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Abstract. Numerical reproducibility failures rise in parallel computa-
tion because floating-point summation is non-associative. Massively par-
allel and optimized executions dynamically modify the floating-point
operation order. Hence, numerical results may change from one run to
another. We propose to ensure reproducibility by extending as far as
possible the IEEE-754 correct rounding property to larger operation
sequences. We introduce our RARE-BLAS (Reproducible, Accurately
Rounded and Efficient BLAS) that benefits from recent accurate and effi-
cient summation algorithms. Solutions for level 1 (asum, dot and nrm2)
and level 2 (gemv) routines are presented. Their performance is stud-
ied compared to the Intel MKL library and other existing reproducible
algorithms. For both shared and distributed memory parallel systems,
we exhibit an extra-cost of 2× in the worst case scenario, which is sat-
isfying for a wide range of applications. For Intel Xeon Phi accelerator
a larger extra-cost (4× to 6×) is observed, which is still helpful at least
for debugging and validation steps.

1 Introduction and Background

The increasing power of supercomputers leads to a higher amount of floating-
point operations to be performed in parallel. The IEEE-754 [8] standard defines
the representation of floating-point numbers and requires the addition operation
to be correctly rounded. However because of errors generated by every addition,
the accumulation of more than two floating-point numbers is non-associative.
The combination of the non-deterministic behavior in parallel programs and the
non-associativity of floating-point accumulation yields non-reproducible numer-
ical results.

Numerical reproducibility is important for debugging and validating pro-
grams. Some solutions have been given in parallel programming libraries. Static
data scheduling and deterministic reduction ensure the numerical reproducibil-
ity of the library OpenMP. Nevertheless the number of threads has to be set for
all runs [15]. Intel MKL library (starting with 11.0 release) introduces CNR [15]
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(Conditional Numerical Reproducibility). This feature limits the use of instruc-
tion set extensions to ensure numerical reproducibility between different archi-
tectures. Unfortunately this decreases significantly the performance especially
on recent architectures, and requires the number of threads to remain the same
from run to run to ensure reproducible results.

First algorithmic solutions are proposed in [4]. Algorithms ReprodSum and
FastReprodSum ensure numerical reproducibility independently of the oper-
ation order. Therefore numerical results do not depend anymore on hardware
configuration. The performance of these latter is improved with the algorithm
OneReduction [6] by relying on indexed floating-point numbers [5] and requir-
ing a single reduction operation to reduce the communication cost on distributed
memory parallel platforms. However, those solutions do not improve accuracy.
The computed result even if it is reproducible, it is still exposed to accuracy
problems. Especially when we address an ill-conditioned problem.

Another way to guarantee reproducibility is to compute correctly rounded
results. Recent works [1,2,11] show that a accurately rounded floating-point
summation can be calculated with very little or even no extra-cost. With accu-
rately rounded we mean that the result is either correctly rounded (the nearest
floating-point number to the exact result) or faithfully rounded (one of the two
floating-point numbers that surround the exact result). We have analyzed in [1]
different summation algorithms, and identified those suited for an efficient paral-
lel implementation on recent hardware. Parallel algorithms for correctly rounded
dot and asum and for a faithfully rounded nrm2 have been designed relying on
the most efficient summation algorithms. Their implementation exhibits interest-
ing performance with 2× extra-cost in the worst case scenario on shared memory
parallel systems [1].

In this paper we extend our approach to an other type of parallel platforms
and to higher BLAS level. We consider the matrix-vector multiplication from
the level 2 BLAS. We complete our shared memory parallel implementation
with solution for a distributed memory model, and confirm its scalability with
tests on the Occigen supercomputer1. We also present tests on the Intel Xeon Phi
accelerator to illustrate the portability and appreciate the efficiency of our imple-
mentation on a many-core accelerator. The efficiency of our correctly rounded
dot product scales well on distributed memory parallel systems. Compared to
optimized but not reproducible implementations, it has no substantial extra-cost
up to about 1600 threads (128 sockets, 12 cores). On Intel Xeon Phi accelerator
the extra-cost increases up to 6× mainly because our solution benefits less from
the high memory bandwidth of this architecture compared to MKL’s implemen-
tation. Nevertheless they still could be useful for validation, debugging or for
applications that require precision or reproducible results.

