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Abstract. Fault-tolerance poses a major challenge for future large-scale
systems. Active research into coordinated, uncoordinated, and hybrid
checkpointing systems has explored how the introduction of asynchrony
can address anticipated scalability issues. While fully uncoordinated
approaches have been shown to have significant delays, the degree of
sychronization required to keep overheads low has not yet been signifi-
cantly addressed. In this paper, we use a simulation-based approach to
show the impact of synchronization on local checkpoint activity. Specifi-
cally, we show the degree of synchronization needed to keep the impacts
of local checkpointing low is attainable with current technology for a
number of key production HPC workloads. Our work provides a critical
analysis and comparison of synchronization and local checkpointing. This
enables users and system administrators to fine-tune the checkpointing
scheme to the application and system characteristics available.

1 Introduction

In response to alarming projections of high failure rates due to the increas-
ing scale and complexity of high-performance computing (HPC) systems [5],
researchers have devoted significant effort to the development of methods and
techniques that will enable the deployment of resilient extreme-scale HPC sys-
tems and applications.

The current de facto standard for fault tolerance on HPC systems is coordi-
nated checkpoint/restart (cCR). The overhead of cCR increases with the number
of application processes. Current projections indicate that on next-generation
systems more than half of an application’s execution time may be consumed by
the overhead of cCR [15]. Much of this overhead results from contention for stor-
age resources: at the end of each checkpoint interval every application process
simultaneously attempts to write out its checkpoint data to persistent storage.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000. SAND2016-5027C.

c© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 623–634, 2017.
DOI: 10.1007/978-3-319-58943-5 50



624 P.M. Widener et al.

Uncoordinated checkpoint/restart (uCR) attempts to reduce contention for
storage resources by allowing application processes to checkpoint independently.
However, the performance impact of eliminating all inter-process coordination
of checkpointing activities has been shown to be prohibitive because of the way
that checkpointing-induced delays propagate and aggregate along communica-
tion dependencies [17].

In this paper, we examine the space between these two checkpoint protocol
extremes, and investigate the impact of approximate checkpoint coordination on
application performance. Approximate coordination reduces the contention for
persistent storage resources in cCR and impedes the propagation of delays in
uCR. Specifically, this paper makes the following contributions:

– a discussion of a new method, approximate coordination, for reducing the
overhead of uCR;

– a description of a simulation-based approach for studying degrees of check-
point coordination; and

– an initial examination of the impact of the degree of checkpoint coordina-
tion on application performance in an idealized scenario where no contention
for persistent storage exists (e.g., node-local burst buffers are available for
checkpoint storage).
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Fig. 1. Propagation of uncoordinated checkpointing delay through application com-
munication dependencies. The processes p1, p2, and p3 exchange two messages m1 and
m2 in each of the three scenarios. The black regions marked with δ represent delays
due to the taking of checkpoints. The grey regions represent stalls due to unsatisfied
message dependencies.

The remainder of this paper is structured as follows: Sect. 2 provides a discus-
sion of checkpoint/restart and motivates our study of approximate coordination.
Section 3 describes our experimental approach and Sect. 4 presents the results of
these initial experiments. Section 5 discusses related work. Finally, Sect. 6 dis-
cusses potential future work and summarizes our initial study of approximate
checkpoint coordination.
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2 Background

The most common fault tolerance techniques on today’s systems are based on
checkpoint/restart. In the fundamental operation of checkpoint/restart, an appli-
cation’s processes periodically record their current state onto stable storage (cre-
ating a checkpoint). When a failure occurs, the application is restarted from a
saved checkpoint. To ensure that a set of saved checkpoints represents a con-
sistent state, some checkpoint/restart techniques require additional data to be
saved (e.g., all sent messages). Several algorithms have been developed to ensure
that a set of processes records a consistent state, deriving from seminal work on
distributed system snapshots by Chandy and Lamport [8].

In this paper, we consider the two checkpoint/restart-based techniques intro-
duced in the preceding section: cCR, and uCR. cCR stops the execution of all
application processes at the same logical time and records a snapshot of the
current state of each process. There are several benefits to cCR. Tight coor-
dination of the timing of checkpoints across application processes ensures that
the most recent checkpoint represents a consistent state of the machine [12]. As
a result, there is no need to store multiple checkpoints or to record any other
execution details (e.g., sent messages). Additionally, inter-process coordination
of the timing of checkpoints limits the propagation of checkpointing-induced
delays. As shown in Fig. 1b, because every process checkpoints simultaneously,
the relative timing of inter-process communication events is preserved. However,
because cCR requires that every application process take a checkpoint at the
same time, contention for persistent-storage resources may degrade application
performance. On next-generation systems, the overheads of coordination and
those due to contention for storage resources may be prohibitive. In some cases,
an application may spend more of its time on the overhead of cCR than on the
computation for which it was designed [15].

