couple of integer
control variables need to be restated.

4 Implementation Status

We have implemented the parsing and the corresponding source-to-source code
transformations of the #pragma directives described here in the ROSE compiler
infrastructure [16] and tested them for simple C programs. Still, the current
implementation has some limitations. First, the code generation for the direc-
tives can only support the comparison and voting of the values of either scalar
variables or statically declared arrays with compile-time dimension bounds. In
other words, we do not yet support the use of dynamically allocated arrays.
Second, there is currently no checking of the disjointness of the compare and
save/restore list of variables in the redundancy directives. Lastly, there is also no
data-flow analysis verification that the variables in the compare list are strictly
output, i.e., only output variables.

5 Related Work

The most widely HPC programming models do not contain capabilities to offer
error resilient application execution. However, various researchers have begun
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exploring the possibility of incorporating resiliency capabilities into the pro-
gramming models. The abstraction of transactions has been proposed to capture
programmers fault tolerance knowledge. The basic idea is that the application
code is divided into blocks of code at the end of which the results of the com-
putation or communication are checked for correctness before proceeding. If the
block execution condition is not met, the results are discarded and the block can
be re-executed. Such an approach was proposed for HPC applications through
the concept of Containment Domains [6] which are based on weak transactional
semantics. They enforce the check for correctness of the data value generated
within the containment domain before it is communicated to other domains.
These domains can be hierarchical and provide means for local error recovery.

Other research has focused on discovery idempotent regions of code that
can be freely re-executed without the need to checkpoint and restart program
state. Their original proposal however [15] was based on language level support
for C/C++ that allowed the application developer to define idempotent regions
through specification of relax blocks and recover blocks that perform recovery
when a fault occurs. The FaultTM scheme adapts the concept of hardware based
transactional memory where atomicity of computation is guaranteed. The app-
roach entails application programmer created vulnerable sections of code for
which a backup thread is created. Both the original and the backup thread are
executed as atomic transactions and their respective committed result values
compared [17].

Complementary to approaches that focus on resiliency of computational
blocks, the Global View of Resiliency (GVR) project [8] concentrates on appli-
cation data and guarantees resilience through multiple snapshot versions of the
data whose creation is controlled by the programmer through program anno-
tations. Bridges et al. [3] proposed a malloc failable that uses a callback
mechanism with the library to handle memory failures on dynamically allocated
memory, so that the application programmer can specify recovery actions. In the
Global Arrays Partitioned Global Address Space (PGAS) implementation, set
of library API for checkpoint and restart with bindings for C/C++/FORTRAN
the enable the application programmer to create array checkpoints [7].

6 Conclusion and Future Work

The very limited experiments presented here do confirm the potential benefits of
the programming language extension to increase the survivability rate of iterative
scientific algorithms such as the case of conjugate gradient linear solvers. Here
we have only exploited the use of a limited form of computation redundancy for
error detection and amelioration.

Clearly, an extension of the practical impact of the use of the proposed
#pragma directives needs to be carried out, in particular to algorithms other than
scientific iterative solvers. In particular, we are actively working on the concur-
rent threading implementation which require the manipulation of the state of
the shared cache storage.
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This work also suggests a richer interface that would allow programmer to
control the need to restore state of the program based on the progress of the
algorithm. This is the case of storage whose life-time includes long periods of
inactivity and can thus be considered intermittently dead or simply not con-
tributing to the corruption of further state. Such interface would clearly allow
a run-time system to use less expensive recovery strategies than a full-blown
computation or iteration restart.
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