This paper is organized as follows. Section 2 presents our sequential algo-
rithms for reproducible and accurate BLAS. Parallel versions are presented in
Sect. 3. Section 4 is devoted to implementation and detailed results, and Sect. 5
includes some conclusions and the description of future work.

1 https://www.cines.fr/en/occigen-the-new-supercomputeur/.

https://www.cines.fr/en/occigen-the-new-supercomputeur/
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2 Sequential RARE BLAS

We present the algorithms for accurately rounded BLAS. This section starts
briefly recalling our sequential level 1 BLAS subroutines (dot, asum and nrm2)
already introduced in [1]. Then the accurately rounded matrix-vector multipli-
cation is introduced.

2.1 Sequential Algorithms for the Level 1 BLAS

In this section we focus on the sum of absolute values (asum), the dot product
(dot), and the euclidean norm (nrm2).

Sum of Absolute Values. The condition number of a sum is defined as
cond(

∑
pi) =

∑ |pi|/
∑

pi. For the sum of absolute values the condition number
is known to equal 1. This justifies the use of algorithm SumK [13].

Picking carefully the value of K ensures that computing asum(p) as
SumK(p) is faithfully rounded. Such appropriate value of K only depends on
the vector size. We have K = 2 for n ≤ 225, and K = 3 for n ≤ 234. For n ≤ 239

which represents 4TB of data, K = 4 is sufficient [1].

Dot Product. Using Dekker’s TwoProd [3], the dot product of two n-vectors
can be transformed without error to a sum of a 2n-vector. The sum of the
transformed vector is correctly rounded using a mixed solution. For small vectors
that fit in high level cache and that can be reused with no memory extra-cost,
the algorithm FastAccSum [14] is used, the algorithms HybridSum [17] or
OnlineExact [18] are preferred for large vectors (both algorithms exhibit barely
the same performance). The idea of these algorithms is to add elements that share
the same exponent to a dedicated accumulator —in practice one or two floating-
point numbers respectively. Therefore, the 2n-vector is error-free replaced by a
smaller accumulator vector (of size 4096 or 2048 respectively). Here the result
and the error calculated with TwoProd are directly accumulated. Finally we
apply the distillation algorithm iFastSum [17] to the accumulator vector to
compute the correctly rounded dot product.

Euclidean Norm. The euclidean norm of a vector p is defined as (
∑

p2i )
1/2.

The sum
∑

p2i can be correctly rounded using the previous dot product. Finally,
we apply a square root that returns a faithfully rounded euclidean norm [7].
numbers that enclose the exact result). This does not allow us to compute a
correctly rounded norm-2 but this faithful rounding is reproducible.

2.2 Sequential Algorithms for the Level 2 BLAS

Matrix-vector multiplication is defined in the BLAS as y = αA · x + βy. In the
following, we denote yi = αa(i) · x + βyi, where a(i) is the ith row of matrix A.
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Algorithm 1 details our proposed reproducible computation: (1) The first
step transforms the dot product a(i) · x into a sum of non-overlapping floating-
point numbers. This error-free transform uses a minimum extra storage: the
transformed result is stored in one array of maximum size 40 (the floating-point
number range divided by the mantissa size). This process is done in different
ways depending on the vector size. For small vectors we use TwoProd to create
a 2n-vector. The distillation algorithm iFastSum [17] is then used to reduce the
vector size. For large ones we do not create the 2n-vector. The result and the
error of TwoProd are directly accumulated in accordance to their exponent as
requested by HybridSum or OnlineExact. After the dot product has been error-
free transformed to a smaller vector, the same distillation process is applied. Let
us remark that this step does not compute the dot product a(i) ·x but transforms
it without error in a small floating point vector. (2) The second step evaluates
multiplications by the scalars α and β using TwoProd. Again data is transformed
with no error. (3) Finally we distillate the results of the previous steps to get a
correctly rounded result of yi = αa(i) · x + βyi. The same process is repeated for
each row of the matrix A.