To reduce the overhead of contention for storage resources, uCR allows
every process to decide when to checkpoint entirely independently from its
peers [7,18,22]. However, because of the lack of checkpoint coordination addi-
tional information is required in order to guarantee the existence of a set of
checkpoints that represent a consistent state of the machine. One common way
to resolve this issue is message logging. For example, if every process logs every
message it sends, then when one process fails it restarts from its last checkpoint.
The surviving processes re-send all of the messages that were sent to the failed
process in the interval between its failure and its last checkpoint.

If the timing of checkpoints is entirely independent, checkpointing-induced
delays can propagate and aggregate, much like OS noise (or jitter) [17]. For
example, Fig. 1c shows how checkpointing-delays may propagate along commu-
nication dependencies. Because process p0 is delayed because it is taking a check-
point, process p1 stalls waiting on the receipt of messages m1, and the stall of p1
causes p2 to stall. Similarly, because process p1 is subsequently delayed by its own
checkpoint, process p2 continues to stall waiting on the receipt of message m2.

In this paper, we consider the novel question of whether and to what degree
approximate coordination of the timing of checkpoints may be able to improve
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on the performance resulting from the total lack of coordination in uCR without
incurring the overheads of resource contention in cCR. In other words, we seek
to answer the question of how uncoordinated uCR can be while still limiting the
propagation of checkpoint-induced delays.

3 Experimental Approach

In this section, we describe the experimental approach used to investigate
the influence of approximate checkpoint coordination. First, we describe how
we model the impact of checkpoint/restart techniques on application perfor-
mance. We then discuss how we simulate various degrees of uCR checkpoint
coordination.

3.1 Modeling Local Checkpoint/Restart

In general, the communication structure of Message Passing Interface (MPI) pro-
grams cannot be determined offline because message matches cannot be estab-
lished statically [6]. This makes modeling application performance analytically
challenging even if all parameters of the application (e.g., the complete commu-
nication structure and all relative inter-process timings) are known. We therefore
use discrete-event simulation to evaluate the impact of local checkpointing activ-
ities on the performance of real applications.

Our simulation-based approach models checkpointing activities as CPU
detours: periods of time during which the CPU is taken from the application
and used to compute and commit checkpoint data. This approach allows a level
of fidelity and control not always possible in implementation-based approaches.
It also allows us to examine application performance on systems that are much
larger than those that are generally available for systems research.

Our simulation framework is based on LogGOPSim [21] and the tool chain
developed by Levy et al. [24]. LogGOPSim uses the LogGOPS model, an exten-
sion of the well-known LogP model [9], to account for the temporal cost of com-
munication events. An application’s communication events are generated from
traces of the application’s execution. These traces contain the sequence of MPI
operations invoked by each application process. LogGOPSim uses these traces
to reproduce all communication dependencies, including indirect dependencies
between processes which do not communicate directly.

LogGOPSim can also extrapolate traces from small application runs; a trace
collected by running the application with p processes can be extrapolated to sim-
ulate performance of the application running with k ·p processes. The extrapola-
tion produces exact communication patterns for MPI collective operations and
approximates point-to-point communications [21]. The validation of LogGOPSim
and its trace extrapolation features have been documented previously [20,21].
Similarly, its ability to accurately predict local checkpointing overheads has also
been documented [17,24,25].
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3.2 Simulating the Role of Coordination

To simulate the impact of depriving the application of CPU cycles in order to
perform local checkpoints, LogGOPSim accepts a checkpointing trace: an ordered
list of checkpoints, expressed as the start time and duration of each checkpointing
event. In this paper, we use a checkpoint interval of 120 s and a checkpoint
commit time of 1 s. Although the optimal checkpoint interval is not known unless
checkpoints are totally coordinated, this checkpoint interval would be optimal
for cCR on a platform whose system MTBF is approximately 2 h.

LogGOPSim can simulate the degree of checkpointing coordination among
application processes by adding an initial offset to the replay of the execution
trace. Using an initial offset of zero for application processes will simulate a
perfectly coordinated checkpointing scheme. At the other extreme, choosing a
uniformly distributed random initial offset for each simulated process will simu-
late a completely uncoordinated approach. Choosing this offset randomly from
a normal distribution will simulate different degrees of coordination depending
on the standard deviation of the distribution used. Example probability density
functions are shown in Fig. 2. The x-axis in this figure is the time offset from
the mean and the y-axis is the probability of a node using that offset value. This
figure helps illustrate the range of the degree of approximate coordination that
we consider. From the figure, as expected, the greater the standard deviation,
the greater the likelihood of a large offset value.