3 Parallel RARE BLAS

This section presents our parallel reproducible version of Level 1 and 2 BLAS.

3.1 Parallel Algorithms for the Level 1 BLAS

Sum of Absolute Values. The natural parallel version of algorithm SumK
introduced in [16] is used for parallel asum. Two stages are required. (1) The
first one consists in applying the sequential algorithm SumK on local data with-
out performing the final error compensation. So we end with K floating point
numbers per thread. (2) The second stage gathers all these numbers in a single
vector. Afterwards the master thread applies a sequential SumK on this vector.

Dot Product and Euclidean Norm. Figure 1 illustrates our correctly
rounded dot product. Note that for step 1, the two entry vectors of the dot
product are equally split between the threads. We use the same transformation
as the one presented in Sect. 2.2 to error-free transform the local dot product.
The accumulation of elements with the same exponent is only done for large vec-
tors. As before C ′ vector size equals 4096 or 2048. For small vectors we create
a 2n-vector using only TwoProd. Distillation in step 2 mainly aims at reducing
the communication cost of the union that yields the vector C. Since all trans-
formations up to C are error-free, the final call to iFastSum in step 3 returns
the correctly rounded result for the dot product.

The euclidean norm is faithfully rounded as explained for the sequential case.
Even if we do not calculate a correctly rounded result for euclidean norm, it is
guaranteed to be reproducible because it only depends on a reproducible dot
product.



Reproducible, Accurately Rounded and Efficient BLAS 613

Data: A : m × n-matrix; x : n-vector; y : m-vector; α, β :double precision float;
Result: the input vector y updated as y = αA · x + βy;
for row in 1 : m do

currentrow = A[row, 1 : n];
if currentrow and x fit in cache then

declare 2n-vector C;
for column in 1 : n do

(result, error) = TwoProd(currentrow[column], x[column]);
C[column] = result; C[n + column] = error;

end

else
declare the accumulator vector C;
for column in 1 : n do

(result, error) = TwoProd(currentrow[column], x[column]);
accumulate result and error to corresponding accumulator in C;

end

end
declare a vector distil;
distil = distillationProcess(C);
declare a vector finalTransformation;
size = sizeOf(distil);
/* Step 2 : multiply by the scalars α and β */

for i in 1 : size do
(result, error) = TwoProd(distil[i], α);
finalTransformation[i] = result;
finalTransformation[size + i] = error;

end
(result, error) = TwoProd(y[row], β);
finalTransformation[size × 2 + 1] = result;
finalTransformation[size × 2 + 2] = error;

/* Step 3 : use iFastSum to calculate the correctly rounded

result */

y[row] = iFastSum(finalTransformation);
end

Algorithm 1: Correctly rounded matrix-vector multiplication

3.2 Parallel Algorithms for the Level 2 BLAS

For matrix-vector multiplication, several algorithms are available according to
the matrix decomposition. The three possible ones are: row layout, column layout
and block decomposition. We opt for row layout decomposition because the
algorithms we use are more efficient when working on large vectors. This choice
also avoids the additional cost of reduction.

Figure 2 shows how our parallel matrix-vector multiplication is performed.
The vector x must be attainable for all threads. On the other side the matrix A
and the vector y are split into p parts where p is the number of threads. Each
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Fig. 1. Parallel algorithm for correctly rounded dot product
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Fig. 2. Parallel algorithm for correctly rounded matrix-vector multiplication

thread handles the panel A(i) of A and the sub-vector y(i) of y. y(i) is updated
with αA(i) · x + βy(i) as described in Sect. 2.2.

4 Test and Results

In this section, we illustrate the performance and accuracy results of our pro-
posed solution to accurate and reproducible level 1 and level 2 BLAS.

4.1 Experimental Framework

We consider the three frameworks described in Table 1. They are significant of
today’s practise of floating-point computing.