We make two simplifying assumptions in our simulation approach:

– The perfect process synchronization we simulate is not achievable in prac-
tice. Even using strong coordination protocols such as those derived from
Chandy & Lamport, there will still be some time skew between checkpoint
commits in a real-world system. Using a simulation approach allows us to
apply a global clock to all simulated process checkpoints.

– Our checkpointing simulation assumes no contention for storage resources
even when checkpoints are tightly coordinated. In practice, storage resources
are typically shared — even node-local ones such as burst buffers. By disre-
garding contention for these resources, we can observe directly the impact of
coordination in local checkpoint propagation.

As a result of these assumptions, the data we present may be optimistic for
highly-coordinated checkpointing cases.

3.3 Application Descriptions

In the remainder of the paper, we present results from simulation experiments
based on the behavior of a set of four workloads. These workloads were chosen to
be representative of scientific applications that are currently in use and compu-
tational kernels thought to be important for future extreme-scale computational
science. They include:
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Fig. 2. Normally distributed probability density function of the degree of coordination
as a function of standard deviation.

– LAMMPS: A scientific application developed by Sandia National Laboratories
to perform molecular dynamics simulations. For our experiments, we used the
Lennard-Jones(LJ) potential [30].

– CTH: A code developed at Sandia National Laboratories for modeling
complex problems that are characterized by large deformations or strong
shocks [11].

– HPCCG: A conjugate gradient solver from the Mantevo suite of mini-
applications [19,31].

– LULESH: An application that represents the behavior of a typical
hydrocode [23].

CTH and LAMMPS are important U.S. Department of Energy (DOE) appli-
cations which run for long periods of time on production machines and exhibit
a range of different communication structures. HPCCG represents an impor-
tant computational pattern in key HPC applications. LULESH is an exascale
application proxy from the DOE ExMatEx co-design center [14].

4 Results

We conducted a set of experiments to quantify the effects of checkpointing syn-
chronization for uCR in our chosen workloads. As described in the previous
section, we staggered the starting offset of simulated checkpointing activity for
each simulated process to produce different degrees of synchronization. Com-
pletely uncoordinated checkpointing is simulated by choosing a uniformly dis-
tributed random starting offset for each process, and completely coordinated
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checkpointing by using the same offset for each process. Producing offsets rep-
resenting varying degrees of synchronization is done by drawing values from a
normal distribution with mean 0 and a given standard deviation; changing the
standard deviation of the distribution changes the degree of synchronization.
We chose the following standard deviations for our trials: 1 µs, 100 µs, 75 ms,
100 ms, and 1, 20, 40, 60, 80, and 100 s. In our discussion below we refer to each
different distribution of offsets by the value of its associated standard deviation.

Fig. 3. Application slowdown with varying degrees of synchronization at 32Ki
processes, measured relative to each totally coordinated case.

The results of these experiments are presented in Figs. 3 and 4. Figure 3
shows the application slowdown caused by using uCR with varying degrees of
synchronization for each of our representative workloads at a fixed application
size of 32 Ki processes1. We then examined each application in detail for slow-
downs at varying process counts (Fig. 4). In each of these figures, we present
the slowdown as a percentage of the runtime for a cCR (totally-coordinated
checkpointing) execution of the simulation.

For each of the workloads we studied, a significant and increasing per-
formance slowdown occurs as checkpoint synchronization among processes is
relaxed beyond 100 ms. Previous work in this area has demonstrated that com-
pletely unsynchronized checkpointing will result in severe slowdowns [17]; as this
figure also makes clear, some synchronization between checkpointing processes
is necessary.
1 Throughout this paper, we use the binary prefixes defined by the International Elec-

trotechnical Commission (IEC). For example, 1 Ki processes is equivalent to 1024
processes.
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(a) LAMMPS-LJ (b) LULESH

(c) HPCCG (d) CTH

Fig. 4. Slowdown in applications at different process counts with varying degrees of
checkpoint coordination, measured relative to each totally coordinated case.

Determining the degree of synchronization required in order to maintain per-
formance then becomes the issue, and it is here that our results imply an impor-
tant insight. Relatively loose synchronization is sufficient to keep the slowdown
induced by checkpointing activity to a level much lower than that produced by
completely uncoordinated checkpointing. The results presented in Fig. 4 show
that if the pattern of checkpoints for all processes follows a normal distribution
with standard deviation 100 ms (i.e., on average, 95% of process checkpoints
will occur in a 200 ms time window), application runtime is increased by less
than 5%. Synchronizing processes to this degree is well within the capabilities
of systems with hardware support (such as a dedicated global interconnect or
specialized equipment such as a GPS card), which have achieved clock skews on
the order of 1µs [1,2]. Even software-based solutions such as NTP are able to
achieve synchronization well within the 100 ms case we discuss here [27,29].