We test the efficiency of the sequential and the shared memory parallel imple-
mentation on platform A. Platform B illustrates the many core accelerator use.
The scalability of our approach on large supercomputers is exhibited on plat-
form C (Occigen supercomputer). Only the dot product has been tested on
platform C. Data for dot product are generated as in [13]. The same idea is used
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Table 1. Experimental frameworks

A Processor dual Xeon E5-2650 v2 16 cores (8 per socket), No
hyper-threading. L1/L2 = 32/256 KB per core. L3 = shared 20
MB per socket.

Bandwidth 59,7 GB/s

Compiler Intel ICC 16.0.0

Options -O3 -xHost -fp-model double -fp-model strict -funroll-all-loops

Libraries Intel OpenMP 5. Intel MKL 11.3.

B Processor Intel Xeon Phi 7120 accelerator, 60 cores, 4 threads per core.
L1/L2 = 32/512 KB per core.

Bandwidth 352 GB/s

Compiler Intel ICC 16.0.0

Options -O3 -mmic -fp-model double -fp-model strict -funroll-all-loops

Libraries Intel OpenMP 5. Intel MKL 11.3.

C Processor 4212 Xeon E5-2690 v3 (12 cores per socket), No hyper-threading.
L1/L2 = 32/256 KB per core. L3 = shared 30 MB per socket.

Bandwidth 68 GB/s

Compiler Intel ICC 15.0.0

Options -O3 -xHost -fp-model double -fp-model strict -funroll-all-loops

Libraries Intel OpenMP 5. Intel MKL 11.2. OpenMPI 1.8

to generate condition dependent data for matrix-vector multiplication (multiple
dot products with a shared vector).

4.2 Implementation and Performance Results

We compare the performance results of our implementation to the highly opti-
mized Intel MKL library, and to implementations based on algorithm OneRe-
duction used on the library ReproBLAS [12]. We have implemented an OpenMP
parallel version of this algorithm since ReproBLAS offers only an MPI par-
allel version. We derive reproducible version of dot, nrm2, asum and gemv
by replacing all non-associative accumulations by the algorithm OneReduc-
tion [6]. These versions are denoted OneReductionDot, OneReductionAsum,
OneReductionNrm2 and OneReductionGemv.

CNR feature [15] is not considered because it does not guarantee repro-
ducibility between sequential and parallel runs. Running time is measured in
cycles using the RDTSC instruction. In the parallel case, RDTSC calls have
been made out of parallel region before and after function calls. We take the
minimum running time over 8 executions for gemv and 16 executions for other
routines to improve result consistency. We note up to 3% difference in number of
cycles between different runs. This difference is due to turbo boost and operating
system interruption and it is known that performance results can not be exactly
reproduced.
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Sequential Performance. Tests are run on platform A. Results for dot, asum
and nrm2 are presented in [1]. These accurately rounded versions exhibit respec-
tively 5×, 2× and 9× extra-cost.

Our Rgemv matrix-vector multiplication computes a correctly rounded result
using iFastSum for small matrices and HybridSum for large ones, this latter
being slightly more efficient than OnlineExact on both platforms A and B. As
shown in Fig. 3a, Rgemv costs 8 times more compared to MKL in this sequential
case.

(a) Sequential (b) Parallel

Fig. 3. Extra-cost of correctly rounded matrix-vector multiplication (cond=108)

Shared Memory Parallel Performance. Tests have also been done on plat-
form A where 16 cores are used with no hyper-threading. We use OpenMP to
implement our parallel algorithms. As for the sequential case, results for dot,
asum and nrm2 are presented in [1]. The dot and asum do not exhibit any
extra-cost compared to classic versions, and nrm2 has 2× extra-cost.

For the matrix-vector multiplication, the correctly rounded algorithm costs
about twice more compared to MKL as shown in Fig. 3b. As in the sequential
case, MKLGemv certainly use cache blocking and so benefits from a better
memory bandwidth use. Nevertheless our parallel implementation scales well
and its extra-cost now reaches the 2× ratio.

Xeon Phi Performance. There is not much difference between implementation
for Xeon Phi and previous CPU ones. Thread level parallelism is implemented
using OpenMP and intrinsic functions are used to benefit from the available
instruction set extensions. A FMA (Fused Multiply and Add) is also available.
Therefore TwoProd is replaced by 2MultFMA [10] which only requires two
FMAs to compute the product and its error, and so improves performance.
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(a) Sum of absolute values (b) Dot product (cond = 1016)

(c) Euclidean norm (d) Matrix-vector multiply (cond = 108)

Fig. 4. Extra-cost of Xeon Phi implementation compared to classical algorithms

Figure 4 exhibits respective ratios of 2×, 4×, 6× and 6× for asum, dot prod-
uct, euclidean norm and matrix-vector multiplication. So the extra-cost of accu-
rately rounded implementations is larger for this accelerator than for the CPU.
Indeed MKL based implementations of these memory bounded routines benefit
from both higher memory bandwidth and large vector capabilities (AVX-512)
provided by the Xeon Phi more than our accurate ones. Note that on our cor-
rectly rounded dot product algorithms there is no efficient way to vectorize the
accumulation to the elements of vector C since the access to those elements is
not contiguous (see Algorithm 1 and Fig. 1).

Distributed Memory Parallel Performance. Finally we present perfor-
mance on distributed memory systems. Only dot product tests have been run
on the Occigen supercomputer. In this case we have two levels of parallelism:
OpenMP is used for thread level parallelism on a single socket, and OpenMPI
library for socket communication. The algorithm scalability is tested on a single
data set with input vectors of length 107 and condition number is 1032.

Figure 5a shows the scalability for a single socket configuration. It is not a
surprise that MKLDot does not scale so far since it is quickly limited by the
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memory bandwidth. OneReductionDot and Rdot scale well up to exhibit no
extra-cost compared to optimized MKLDot. Again such scaling occurs until
being limited by the memory bandwidth.

(a) Single socket (b) Multi socket normalized by ClassicDot

Fig. 5. Performance of the distributed memory parallel implementations.

Performance for the multi socket configuration is presented in Fig. 5b.
X-axis shows the number of sockets where all the 12 available cores are used.
Y-axis shows execution time normalized to ClassicDot (socket local MKLDots
followed by a MPI sum reduction).

Algorithms Rdot and OneReductionDot stay almost as efficient as Classic-
Dot. All algorithms exhibit similar performance because they rely all on a single
communication.

4.3 Accuracy Results

We present here accuracy results for dot and gemv variants. In both Fig. 6a and
b, we show the relative error according to the condition number of the prob-
lem. Relative errors are calculated according to MPFR library [9] results. The
two subroutines nrm2 and asum are excluded from this test because condition
number is fixed for both of them. The condition number for the dot product is
defined as cond(

∑
Xi ·Yi) =

∑ |Xi|·|Yi|/|∑ Xi ·Yi|. In almost all cases, solutions
based on algorithm OneReduction besides being reproducible are more accurate
than MKL. However, for ill-conditioned problems both MKL and OneReduction
derived implementation give worthless results. On the other side RARE-BLAS
subroutines ensure that results are always correctly rounded independently from
the condition number.

5 Conclusion and Future Work

We have presented algorithms that compute reproducible and accurately
rounded results for BLAS. Level 1 and 2 subroutines have been addressed in
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(a) Accuracy results for (b) Accuracy results fordot gemv

Fig. 6. Accuracy results for dot and gemv

this paper. Implementations of these algorithms have been tested on three plat-
forms significant of the floating-point computing practice. While existing solu-
tions tackle only the reproducibility problem, our proposed solutions aim at
ensuring both reproducibility and the best precision. We compare them to opti-
mized Intel MKL implementations. We measure interesting performance on CPU
based parallel environments. Extra-cost on CPU when all available cores are used
is at worst twice. Nevertheless performance on Xeon Phi accelerator is lagging
behind: extra-cost is between 4 and 6 times more. Nevertheless, our algorithms
remain efficient enough to be used for validation or debugging programs, and also
for parallel applications that can sacrifice performance to increase the accuracy
and the reproducibility of their results.

Our plan for future development includes achieving reproducibility and pre-
cision for other BLAS subroutines. We are currently designing an accurate and
reproducible version of triangular solver. Other Level 3 BLAS routines will be
addressed even if the performance gap with optimized libraries will enforce the
previously identified restriction of the application scope.
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