Even extremely loose synchronization with standard deviation on the order of
1 s produces approximately 10% application slowdown for our studied workloads.
This is a value easily realizable in modern HPC systems and is also possible with
acceptable reliability in wide-area or cloud-computing contexts. We also note
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that much tighter synchronization of uCR checkpointing does not improve per-
formance markedly over that provided at the 100 ms standard-deviation value.
Finally, this result is observed for a range of process counts, indicating that this
effect is relatively insensitive to scale for this degree of synchronization.

5 Related Work

In this paper, we study the impact of approximate checkpoint coordination
on application performance. In this section, we provide an overview of related
publications.

The xSim simulator [13] has been used to study the effects of interference
amplification and absorption on MPI collectives. Its authors propose its use
as a tool for future HPC hardware/software co-design. Pradipta De et al. [10]
proposed an emulation approach for studying similar performance impacts. Our
simulation framework differs from these approaches in its ability to simulate
interference overheads for systems of tens or hundreds of thousands of processes
with modest hardware requirements. Our simulation framework also makes a
different tradeoff between the level of detail produced and simulation time than
these tools do, allowing it to be used for rapid evaluation of different application
configurations.

Checkpoint/restart protocols in HPC systems have been extensively studied.
There are many descriptions of the foundations of both coordinated and uncoor-
dinated CR protocols available in the literature [4,22,26]. The complete lack of
checkpoint coordination in uCR has been frequently relied upon as an important
feature [7,18,22].

Beyond uCR and cCR, many other checkpoint/restart protocols have been
proposed. Alvisi et al. examined the performance impact of coarse-grained com-
munication patterns on the performance of three communication-induced check-
point/restart (ciCR) algorithms [3]. ciCR uses the application’s communication
patterns to avoid checkpoints that cannot be used to recover a consistent global
state. Hierarchical checkpointing attempts group application processes into clus-
ters that communicate frequently with each other [18,28]. cCR is used within
a cluster and uCR plus message logging is used between clusters. Because the
number of processes in a cluster is smaller than the total application, contention
for filesystem resources is reduced. Also, because most of the communication is
within a cluster, the volume of message log data is also reduced.

Our study has origins in published research that characterizes application
behavior in the presence of OS noise [16,20]. Collectively, this research shows that
the pattern of OS noise events determines the impact on application performance
and the benefits of coordination. Moreover, it shows that perfect coordination
of OS noise events can significantly reduce performance impact.

Ferreira et al. [17] used an analogy to OS noise to show that when the timing
of checkpoints is completely uncoordinated, checkpoint-induced delays have the
potential to propagate and significantly degrade application performance.

In this paper, we extend the results of these studies of OS noise to examine
how approximate coordination impacts application performance. Specifically, we
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show that perfect coordination is unnecessary to mitigate the performance cost
of uCR; it may be sufficient to approximately coordinate OS noise events (e.g.,
local checkpoints).

6 Conclusions and Future Work

Developers of resilient HPC applications face design decisions about how best
to implement fault-tolerance measures for extreme-scale computing. As coordi-
nated checkpointing reaches a predicted scalability ceiling, a better understand-
ing of the performance implications of introducing uncoordinated checkpointing
is necessary. This paper contributes in several ways. We have: introduced the
concept of approximate coordination for reducing the overhead of uncoordinated
checkpointing; described a validated simulation-based technique for studying the
coordination of processes using uncoordinated checkpointing; and presented an
examination, carried out using our simulation framework, of the impact that
varying degrees of checkpoint coordination has on application performance. Our
results show that, while a degree of coordination between processes is necessary
in order to avoid severe performance penalties, this degree can be quite modest.
Dedicated hardware support for process synchronization is not necessary, and
software-based coordination provides a degree of synchronization sufficient to
keep checkpointing-related performance slowdowns below 10%.

We are pursuing several directions of future work based on this research. The
projections we have presented here do not consider contention between processes
for I/O bandwidth; we plan to refine our simulation approach to account for this.
We also are working to determine which application and checkpointing features
contribute to slowdowns in performance, and to characterize their interactions.
Finally, we will use our extended simulation framework to provide more detailed
information about how applications can leverage the synchronization of their
processes to avoid performance issues.
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